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Abstract This paper presents a new concept in graph theory, focusing on a
connected graph’s edge eccentricity. We define a new matrix, the maximum
edge eccentricity matrix Mee(Υ ), which represents the maximum edge dis-
tance between all pairs of edges in the graph. This matrix is derived from the
graph’s structure and the eccentricity values of its edges. Our work explores
the characteristics of this matrix, including the determination of specific coef-
ficients within its characteristic polynomial, denoted as P (Υ, ν). Furthermore,
we introduce the concept of maximum edge eccentricity energy Mee(Υ ) for
connected graphs and provide calculations for well-known graphs. We estab-
lish upper and lower bounds for EMee

(Υ ) and prove that if the maximum edge
eccentricity energy of a graph is rational, it must be an even number.

Keywords Edge distance in the graph · Edge eccentricity in the graph ·
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1 Introduction

The spectral graph theory explores the relationship between graphs and their
associated matrices. By analyzing the spectra of matrices like the adjacency
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matrix and Laplacian matrix, valuable insights into the graph’s properties
can be revealed. This approach borrows the concept of energy from chem-
istry, where it estimates the total π-electron energy in molecules. In molecular
graphs, carbon atoms are vertices, and carbon-carbon bonds are edges, with
hydrogen atoms omitted. The eigenvalues of these molecular graphs correspond
to electron energy levels. A key focus in Hückel theory is the total π-electron
energy, which is the sum of individual electron energies in a molecule.

The concept of graph energy, introduced in the 1940s [7], involves analyz-
ing the eigenvalues of a graph’s adjacency matrix. Given a simple graph G
with vertices {v1, v2, . . . , vn}, the adjacency matrix A(G) is an n × n matrix
with entries aij indicating vertex connections. The eigenvalues of A(G), de-
noted as λ1, λ2, . . . , λn, are ordered non-increasingly and represent the graph’s
eigenvalues. The energy E(G) is the sum of the absolute values of these eigen-
values [10]. Building on related work [1,14], essential definitions and notations
are presented for further discussion.

Throughout this research, we will consider graphs to be simple, finite, and
connected. A graph Υ = (V,E) is defined as a simple graph, devoid of loops,
multiple edges, or directed edges. We use the standard notation n = |V | and
m = |E| to represent the number of vertices and edges in a graph Υ , re-
spectively. The following definitions are introduced, drawing from references
[1,5]. For a given edge e ∈ E its open neighborhood, denoted as N(e), en-
compasses all adjacent edges, while its closed neighborhood is expressed as
N(e) = N(e) ∪ {e}. The degree of an edge e in Υ , denoted as d(e), equals the
size of its open neighborhood, |N(e)|. A graph Υ is classified as a k-regular
graph if the degree of every vertex v in Υ is k, i.e., d(v) = k. The edge dis-
tance between two edges e and e′ in Υ , denoted as d(e, e′), is the minimum
number of edges connecting them. The eccentricity of an edge e in Υ , de-
noted as e(e), is calculated as the maximum edge distance between e and
any other edge e′ in Υ , i.e., e(e) = max{d(e, e′); e′ ∈ E(Υ )}. The edge radius
of Υ , re(Υ ), is defined as the minimum eccentricity among all edges in Υ ,
re(Υ ) = min{e(e) : e ∈ E(Υ )}, while the edge diameter, De(Υ ), is the max-
imum eccentricity, De(Υ ) = max{e(e) : e ∈ E(Υ )}. Consequently, for every
edge e in Υ , we have re(Υ ) ≤ e(e) ≤ De(Υ ). An edge e in a connected graph
Υ is considered a central edge if its eccentricity matches the edge radius, i.e.,
e(e) = re(Υ ). Furthermore, Υ is referred to as an edge self-centered graph if
the eccentricity of every edge e equals both the edge radius and edge diameter,
i.e., e(e) = re(Υ ) = De(Υ ).

In graph theory, we use the symbols Kn, Cn, Sn, Pn and Km,n to represent
specific types of graphs: complete, cycle, star, path, and complete bipartite
graphs, respectively. We refer to standard literature [3,6,11] for graph theory
foundations and additional references [2,4,8,9,12,13,15,16] for supplementary
concepts. Given a simple graph Υ with n vertices labeled v1, v2, . . . , vn, we
define its maximum degree matrix M(Υ ), where

dij =

{
max{d(vi), d(vj)}, if vivj ∈ E(Υ ),

0, otherwise.
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This matrix M(Υ ) exhibits a real symmetric nature with zero traces, imply-
ing that its eigenvalues are real and sum up to zero. We extend this concept
by presenting the maximum edge eccentricity matrix Mee(Υ ) for a connected
graph Υ , deriving coefficients for its characteristic polynomial P (Υ, ν). Fur-
thermore, we establish the notion of maximum eccentricity energy, denoted as
EMee

(Υ ), associated with a connected graph Υ .

2 Maximum edge eccentricity energy of graph

Definition 1 For an edge ei of Υ , the edge eccentricity is

e(ei) = max{d(ei, ej); ej ∈ E(Υ )},

that the edge distance d(ei, ej) in a graph Υ is the minimum number of edges
between ei and ej .

Let Υ (V,E) be a simple connected graph with m edge e1, e2, . . . , em and let
e(ei) be the eccentricity of edge ei, i = 1, 2, . . . ,m. The Maximum edge eccen-
tricity matrix of Υ defining as,

Mee(Υ ) =


e∗11 e∗12 · · · e∗1m
e∗21 e∗22 · · · e∗2m
...

... . . . ...
e∗m1 e∗m2 · · · e∗mm

 ,

where

e∗ij =

{
max{e(ei), e(ej)}, if ei, ej are adjacent and i ̸= j,

0, otherwise.

The characteristic polynomial of the maximum edge eccentricity matrix Mee(Υ )
is defined by P (Υ, ν) = det(νI − Mee(Υ )). Where I is the identity matrix of
order m. The maximum edge eccentricity eigenvalues of Υ are the eigenval-
ues of Mee(Υ ). Since Mee(Υ ) is real and symmetric with zero traces, then its
eigenvalues are real numbers with sum equals to zero. We label them in non-
increasing order ν1 ≥ ν2 ≥ · · · ≥ νm. The maximum edge eccentricity energy
of a graph Υ is defined as

EMee
(Υ ) =

m∑
i=1

|νi|.

To clarify this concept, let’s examine a specific example.
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Fig. 1 graph Υ1

Example 1 let Υ1 be a graph in figure 1, with 7 edge e1, e2, e3, e4, e5, e6 and
e7. The edge distance matrix of Υ1 is

Mee(Υ1) =



0 2 2 0 0 0 0
2 0 2 0 0 0 0
2 2 0 1 0 0 1
0 0 1 0 2 0 1
0 0 0 2 0 2 0
0 0 0 0 2 0 2
0 0 1 1 0 2 0


,

The characteristic polynomial of Mee(Υ1) is

P (Υ1, ν) = det(νI−Mee(Υ1)) = ν7−27ν5−18ν4+184ν3+208ν2−112ν−32.

The maximum edge eccentricity eigenvalues of Υ1 are

ν1 = −3.5616, ν2 = −2.5251, ν3 = −2,

ν4 = −0.2159, ν5 = 0.5616, ν6 = 3.3159,

ν7 = 4.4251.

So, the maximum edge eccentricity energy of Υ1 is

EMee
(Υ1) = 16.6052.

Properties of maximum edge eccentricity energy

In this section, we obtain the values of some coefficients of the characteristic
polynomial of the maximum edge eccentricity matrix and investigate some
properties of maximum edge eccentricity of a graph Υ .
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Theorem 1 Let Υ be a graph of order m and let

P (Υ, ν) = c0ν
m + c1ν

m−1 + c2ν
m−2 + · · ·+ cm,

be the characteristic polynomial of maximum edge eccentricity matrix of Υ .
Then

(i) c0 = 1,
(ii) c1 = 0,

(iii) c2 = −
∑

1≤i<j≤m

(e∗ij)
2,

(iv) c3 = −2
∑

1≤i<j<k≤m

e∗ije
∗
ike

∗
jk,

(v) cm = (−1)mdet(Mee).

Proof
(i) Directly from the definition of P (Υ, ν), it follows that c0 = 1.
(ii) Since the trace of Mee(Υ ) is always zero.
(iii) (−1)2c2 is equal to the sum of determinants of all the 2 × 2 principal
submatrices of Mee(Υ ), that is

c2 =
∑

1≤i<j≤m

∣∣∣∣e∗ii e∗ij
e∗ji e

∗
jj

∣∣∣∣ = ∑
1≤i<j≤m

(e∗iie
∗
jj − e∗ije

∗
ji)

=
∑

1≤i<j≤m

e∗iie
∗
jj −

∑
1≤i<j≤m

(e∗ij)
2

= 0−
∑

1≤i<j≤m

(e∗ij)
2

= −
∑

1≤i<j≤m

(e∗ij)
2.

(iv)

c3 = (−1)3
∑

1≤i<j<k≤m

∣∣∣∣∣∣
e∗ii e∗ij e∗ik
e∗ji e

∗
jj e∗jk

e∗ki e
∗
kj e∗kk

∣∣∣∣∣∣
= −

∑
1≤i<j<k≤m

[e∗ii(e
∗
jje

∗
kk − e∗kje

∗
jk)− e∗ij(e

∗
jie

∗
kk − e∗kie

∗
jk) + e∗ik(e

∗
jie

∗
kj − e∗kie

∗
jj)]

= −
∑

1≤i<j<k≤m

e∗iie
∗
jje

∗
kk +

∑
1≤i<j<k≤m

[e∗ii(e
∗
jk)

2 + e∗jj(e
∗
ik)

2 + e∗kk(e
∗
ij)

2]

−
∑

1≤i<j<k≤m

e∗ije
∗
jke

∗
ki −

∑
1≤i<j<k≤m

e∗ike
∗
kje

∗
ji

= −0 + 0− 2
∑

1≤i<j<k≤m

e∗ije
∗
ike

∗
jk,
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thus

c3 = −2
∑

1≤i<j<k≤m

e∗ije
∗
ike

∗
jk.

(v) The proof is obvious.

Theorem 2 Let ν1, ν2, . . . , νm be eigenvalues of the maximum edge eccentric-
ity of Mee(Υ ), then

(i)
m∑
i=1

νi = 0.

(ii)
m∑
i=1

ν2i = 2
∑

1≤i<j<k≤m

(e∗ij)
2.

(iii)
m∑
i=1

ν3i = 6
∑

1≤i<j<k≤m

e∗ije
∗
ike

∗
jk.

Proof The proof is the consequences of binomial expansions and Theorem 1.

Corollary 1 let ν1, ν2, . . . , νm be the eigenvalues of maximum edge eccentric-
ity of a graph Υ , then

(i) If Υ = Kn, then
m∑
i=1

ν2i = n(n− 1)(n− 2),

(ii) If Υ = Cn, then
m∑
i=1

ν2i = 2mD2
e(Υ ),

(iii) If Υ = Km,n, then
m∑
i=1

ν2i =
m∑
i=1

deg(ei) = m � deg(e),

(iv) If Υ = Sn, then
m∑
i=1

ν2i = 0, and
m∑
i=1

ν3i =
m∑
i=1

ν4i = · · · =
m∑
i=1

νji = 0,
j = 1, . . . ,m.

Theorem 3 Let Υ be an edge eccentricity set of a graph. Then

EMee
(Υ ) = 2

∑
νr.

Proof Let ν1, ν2, . . . , νr be positive eigenvalues, and the rest of the eigenvalues
non-positive, so

EMee
(Υ ) =

m∑
i=1

|νi| = (ν1 + ν2 + · · ·+ νr)− (νr+1 + νr+2 + · · ·+ νm),

implying

EMee
(Υ ) = 2(ν1 + ν2 + · · ·+ νr).

Since, ν1, ν2, · · · , νr are algebraic integers, so is their sum. Hence,

EMee
(Υ ) = 2

∑
νr.
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Theorem 4 Let Υ be an edge eccentricity set of a complete graph. Then

EMee
(Υ ) = 2

∑
νr = 4(m− n).

Proof Let ν1, ν2, . . . , νr be positive eigenvalues, and the rest of the eigenvalues
non-positive, so

EMee
(Υ ) =

m∑
i=1

|νi| = (ν1 + ν2 + · · ·+ νr)− (νr+1 + νr+2 + · · ·+ νm),

implying

EMee
(Υ ) = 2(ν1 + ν2 + · · ·+ νr),

Since, ν1, ν2, . . . , νr are algebraic integers, so is their sum. Thus

EMee
(Υ ) = 2

∑
νr = 2(2(m− n)) = 4(m− n).

Proposition 1 If Υ = Sn, then EMee
(Υ ) =

m∑
i=1

|νi| = 0.

Proof The proof is obvious.

Definition 2 A graph Υ is called an edge self-centered graph if

e(e) = re(Υ ) = De(Υ ),

for every edge e ∈ E(Υ ).

Theorem 5 If Υ is an edge self-centered k-regular graph with diameter De,
then kDe is a maximum edge eccentricity eigenvalue of Υ and

EMee
(Υ ) = DeE(Υ ).

Proof Consider a graph Υ , which is edge self-centered and k-regular, with a
diameter denoted as De. For any edge e in Υ , we have e(e) = De. From the
definition of the edge eccentricity matrix Mee(Υ ), we observe that each row
contains K entries equal to De. By replacing the first raw of det(νI−Mee(Υ ))
by the sum of all raw, we find that (ν − kDe) is a factor of this determinant.
Consequently, kDe is established as a maximum edge eccentricity eigenvalue of
Υ . Given that Υ is an edge self-centered k-regular graph, we can deduce from
the definitions of edge adjacency and maximum edge eccentricity matrices that
Mee(Υ ) = DeAe(Υ ). This leads to the conclusion that if νi is an eigenvalue of
Υ , then Deνi is a maximum edge eccentricity eigenvalue for all 1 ≤ i ≤ m. As
a result, EMee

(Υ ) = DeE(Υ ).

Corollary 2 If Υ is an edge self-centered k-regular graph with n vertices and
diameter De, then EMee

(Υ ) = E(Υ ) for n > 3.

Theorem 6 If the maximum edge eccentricity energy of a graph Υ is rational,
then it must be an even integer.
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Proof Let Υ be a graph of order m and ν1, ν2, . . . , νm be the maximum edge ec-
centricity eigenvalues of Υ . Since,

m∑
i=1

νi = 0, then ν1, ν2, . . . , νr be the positive

eigenvalues of Υ and the remaining are non-positive. Then

EMee
(Υ ) = ν1 + ν2 + · · ·+ νr − (νr+1 + νr+2 + · · ·+ νm)

= 2(ν1 + ν2 + · · ·+ νr).

Since, ν1, ν2, . . . , νr are algebraic numbers, so is their sum and so must be an
integer if EMee

, is rational.

3 Bounds for maximum edge eccentricity energy

In this section, we established upper and lower bounds for the maximum edge
eccentricity energy of a graph.

Theorem 7 Let Υ be a connected graph of order n ≥ 2 and size m and let
re(Υ ) and De(Υ ) be the radius and the diameter of Υ respectively. Then

re(Υ )

√√√√ m∑
i=1

degei ≤ EMee
(Υ ) ≤ De(Υ )

√√√√m

m∑
i=1

degei.

Proof Consider the Cauchy-Schwarz inequality and Theorem 2, we get

(EMee
(Υ ))2 =

( m∑
i=1

|νi|
)2 ≤

( m∑
i=1

1
)( m∑

i=1

νi
)2

≤ m
(
2

∑
1≤i<j<k≤m

(e∗ij)
2
)

≤ m
(
2

m∑
i=1

(xi + yi)e
2(ei)

)
.

Since, e(e) ≤ De(Υ ), for every e ∈ E(Υ ) and by
m∑
i=1

(xi + yi) =
1

2

m∑
i=1

deg(ei) it

follows that

EMee
(Υ ) ≤ De(Υ )

√√√√m

m∑
i=1

degei.

Now, since (
m∑
i=1

|νi|)2 ≥
m∑
i=1

ν2i , it follows that

(EMee
(Υ ))2 ≥ 2

m∑
i=1

(xi + yi)e
2(ei).
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Since, e(e) ≥ re(Υ ) for every e ∈ E(Υ ), then

EMee
(Υ ) ≥ re(Υ )

√√√√ m∑
i=1

degei.

Fig. 2 graph Υ2

Example 2 Let Υ2 be the graph in figure 2, with 5 edge e1, e2, e3, e4 and e5.
The maximum edge eccentricity matrix of Υ2 is

Mee(Υ2) =


0 1 0 1 1
1 0 1 1 0
0 1 0 1 1
1 1 1 0 1
1 0 1 1 0


The characteristic polynomial of Mee(Υ2) is

P (Υ2, ν) = det(νI −Mee(υ2)) =

∣∣∣∣∣∣∣∣∣∣
ν −1 0 −1 −1
−1 ν −1 −1 0
0 −1 ν −1 −1
−1 −1 −1 ν −1
−1 0 −1 −1 ν

∣∣∣∣∣∣∣∣∣∣
= ν5 − 8ν3 − 8ν2.

The maximum edge eccentricity eigenvalues of Υ2 are
ν1 = −2, ν2 = −1.2361, ν3 = 0,

ν4 = 0, ν5 = 3.2361.

The maximum edge eccentricity energy of (Υ2) is EMee
(Υ2) = 6.4722. In this

graph re(Υ ) = 0, De(Υ ) = 1 and
5∑

i=1

degei = 16. So,

0 ≤ EMee(Υ ) ≤
√
5× 16 ⇒ 0 ≤ 6.4722 ≤ 8.9443.
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4 Conclusion

This research presents a new concept, the maximum edge eccentricity matrix
Mee(Υ ), for connected graphs. Mee(Υ ) is derived from the graph’s structure
and edge eccentricities. We have calculated specific coefficients of the char-
acteristic polynomial of Mee(Υ ). For a connected edge self-centered k-regular
graph with diameter De, Mee is equivalent to De times the edge adjacency
matrix Ae(Υ ). Our focus extends to exploring the mathematical properties of
the maximum edge eccentricity energy EMee

(Υ ) of graphs. We prove that in
an edge self-centered k-regular graph with diameter De, kDe is a maximum
edge eccentricity eigenvalue. Additionally, we establish upper and lower limits
for EMee

. Interestingly, we demonstrate that if EMee
is rational, it must be

an even integer. The characteristic polynomial of the maximum edge matrix,
as discussed in this paper, offers a valuable tool for investigating Laplacian
and signless Laplacian variations of the issue. This concept is further explored
in the literature, specifically in the study of digraph characteristic polynomi-
als. Moreover, the maximum edge energy concept presented here could find
practical use in chemistry and other fields.
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4. S. B Bozkurt, A. D Güungör, and B. Zhou. Note on the distance energy of graphs.
MATCH Commun. Math. Comput. Chem., 64, 129–134 (2010).

5. F. Buckley. Self-centered graphs. Annals of the New York Academy of Sciences, 576(1),
71–78 (1989).

6. F. Buckley and F. Harary. Distance in graphs. Addison-Wesley, 1990.
7. C. A. Coulson. On the calculation of the energy in unsaturated hydrocarbon molecules.

In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge Uni-
versity Press, 36, 201–203 (1940).

8. Peter Dankelmann and David J Erwin. Distance domination and generalized eccentricity
in graphs with a given minimum degree. Journal of Graph Theory, 94(1), 5–19 (2020).

9. K. C. Das, A. D. Maden, I. N. Cangül, and A. S. Çevik. On average eccentricity of
graphs. Proceedings of the National Academy of Sciences, India Section A: Physical
Sciences, 87(1), 23–30 (2017).

10. I. Gutman. The energy of a graph. Ber. Math-Statist. Sekt. Forschungsz. Graz, 103,
1–22 (1978).

11. F. Harary. Graph theory. 1969.



ARTIC
LE

IN
PRESS

The Maximum Edge Eccentricity Energy of a Graph 11

12. G. Indulal, I. Gutman, and A. Vijayakumar. On distance energy of graphs. MATCH
Commun. Math. Comput. Chem., 60, 461–472 (2010).

13. S. Klavv̆ar, K. P. Narayankar, and H. B. Walikar. Almost self-centered graphs. Acta
Mathematica Sinica, English Series, 27(12), 2343–2350 (2011).

14. V. A. Skorobogatov and A. A. Dobrynin. Metrical analysis of graphs. Commun. Math.
Comp. Chem, 23, 105–155 (1988).
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