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Abstract

In this paper, an iterative method of successive approximations based on the trapezoidal quadrature rule to solve two-dimensional
Fredholm integral equations of second kind (2DFIE) is proposed. The error estimation of the proposed method is presented. The
benefit of the method is that we do not have to solve a system of algebraic equations. Finally, a numerical example verify the

theoretical results and show the accuracy of the method.
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1 Introduction

The integral equations provide important tools for modeling a wide range of phenomena and processes [14], and many problems in
engineering and physics give rise to two-dimensional integral equations [8, 13, 16]. There are many numerical methods for solving integral
equations. The Galerkin and collocation methods are two commonly used methods for the numerical solutions of these equations [9, 10].
Several numerical methods for approximating the solutions of integral equations were presented. Here, we recall some published works on
this subject. These include Gauss product quadrature rule [6], polynomial interpolation methods [24], discrete Galerkin and iterated discrete
Galerkin methods [12], triangular functions method [15], Legender polynomial method [22], Nystrom method [11], meshless method [1],
Haar wavelet method [4]. Analytic methods, analytic-numeric methods like Adomian decomposition, homotopy perturbation method and
regularization-homotopy method have been studied by many authors [17]. The use of successive approximations method in such cases can

be therefore useful [18-20]. In this paper, we introduce an iterative method based on 2D trapezoidal quadrature rule for solving 2DFIE as

Fis0) = )2 [ [ Kot s )P yasay,

where (s,7) € Q = [a,b] X [c,d] and f(s,t), K(s,,x,y) are the given analytical functions. In the most of numerical methods, the integral
equation is transformed into a system of linear or nonlinear algebraic equations which has to be solved with iterative methods. It is

cumbersome to solve these systems, or the solution may be unreliable. The proposed method does not lead to a nonlinear algebraic
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equations system. This is a great advantage of this method. The rest of the paper is organizied as follows: we begin by introducing some

necessary definitions and mathematical preliminaries of the some quadrature rules for 2-D integral in Section 2. Section 3, devoted to prove

of the existence and uniqueness of the solution of 2DFIE by the method of successive approximations. Also, a conclusion is given in Section

4.

2 Preliminaries

Definition 1. Suppose that f : Q — R, be a bounded mapping, then the function ¥q(f,.) : RT U0 — R™ defined by

wQ(f75): sup {lf(xvy)_f(s7t) 5

xselablyreled)

(x=s)2+(y—1)? <8},
is called the modulus of oscillation of f on Q.
Also, if f € C(Q) (i.e. f:Q — R is continuous on Q, then wq(f,8) is called uniform modulus of continuity of f.
Theorem 1. The following properties holds [23]:
(i) [£(x,2) = F(5,0)] < O (fs /(5= )2+ (y=1)?) for all x,s € [a,b] and y,1 € [c,d],
(i) wo(f,8) is an non-decreasing mapping in 8,
(iii) wqa(f,0)=0,
(iv) wo(f,8+8) < wa(f,8)+ wa(f,8) forany 81,8, >0,
(v) @qo(f,nd) <nw(f,8)foranyd>0andneN,
i) 0q(f,A8) < (A +1)Op)x[cq (f,6) forany 6,4 >0,
(vii) If la,b] x [c,d] C [e, f] x [g, h], then @y ) (c.a)(f,8) < @ fx[g ) (f+8) for all § > 0.
Theorem 2. [21] Let f : [c,d] x [c,d] = R, be a integrable, bounded mappings. Then, for any divisions
a=xp<x<--<x,=b,

and

c=yo<y1<--<yp=d,
and any points &; € [x;i_1,x;] and nj € [yj_1,y;] we have

n

iz xi = Xi—1)(yj = yj-1)

d b
’/ch(s’t)det ZZ xi = xi—1)(vj —yj-1)f(& ;)

j=li=

X O, il x[yj0:] (s \/(xi —xi-1)2+(yj—yj-1)%)

Corollary 1. Assume that f : [a,b] X [c,d] = R, be a integrable, bounded mapping. Then with the following notation

Ouyrr = Oy (f,< )2+<r7z>2),

we have

[ sts.asar - [( a)(y c)f(u,oo+<x—a)<d—y>f<u,ﬁ>+(b—x)(d—y)f(c,m+<b—x)<d—y>f<v,ﬁ>}]
(x a)(y )waxxcy+(b x)(y_c)wxbxc'y+(x_a)(d_y)waxxyd+(b_x)(d_y)wxbxy(h

Forallx € [a,b), y € [c,d], u € [a,x], v € [x,b], & € [c,y], and B € [y,d].

(¢
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Proof. Taking in the previous theorem n =2, x; = & = & = x, and y; = 1| = 1, = y we obtain the required inequality. O

Corollary 2. Ler f:a,b] X [c,d] — R, be a two dimensional integrable, bounded mapping. Then the following inequalities holds:

/ F(s.0)dsdt —(b—a)(d— )f(“*b C“;d) < (b—a)(d— )y (ﬁw)) ,
Proof. If we take x = %3 and y = <3¢ in Corollary (1), we obtain the required inequality. O

3 Existence and Uniqueness of Fredholm Integral Equations
Here, we consider the two dimensional Fredholm integral equations as follows:
d rb
Fs.0) = S+ 2 [ [ Kl F(xy)dxdy, @

where A > 0, K(s,7,x,y) is an arbitrary kernel on Q% and f: Q — R. We assume that K is continuous and therefore it is uniformly continuous

with respect to (s,7). This property implies that there exists M > 0 such that

M = max
a<sx<b
c<t,y<d

Klstono)|

Now, we shall prove the existence and uniqueness of the solution of equation (2) by the method of successive approximations.

Let X ={f:Q — R;f is continuous} be the space of two dimensional continuous functions with the metric

Hf ng sup |f (s,1) vt)|. 3)
g<;<d
We define the operator A : X — X by
d rb
AF)(s.1) = f(s.1) + A / / K(s,t,x,y)F (x,y)dxdy, ¥ (s,1) €Q, V f €X. @
c a

Sufficient conditions for the existence of an unique solution of equation (2) are given in the following result.

Theorem 3. Ler K(s,t,x,y) be continuous fora <s, x <b, ¢ <t, y<d, and f : Q — R be continuous on [a,b] X [c,d]. If A= AM(b—
a)(d —c) < 1, then the iterative procedure

FO(SJ) :f(S,l), ()

d b
Fals) = F6.0+2 [ [ Kltw ) Fur(xoy)dsdy, m=1 ©)

converges to the unique solution F* of equation (2). Moreover, the following error bound holds:

[|[F* —Fw H< HfH %
where
£l = sup [f(s,0)]. ®)
a<g<
c<t<d

Proof. To proof this theorem we investigate the conditions of the Banach’s fixed point principle. We first show that A maps X into X
(i.e. A(X) C X). To the end, we show that the operator A is uniformly continuous. Since f is continuous on compact set of Q, we deduce

that it is uniformly continuous and hence for £ > 0 exists 6; > 0 such that

[F(s1.01) — Fls2.2)] < &1 whenever \/(t2—1)2 + (s2—s1)? < &1,
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for all 51,57 € [a,b] and 11,1, € [c,d]. As mentioned above, K also is uniformly continuous thus, for & > 0 exists 8, > 0 such that

|K(s1,t1,x,y) —K(Sz,l‘z,x,y)| < & whenever \/(l‘z —11)2+ (s —51)%2 < &,

Let § = min{8,8} and \/(t —11)2 + (s — 51)? < 8. We obtain
d b
[(A(F)(s1,01) = A(F)(s2,12)| < |f(S17l1)—f(52J2)\+/1/c /a ’K(Shthx,y)—K(527t27x7y) |F (x,y)|dxdy

d b
§81+l&‘2/ / ‘F(x,y)!dxdy
c a
<& +A(b—a)(d—c)|F|e,

where

[Fll = sup [F(x,y)l.
a<x<b
c<y<d

By choosing & = § and &, = € we derive

1
2Mi A (b—a)(d—c)

|A(F)(S],t1) 7A(F)(52,l‘2)’ <e.

This shows that A(F) is uniformly continuous for any F' € X, and so continuous on , and hence A(X) C X.
Now, we prove that the operator A is contraction map. So, for Hj,H, € X and s € [a,b] and ¢ € [c,d], we have

d b
‘A(Hl)(s,t)fA(Hz)(s,z)|SMK(s,t,x,y)’/c /a |Hy (x,y) — H(x,)|dxdy
<amt [* [ ) — ) asay

d b
< QLM/ / ||\H\ — H || dxdy
c a
=AM(b—a)(d—c)||H, — H ||
= A||H, — H,|.
Therefore, we obtain
HA(HI)(Svt) _A(HZ)(s7t)H < AHHI _H2||~
Since A < 1, the operator A is a contraction. Consequently, the Banach’s fixed point principle implies that equation (2) has a unique solution
F* in X and we also have
|F*(s,8) = Fu(s,1)| < ||F* = F|
= AHF* —Fp1 H
< AF* — Eyl| + AllFt — Fu
SA|F* =Byl +A"(|Fo - F |-

Therefore,
Am
[F* = Fnll < =% IFo—Fill, ©)

on the other hand,

d b
HFO—FIH: sup |f(s,t)—f(s,t)—l/ / K(s,t,x,y)Fo(x,y)dxdy’
a<s<b Jc o Ja
c<t<d
d rb
< sup 2 [ R (st Ryl dxdy
c a

a<s<b
c<t<d
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d b
SMX/ / sup |Fo(x,y)|dxdy
a

a<s<bc<t<d
=AM(b—a)(d—c)|fl| = flA. (10)
So, by (9) and (10) we obtain inequality (7), which completes the proof. O

Now, we introduce a numerical method to solve equation (2). we consider equation (2) with continuous kernel K(s,#,x,y) having

positive sign on Q x Q and uniform partitions

Dy:a=so<s1<sp<--<8§p_1<8,=>b,

Dyic=ty <t <t <- <ty <ty =d,

with s; = a+ih, tj = c+ jh', where h = 224 1 = . Then the following iterative procedure gives the approximate solution of equation
(2) in point (s,7),

uo(s,t) = f(s,1)

lhh/n 1n—1
um(57l) Z Z ( S,t, Sul] Up— 1(917t])+K(5 t sntﬂrl)um l(sl7tj+1)+ K(S t s,+1,t])um 1(51+17tj)
i=0 j=0
+K(57[75i+1Jj+l)um—1(si+1>lj+l))' an

3.1 Error Estimation

Here, we obtain an error estimate between the exact solution and the approximate solution for the given Fredholm integral equation (2).

Theorem 4. Consider the equation (2) with continuous kernel K (s,t,x,y) on Q x Q and suppose that f is continuous on Q. If A < 1, then

the iterative procedure (11) converges to the unique solution of equation (2), F*, and the following error estimate holds true,

. A A HA? +4TA '
[|F* = um]| < ( )Hf\|+ (ﬁ)w[a.b]x[c,d] (.f,hh/)Jr(m)@ft(thJrh)’
where
oy (K,8) = SUI[) ]{‘K(SIJWCJ)*K(Sz,tzm)’) sy (s2=51)2+(—11)* < 5},
s1,52€[a,b
ltl,fzz[c,d]
and
M= sup |u(s1)],
(s,r)eQ
Iy= sup |F(s.1)],
(s,1)EQ (12)

T= max M;
—0,1 m—l{ it

= ma. I},
K i:O,l,...{(;an{ i}

Proof. Considering iterative procedure (11), we obtain

n—1n—1

Sitl 1+ hn'
}Fl(svt)_ul(&t)‘ <2 Z Z K(&t,x,y)f(&y)dxdy— T[K(S7t7x7y)f(si7tj)+K(S7t7x7y)f(si7tj+l)
i=0 j=
n—1n—1
+K(s7t7xay)f(si+l7tj)+K(s7t7xvy)f(si+l7tj+l ”"l Z Z S t7x7y)f(si7tj)+K(S7t7x7y)f(si7tj+l)
i=0 j=0

/

+K(S7t7x7y)f(si+l7tj)+K(s7t7x7y)f(si+17tj+1)] - T [K(S'/tasivtj)f(shtj))+K(s7t7si7tj+1)f(‘9i7[j+l

+K(s,t,8i41,2) f(si41,2) + K(s,¢ Sz+17f,+1)f(5i+17tj+1)]‘
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—ln—1 Sitl (i1 hi
<AL L[ [ Kt endy - T K05 i) + K150 sit0)
i=0 j=0 j
—1n—1
+K(s,t,x,y)f(s,'+1,tj)+K(s,t,x,y)f(si+1,tj+1 "";L Z Z S tv-x7y)f(si7tj)+K(S7t>-x7y)f(si7tj+l)
i=0 j=0

/

K(S,[,X,y)f(3i+17[j)+K(S,[,X,y)f(s,'+]7[.]'4,1)] - T I:K(S,I,Shl‘j)f(sl',tj)+K(S,[,Si,l‘j+1)f(sl‘7lj+1)

+K(57t75i+1»tj)f(si+17tj)+K(Svt»5i+lytj+l)f(si+l7lj+1)]‘

Sivl L+l hh
</1MZ Z |/ ' fx)’)dXdy_T[f(sivfj)‘i‘f(shtjﬂ)+f(si+17tj)+f(5i+1:tj+l)]’
i=0 j=0 Si
/'th/n 1n—1
Y ¥ { (5,8,2,9) f (5i,87) — K (5,2, 51,15) f (5, 15) +‘K(S7t»x¢)’)f(si7tj+l)_K(S7t»si7tj+l)f(5i7fj+l)
i=0 j=0

|

+ ‘K(Svt7x7Y)f(si+17tj) —K(s,t,8i11,t)) f(sit1,t))| + 'K(Sal7x7y)f(si+latj+l) —K(5,8,8i41,8j41) f(Sit1,tj41)

Using Corollary 2 and part (vii) of Theorem 1 we deduce

A,Mhh/n 1n—1 hh },hhln 1n—1
IO LRI S) zz[| (5.1,2.3) — K(s.1,50017)| | Fsist))|

i=0 j=0 i=0 j=0

+ |K(57t7x7y) _K(svtvsi7zj+1)’|f(si>tj+1)| + |K(S,t,)(,y) _K(S7zasi+17[j)||f(si+17tj)’

|F1 s,t) —uy(s,t) ‘

+ ‘K(Satrxvy) *K(S,t,Si+1,[j+1)"f(Si+1,tj+])‘:| .
By part (ii) of Theorem 1 and direct computation, it follows that

AM(b—a)(d—c)
R

< ww(ﬁhh’)+7L(bfa)(dfc)Mowsz(K,thh’)

A
—w(f,hh')+ MMows,(K,h+h’),

n—1n—1
o(f,hh') +AhH Z Z (}K(s,t,x,y)fK(s,t,s,',tj)D||f(s,t)|\

i=0 j=0

|F| (s,t)fu](s,t)| <

therefore we obtain

A
|F1(s7t) —ul(s,t)| < 7

A
a)(f,hh')—i—MMOa)s,(K,h—kh’). (13)
Now, we have

AM(b—a)(d—c)
——

AM(b—a)(d—c)

|F2(s,t) —uz(s,t)| < 1

Oy p)x[e.a] (F1,hR') + |F(siytj) — uy (sist))|
+ | Fu(sistjr) = Gsistjon)| 4 |Fa (signs ) — wn (i 1))
+ ’F1(5i+1»fj+1)*M(%’HJ;H)’} +A(b—a)(d—c)M @y (K,h+1).
Therefore,
|Fo(s,1) —up(s,1)] < Aw[ab] (e.d) (F1,hi') + {‘Fl(sivtj)_u1(5i>lj)|+’Fl(sivljJrl)_ul(sivljJrl)‘+‘Fl(siJrlv[j)_u1(5i+17tj)|

+ |Fi(sis1,tj51) —M1(3i+17tj+1)\)} +A(b—a)(d— )Moy (K,h+1).

By induction for m > 3, using (5), (6), (7), (11), and (12), we see that

A A
‘Fm(svt)_um(s7t)| < Za)[%b]x[c,d](melahh/)+Z |:‘me1(51'>'/‘_) Umn—1 517 |+|Fm 1 sl7tj+1)_um l(sl7lj+l)|
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A
+ | Bt (Sia1:27) = 1 (Si1:87) 4 [ Bt (Sie1: 1) — 1 (si1,2j41) || + 3 Mm-1 oy (K, h+1). (14)
Taking supremum for (¢,s) € Q from (14) we conclude that the following inequalites hold

A A
||Fm _um” Szw[a,h]x[c,d] (Enflvhh/) +AHFm71 —Un—1 H + MMmflwst(Kah'i'h/L
A A
| Fone1 = ttm—1 | Szw[ghb}x[c-,d] (Fn—2,hh') + Al|Fp—p — s || + MMm72wst(th +H),

A A
HFm—Z - um—ZH Szw[a,b]x[c,d] (Fm—3vhh,) +AHFm—3 —Un-3 H + MMm—Swsf(th +h,)7

A A
HF] —Uj H Szw[a,b]x[c,d] (F(),hh,) +AHF0 — MQH + MMU(x)st (K,h +h/),
multiplying the above inequalities by 1,A,A2,..., A1, respectively and summing them we obtain
A _
([ — | < 5 (w[mb] o) Fnet 1)+ A0 g o) (Fn 1) 4+ A" @ ) hh’))

A
+ 2 O (K,h+h) <Mm,1 +AMy_ o+ N?Myy 34+ +A’”"MQ) } (15)

Since, for (s1,t1),(s2,t2) € Q with |s; —s3| < h, |t} — 1| < I/, we have

d b d b
|Fm(S1,ll)—Fm(S27t2)|:'f(Shll)-Hl/ / K(SlJl,X,y)Fm—l(X7y)dXdy—f(S27lz)+7L/ /K(Sz7t27x,Y)Fm—1(X,y)dxd)"
A
S{f(slull)_f(sLtZ)}+M@vt(th+h/)rl11717

therefore, we infer A
Ol p) x e.d) (Fns 1) < @l ) fe.a) (F s ) + 3 Ot (Kbt K)oy (16)

By this inequality and (15), we see that

A A
= um| < 5 (1 HA+HAT +A’””>w[a,b]x[c,d] (f R+ o ou (K 1) <Arm72 AT,y +A’"*‘ro)

A
+ Mw”(K’}H—h,) (Mm,l +AMyy_y + N2My_ 5+ - +A””1M0)

CA[1-A"
T4

ﬁ) Ol p)x[e.a] (s hH)

A
+ mwsf(K,th’) [(Arm_z F A3+ AT + 4 (Mo + AMy o+ A*Myy 3 +~~+A’”_1M0)} )

By (12) since A < 1 we obtain

A 1T—A" A A(1—A™) 4(1—A"™)
”Fm*um”SZ( 1—A )w[a,b]X[C,d](f7hh/)+mwSl(K7h+h/)< 1—A M+ 1—A T
A A UA+-47
< 4(1—A) w[a,b]x[c,d](ﬁhh,)‘f‘stz(th‘Fh/)( 1—A )

Therefore, we obtain
A , UAZ +4TA ,
[Fn = || < (m) O p)x[c.d) (fyhH) + (m) @y (K, h+1'). an
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By inequalities (17) and (7) we deduce that
IF* = tt|| < | F* = | + [|Fon — 4|
At A UAZ +4TA
< — | ® . ' ey (K, h+1).
< (TR 1+ (G ) @aspeiatrntty + (e s oot 1)
O
Remark 1. Since A < 1, it is easy to see that
Jim ([P | =0,
hi —0
that shows the convergence of the method.
Example 1. Consider the following two dimensional Fredholm integral equation
1 rl
Fls) = fls)+ [ [ Kloutx)F(xy)dsdy (8)
JO JO

where
ot )
f(s,t):ssmi, K(s,t,x,y) = s7tx,

with the exact solution

16, 1 5
F(s,1) = ssin > — i(cosi —1)s7t.

By using the proposed method, we can present the approximate solution for this example. To compare the numerical results with the exact

solution for different values of m, n, see Table I .

Table 1. Numerical results of Example 1.

m=3,n=10 m=3,n=50 m=6,n=10 m=6,n=50

(s,t) Exact |F — | |F — |F — up| |F —
0.2,02) 0.0207 4456 x10~7  3.016 x10719 2362 x10~7  2.092 x10~10
(0.4,04) 0.0854 3.565 x107® 2500 x107°  1.889 x10™°®  1.674 x10~?
(0.6,0.6) 0.1974 1203 x1075 1916 x10~®  1.015x10™>  1.248 x10~8
(0.8,0.8) 03593 2.852x107° 2811 x107%  2.111 x1075  2.339 x1078
(1.0,1.0) 0.5727 6570 x107>  3.299 1078  4.252 x1075  3.014 x10~8

4 Conclusions

To approximate the solution of 2DFIE of Fredholm type, we used an efficient iterative algorithm, based on the method of successive

approximations. In the present paper, using an iterative method based on 2D Trapezoidal quadrature rule we have approximated the

numerical solution of two-dimensional Fredholm integral equations. We established the theorem of existence of unique solution of these

equations, and we have proved it by using Banach’s fixed point principle. Moreover, the proof of convergence of quadrature formula is

discussed in Theorem 4.
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