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Abstract Let E be a normed lattice and an g-order dense majorizing sublat-
tice of a vector lattice Et. We extend the norm of E to Et, denoted by ∥.∥t.
The pair (Et, ∥.∥t) forms a normed lattice and preserves certain lattices and
topological properties whenever these properties hold in E. As a consequence,
every positive linear operator defined on a normed lattice E has a linear exten-
sion to Et. This manuscript provides an explicit formula for these extensions.
The extended operator T t is a lattice homomorphism from Et into F , and it
belongs to Ln(E

t, F ) whenever 0 ≤ T ∈ Ln(E,F ) and T (x ∧ y) = Tx ∧ Ty
for all 0 ≤ x, y ∈ E. Furthermore, if T ∈ Lb(E,F ) and certain lattice and
topological properties hold for T , then T t ∈ Lb(E

t, F ) will also preserve these
properties.
Keywords Riesz space · Order convergence · Unbounded order convergence
Mathematics Subject Classification (2010) 47B60 · 46A40

1 Introduction

A vector sublattice E of vector lattice G is said to be order dense in G whenever
for each 0 < x ∈ G there exists some y ∈ E with 0 < y ≤ x and E is generalized
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order dense (g-order dense) in G whenever for each 0 < x < z in G there exists
some y ∈ E with 0 < x ≤ y ≤ z. It is clear that each g-order dense subspace is
order dense, but the converse not holds. For example, c0 is order dense in ℓ∞,
but is not g-order dense. Let us say that a vector subspace E of an ordered
vector space G is majorizing of G whenever for each x ∈ G there exists some
y ∈ E with x ≤ y. Let E be a normed lattice that is both g-order dense and
majorizing in a vector lattice Et. It is possible to extend the norm from E
to Et. In this paper, we investigate the method of this norm extension and
demonstrate that certain lattice and topological properties can be carried over
from E to Et. Now, suppose T is a positive order bounded operator from a
normed lattice E to a Dedekind complete normed lattice F . Then, there exists
a linear operator T t from Et to F that extends T , and furthermore, we have
∥T∥ = ∥T t∥. In Section 1.2 of [2], the authors studied some new extensions of
operators on vector lattices. In [3], Onno van Gaans introduced and studied
a generalization of the notion of a seminorm on a directed partially ordered
vector space. In this paper, we investigate this problem in a different way and
extend some results to the general case.

Let E be a normed lattice and a sublattice of G, and assume that E is
order dense and majorizing in a vector lattice Et that is a subset of G. The
motivations of this manuscript are as follows:

1. We can extend the norm from E to Et as follows: For any x ∈ Et, we
define ∥x∥t = inf{∥y∥ : y ∈ E, y ≥ |x|}, where |x| = x ∨ (−x), which is the
supremum of x and its additive inverse −x. Then, (Et, ∥ · ∥t) is a normed
lattice.

2. Suppose T is an order-bounded operator from E to a Dedekind complete
normed lattice F . We can define a linear extension T t : Et → F of T to
Et as follows:
For any x ∈ Et, we define T t(x) = sup{T (y) : y ∈ E, y ≤ x}, where the
supremum is taken in F . Then, T t is well-defined and order-bounded.

3. Moreover, T t is the unique linear extension of T from Et to F in the sense
that if S : Et → F is any extension of T using the same method, then
T t = S.
If certain lattice and topological properties hold for T ∈ Lb(E,F ), then
T t ∈ Lb(E

t, F ) will also preserve these properties.

To state our result, we need to fix some notation and recall some definitions. A
Banach lattice E has order continuous norm if ∥xα∥ → 0 for every decreasing
net (xα)α with infα xα = 0. A Banach lattice E is said to be an AL-space
if we have ∥x + y∥ = ∥x∥ + ∥y∥ for each x, y ∈ E such that |x| ∧ |y| = 0.
A Banach lattice E is said to be KB-space whenever each increasing norm
bounded sequence of E+ is norm convergent. A Riesz space that is at the same
time Dedekind complete and laterally complete is referred to as a universally
complete Riesz space. Let E and F be Riesz spaces. An operator T : E → F
is said to be order bounded if it maps each order bounded subset of E into
order bounded subset of F . The collection of all order bounded operators
from a Riesz space E into a Riesz space F will be denoted by Lb(E,F ). A
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linear operator between two Riesz spaces is order continuous (resp. σ-order
continuous) if it maps order null nets (resp. sequences) to order null nets (resp.
sequences). The collection of all order continuous (resp. σ-order continuous)
linear operators from vector lattice E into vector lattice F will be denoted by
Ln(E,F ) (resp. Lc(E,F )).

A Dedekind complete vector lattice G is said to be a Dedekind completion
of the vector lattice E whenever E is lattice isomorphism to a majorizing
order dense sublattice of G. A subset A of a vector lattice E is said to be
order closed whenever (xα)α ⊆ A and xα

o−→ x in E imply x ∈ A. A lattice
norm ∥.∥ on a vector lattice E is said to be a Fatou norm (or that ∥.∥ satisfies
the Fatou property) if 0 ≤ xα ↑ x in E implies ∥xα∥ ↑ ∥x∥. σ-Fatou norm
has similar definition. An operator T : E → E on a vector lattice is said to
be band preserving whenever T leaves all bands of E invariant, i.e., whenever
T (B) ⊆ B holds for each band B of E. An operator T : E → F between two
vector lattices is said to be preserve disjointness whenever x ⊥ y in E implies
Tx ⊥ Ty in F . For a normed lattice E, E′ is the its order dual and σ(E,E′)
is the weak topology for E. For unexplained terminology and facts on Banach
lattices and positive operators, we refer the reader to [1,2].

2 An extension of the norms

Let E be an Archimedean vector lattice. Then there exists a Dedekind com-
plete vector lattice Eδ that contains a majorizing, order dense vector subspace
that is Riesz isomorphic to E, which we will identify as E. Eδ is called the
Dedekind completion of E. Throughout this manuscript, we assume that the
vector lattices under consideration are Archimedean. Let E and G be a normed
lattice and a vector lattice, respectively, such that E is order dense and ma-
jorizing in G. The universal completion of a vector lattice E will be denoted by
Eu. According to [[1], Theorem 7.21], every Archimedean vector lattice has a
unique universal completion. In all parts of this manuscript, we assume that E
is g-order dense and majorizing in G. Throughout this paper, (E, ∥·∥) denotes
a normed space that serves as a vector sublattice of G.

Theorem 1 For each x ∈ G, let ρ(x) = sup{∥z∥ : z ≤ |x|, z ∈ E+}. Then
ρ(x) is a norm on G, and moreover, (G, ρ(x)) is a normed lattice.

Proof It is clear that ρ(x) = 0 if and only if x = 0, and ρ(λx) = |λ|ρ(x) for
each real number λ and x ∈ G. Now we prove that ρ(x + y) ≤ ρ(x) + ρ(y)
whenever x, y ∈ G.
Let x, y ∈ G. Fix z ∈ E+ such that z ≤ |x + y|. By Riesz Decomposition
property, [[1], Theorem 1.10], there are z1, z2 ∈ G such that |z1| ≤ |x|, |z2| ≤ |y|
and z = z1 + z2. Since E is order dense in G, there are w1, w2 ∈ E+ such that
|z1| ≤ w1 ≤ |x| and |z2| ≤ w2 ≤ |y|. It follows that

z = z1 + z2 ≤ |z1|+ |z2| ≤ w1 + w2 ≤ |x|+ |y|.
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Then we have

∥z∥ ≤ ∥w1 + w2∥ ≤ ∥w1∥+ ∥w2∥ ≤ ρ(x) + ρ(y).

Consequently, we have sup{∥z∥ : z ≤ |x+ y| and z ∈ E+} ≤ ρ(x) + ρ(y),
which implies that ρ(x+ y) ≤ ρ(x) + ρ(y).

For a normed lattice (E, ∥.∥), assume that Eρ is the set of all x ∈ G such that
satisfies in the following equality,

ρ(x) = inf{∥y∥ : |x| ≤ y, y ∈ E+} (1)
= sup{∥z∥ : z ≤ |x|, z ∈ E+}. (2)

Then E is subspace of Eρ and ρ is a real function from Eρ into [0,+∞) and
satisfies in the following properties:

1. ρ(x) = 0 iff x = 0
2. ρ(λx) = λρ(x) for each λ ∈ R+ and x ∈ Eρ.
3. ρ(x+ y) ≤ ρ(x) + ρ(y), for x, y ∈ Eρ.

(Eρ, ρ) is an extension of (E, ∥ · ∥), meaning that E is a sublattice of Eρ and
∥x∥ = ρ(x) for all x ∈ E.
To see why this is true, note that by Theorem 1, we can extend the norm on
E to a complete lattice norm ρ on Eρ, such that ∥x∥ = ρ(x) for all x ∈ E.
Therefore, (Eρ, ρ) is indeed an extension of (E, ∥ · ∥).
An example that illustrates this point is as follows.

Example 1 Let c be the collection of all real number sequences which are
convergence in R with ℓ∞-norm. It is obvious that c is order dense majorizing
of ℓ∞. By easy calculation, we can prove that cρ = ℓ∞.

Definition 1 Assume that E ⊆ Et is a vector sublattice of G in which every
element of Et satisfies the equalities (1) and (2), we can define a new norm in
Et called the t-norm, denoted by ∥x∥t = ρ(x).

It is evident that (Et, ∥.∥t) is a normed lattice. However, Et is not necessarily
unique, and in general, we have E ⊆ Et ⊆ G. The objective of this manuscript
is to identify vector lattices Et that are distinct from E. Therefore, in this
manuscript, E is a proper sublattice of Et.
In Theorem 2, we will demonstrate that Et = G whenever E is a Dedekind
complete or has an order-continuous norm.

Theorem 2 By one of the following conditions, the equality (1) holds for each
x ∈ G, that is, Et = G, (G, ∥.∥t) is normed lattice and ∥y∥ = ∥y∥t for each
y ∈ E.

i) E is a Dedekind complete.
ii) E has order continuous norm.
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Proof i) According to Theorem 1, the function

ρ(x) = sup{∥z∥ : z ≤ |x|, z ∈ E+},

defines a norm for the vector lattice G. By contradiction, assume that

ρ(x) < inf{∥y∥ : |x| ≤ y, y ∈ E+}.

Let A = {y ∈ E+ : |x| ≤ y}. Since E is order dense in G, A is bounded
below, and so A has infimum in E, by Dedekind completeness of E. Take
inf A = y0 where y0 ∈ E. It is clear that y0 < |x| and ρ(x) ≤ ∥y0∥. Then
∥y0∥ = ρ(y0) = ρ(x). Let the natural number n be enough large such that

ρ(x) < ∥y0∥+
1

n
∥y0∥ < inf{∥y∥ : |x| ≤ y, y ∈ E+}.

Put z0 = (1 + 1
n )y0. Consequently we have z0 ∈ A, then

inf{∥y∥ : |x| ≤ y, y ∈ E+} < ∥z0∥,

which is impossible.
ii) First we show that

inf{∥y∥ : |x| ≤ y, y ∈ E} = sup{∥z∥ : z ≤ |x|, z ∈ E},

holds whenever x ∈ G. Set

A = {z ≤ |x| : z ∈ E+},

and
B = {y ≥ |x| : y ∈ E}.

Since E is order dense and majorizing of G, it follows that A and B are
not empty and they are directed sets. We consider the set A as a net {zα},
where zα = α for each α ∈ A. In the same way we consider B = {yβ},
and by using [[2], Theorem 1.34], we write zα ↑ |x| and yβ ↓ |x|. Since
zα ≤ |x| ≤ yβ for each α and β, it follows that yβ − zα ↓ 0, and so

0 ≤ ∥yβ∥ − ∥zα∥ ≤ ∥yβ − zα∥ → 0.

It follows that ∥x∥t = inf ∥yβ∥ = sup ∥zα∥. Obviously that ∥.∥t is a norm
for G and (G, ∥.∥t) is a normed lattice.

In Example 1, we note that c is neither Dedekind complete nor equipped with
an order-continuous norm, yet we observe that ct = ℓ∞. However, Theorem
2 provides justification for extending the norm of E to a vector lattice Et in
various other cases.

It is also important to determine when (Et)t = Et. In the following exam-
ple, we demonstrate that Et exists whenever E satisfies the Fatou property. It
is worth noting that according to Example 4.3 and 4.4 from [1], every normed
lattice with the Fatou property, in a general sense, is neither order-continuous
nor Dedekind complete.
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Example 2 By [[1], Theorem 4.12], if (E, ∥.∥) satisfies the Fatou property, the
Dedekind completion of E, Eδ is a normed space with δ−norm. Let E be the
vector lattice of all real-valued functions defined on an infinite set X whose
range is finite, with the pointwise ordering and satisfies the Fatou property. It
can be seen that E is not Dedekind complete and Eδ = ℓ∞(X).

We now present an important lemma that plays a crucial role throughout this
manuscript.

Lemma 1 Let E has order continuous norm. For each 0 ≤ x ∈ Et, there are
sequences {xn} ⊆ E+ and {yn} ⊆ E+ such that xn ↑ x, xn

∥.∥t−−→ x, yn ↓ x and
yn

∥.∥t−−→ x.

Proof Choose {rn} ⊆ R+ and {xn} ⊆ E+ satisfies in the following conditions:

1. rn ↓ 0,
2. xn ∈ {z ∈ E : z ≤ x and ∥x− z∥t < rn}, for each n ∈ N,
3. xn ↑ x.

The justification for the above statement is as follows:
By [[2], Theorem 1.34], set

A = {z ≤ x : z ∈ E+} = {zα},

and
B = {y ≥ x : y ∈ E} = {yβ},

such that zα ↑ x and yβ ↓ x. Then zα ≤ x ≤ yβ holds for each α and β. Thus

∥x− yβ∥t, ∥x− zα∥t ≤ ∥zα − yβ∥t = ∥zα − yβ∥ → 0.

Let 0 < r1 ∈ R. Then there exist

z1 ∈ {z ∈ A : ∥x− z∥t ≤ r1},

and
0 < r2 < min{r1, ∥z1 − x∥t}.

We choose z2, z3, . . . , zn and zn+1 ∈ {z ∈ A : ∥x− zn∥t ≤ rn} where

0 < rn < min{rn−1, ∥zn−1 − x∥t}.

We define xn = ∨n
i=1zi. Now, if xn ⩽ w ⩽ x for each n ∈ N, then

0 ⩽ x− w ⩽ x− xn ≤ x− zn.

It follows that

∥x− w∥t ⩽ ∥x− xn∥t ⩽ ∥x− zn∥t ⩽ rn ↓ 0.

Thus x = w, and so supxn = x. Therefore xn ↑ x and ∥xn − x∥ → 0.
The existence of {yn} follows the same argument.
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Theorem 3 Suppose E is a normed lattice. If E is a KB-space or an AL-
space, then Et is also a KB-space or an AL-space, respectively.

Proof Assume that {xn} ⊆ (Et)+ is increasing sequence such that

sup ∥xn∥t < +∞.

By using Lemma 1, for each n ∈ N, there is increasing sequences

{xn,m}m ⊆ E+,

such that xn,m ↑m xn and ∥xn−xn,m∥t
m−→ 0. Take yn =

∨n
i,j=1 xi,j . It follows

that 0 ≤ yn ↑ and sup ∥yn∥ ≤ supi,j ∥xi,j∥ ≤ sup ∥xn∥ < +∞. Since E is a
KB-space, it follows that there exists x ∈ E such that ∥yn − x∥t → 0. On the
other hand, the inequalities yn ≤ xn ≤ x implies that ∥xn − x∥t ≤ ∥yn − x∥t
for each n ∈ N. It follows that ∥xn − x∥t → 0 holds in Et. Now, if E is an
AL−space, then E has order continuous norm. Now, let 0 < x, y ∈ Et with
x∧y = 0. By using Lemma 1, there are {xn} and {yn} in E+ such that xn ↑ x,
yn ↑ y, ∥x−xn∥t → 0 and ∥y−yn∥t → 0. It follows that 0 ⩽ xn∧yn ↑ x∧y = 0
implies that xn ∧ yn = 0 for each n ∈ N. Hence

∥xn + yn∥ = ∥xn∥+ ∥yn∥,

for each n ∈ N. Then

∥x+ y∥t = lim
n

∥xn + yn∥ = lim
n

∥xn∥+ lim
n

∥yn∥ = ∥xn∥t + ∥y∥t.

Consequently, Et is an AL−space.

Theorem 4 For a normed lattice E with order continuous norm, we have the
following assertions

1. If Ê is a norm completion of E, then Et ⊆ Ê = Eu, and if E is norm
complete, then Et = Eu = E.

2. For each x ∈ Et and A ⊆ E with supA = x, we have ∥x∥t = supz∈A ∥z∥.
3. For each x ∈ Et and A ⊆ E with inf A = x, we have ∥x∥t = infz∈A ∥z∥.
4. (Et, ∥.∥t) has Fatou property and BEt = {x ∈ Et : ∥x∥t ≤ 1} is order

closed.
5. If E is an ideal in Et, then Ê = Et.

Proof 1. According to [[1], Theorem 2.40], (Ê, ∥̂.∥) is a normed lattice, where
∥̂.∥ is the unique extension of the norm from E to Ê. Let x ∈ Et. Then by
Lemma 1, there exists {xn} in E+ such that xn ↑ x+ and ∥x+−xn∥t → 0.
Thus {xn} is a norm Cauchy sequence in E, and so convergence in Ê.
It follows that x+ ∈ Ê. In the similar way x− ∈ Ê, which implies that
x ∈ Ê. Now by Theorem 7.51 of [1], we conclude that Et ⊆ Ê = Eu and
∥.∥t = ∥̂.∥. On the other hand if E is norm complete, it is obvious that
Et = Eu = E and ∥.∥ = ∥.∥t = ∥̂.∥.
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2. By [[1], Theorem 7.54], Eu has order continuous norm. Since by part (1),
we have Et ⊆ Eu, it follows that Et has order continuous norm. Consider
A = (xα) with supA = x. It follows that x − xα ↓ 0 which implies that
∥x − xα∥t → 0. Then by using inequalities 0 ≤ ∥x∥t − ∥xα∥ ≤ ∥x − xα∥t,
we have supα ∥xα∥ = ∥x∥t.

3. The proof follows a similar argument as that of (2).
4. By [[1], Lemma 4.2], (E, ∥.∥) has Fatou property. The proof of the first

statement follows a similar argument to that of Theorem 3(1), and we
omit the details. The second part follows by [[1], Theorem 4.6].

5. The proof follows by [[1], Theorem 3.8].

Note that a linear subspace E of a partially ordered vector space G is said to
be order dense if x = inf{y ∈ E : x ≤ y} for every x ∈ G. Based on our earlier
discussion, we can pose the following question:
Problem 1 If Et is a partially ordered vector space and E is order dense and
majorizing in Et, is there a norm extension from (E, ∥ · ∥) to Et?

3 The extension of order bounded operators

In this section, we explore the extension properties of order-bounded operators.
Specifically, we consider T to be an order-bounded operator from a normed
lattice E into a Dedekind complete normed lattice F , and we aim to introduce
an operator T t from Et to F as an extension of T . We investigate various lattice
and topological properties of T t that hold when these properties are satisfied by
T . Our analysis provides insights into the behavior of order-bounded operators
under extensions of normed lattices, which has important applications in the
positive operators studying and related fields.

Theorem 5 Let T be an order bounded operator from normed lattice E into
Dedekind complete normed lattice F . We have the following assertions.
1. There exists an extension order bounded operator T t from Et into F sat-

isfying T t(y) = Ty for each y ∈ E.
2. For each positive continuous operator T , we have ∥T∥ = ∥T t∥, and if T is

norm continuous, then so is T t.
3. |T |t = |T t|.
4. For each T, S ∈ Lb(E,F ), we have (T ∨ S)t = T t ∨ St.
5. If S : Et → F is an order bounded and norm continuous operator, then

T t = S.
6. Each order interval of Et is σ(Et, (Et)′)-compact.

Proof 1. Since T is an order bounded operator and F Dedekind complete, we
have T = T+−T−. So first we assume that T is a positive operator from E
into F . According to [[2], Theorem 1.32], the mapping p : Et → F defined
via the formula

p(x) = inf{Ty : y ∈ E, x ⩽ y}, x ∈ Et.
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is a monotone sublinear and Ty = p(y) for each y ∈ E. So by [[3], Theorem
1.5.7], there is an extension T t from Et into F satisfying T tx ≤ p(x+) for
all x ∈ Et, and T ty = Ty for all y ∈ E. Now we define T t = (T+)t−(T−)t,
and so for all y ∈ E, we have

T ty = (T+)t(y)− (T−)t(y) = T+y − T−y = Ty.

2. Assume that T is a positive operator and x ∈ Et. According part (1),
we have T tx ≤ p(x+) ≤ Ty for all y ∈ E such that y ≥ x+, and so
∥T tx∥ ≤ ∥Ty∥ for all y ∈ E such that y ≥ x+. It follows that

∥T tx∥ ≤ ∥T∥ inf
y≥x+

∥y∥ ≤ ∥T∥∥x+∥t ≤ ∥T∥∥x∥t.

Then ∥T t∥ ≤ ∥T∥. Since BE ⊆ BEt , follows that ∥T∥ ⩽ ∥T t∥. Thus
∥T∥ = ∥T t∥, and proof follows.

3. In this part, we assume that x, y, z are members of E and xt, yt, zt are
members of Et when there is not any confused. Now let xt ≥ 0. Since E is
order dense in Et, we have the following equalities

(T t)
+
(xt) = sup

0≤yt≤xt

T tyt

= sup
0≤yt≤xt

sup
0≤z≤yt

T tz

= sup
0≤y≤xt

Ty

= sup
0≤z≤xt

sup
0≤y≤z

Ty

= sup
0≤z≤xt

T+z

= (T+)t(xt).

Similarly, we have (T t)
−
(xt) = (T−)t(xt) for all xt ≥ 0. It is obvious that

for each xt ∈ Et, we have (T t)
+
xt = (T+)t(xt) and (T t)

−
xt = (T−)t(xt).

Thus
|T |t = (T+ + T−)t = (T+)t + (T−)t = (T t)+ + (T t)− = |T t|.

4. By using the equality T ∨ S = 1
2 (T + S + |T − S|) and part (3), proof

follows.
5. First let 0 ≤ x ∈ Et. By Lemma 1, there exists {xn} in E+ such that

xn ↑ x+ and ∥x+ − xn∥t → 0. Since S+xn ↑ and ∥x+ − xn∥ → 0, follows
that S+xn ↑ S+x. We have T = S|E (restriction of S on E), which follows
that T− = S−|E and T+ = S+|E . Obviously (T−)t = S− and (T+)t = S+,
and so by part (3), we have the following equalities

S = S+ − S− = (T+)t − (T−)t = (T t)+ − (T t)− = T t.

Thus S = T t on E− and E+, which follows that
Sx = Sx+ − Sx− = T tx+ − T tx− = T tx,

for each x ∈ Et.
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6. Consider a, b ∈ (Et)+ and a < b. By Lemma 1, take {xn} and {yn} in E+

such that xn ↑ a, yn ↓ b, ∥a − xn∥t → 0 and ∥yn − b∥t → 0. Since E has
order continuous norm, [xn, yn] ∩ E is σ(E,E′)-compact subset of E for
each n ∈ N. It follows that [a, b]∩E is σ(E,E′)-compact subset of E. Now,
if we set

V = {s ∈ E : x′(s) < r and x′ ∈ E′},

then by using part (5), the order density of V is

V t = {s ∈ Et : (x′)t(s) < r and (x′)t ∈ (Et)′}.

It is obvious that V ⊆ V t, and so σ(E,E′) ⊆ σ(Et, (Et)′). Since [a, b] ∩ E
is order dense in [a, b], follows that [a, b] is σ(Et, (Et)′)-compact subset of
Et.

In the following, we examine some properties of the operator T t, and we demon-
strate that T t preserves certain lattice and topological properties when these
properties hold for T .

Theorem 6 Let 0 ≤ T ∈ Ln(E,F ). Then we have the following assertions

1. If 0 ≤ x ≤ Et and {xα} ⊆ E+ with xα ↓ x, then Txα ↓ T tx.
2. If T (x ∧ y) = Tx ∧ Ty for each 0 ≤ x, y ∈ E, then T t is a lattice homo-

morphism from Et into F and moreover T t ∈ Ln(E
t, F ).

3. If 0 ≤ T : E → E is a band-preserving operator, then T t : Et → Et is also
band-preserving.

4. If T : E → F is an order bounded operator that preserves disjointness, then
T t : Et → F also preserves disjointness.

5. Suppose E has an order continuous norm. Then {Txn} is norm convergent
in F for every positive increasing norm-bounded sequence {xn} in E if and
only if {T txn} is norm convergent in F for every positive increasing t-
norm-bounded sequence {xn} in Et.

Proof 1. Let {xα} ⊆ E+ such that xα ↓ x. If y ∈ E+ such that x ≤ y, then
y ∨ xα ↓ y holds in E, and so by order continuity of T : E → F and
Theorem 4 (3), we see that

Ty = inf{T (xα ∨ y)} ≤ inf Txα ≤ T tx.

This easily implies that Txα ↓ T tx.

2. Assume that 0 ≤ x, y ∈ Et. We prove that T t(x ∧ y) = T tx ∧ T ty. By [[2],
Theorem 1.34], there are {xα} and {yβ} of E+ such that xα ↓ x and yβ ↓ y.
It follows that xα ∧ yβ ↓ x∧ y. Then by order continuity of T : E → F and
Theorem 4 (3), we have the following equalities,

T t(x ∧ y) = inf{T (xα ∧ yβ)} = inf{T (xα) ∧ T (yβ)}
= inf{T (xα)} ∧ inf{T (yβ)} = T tx ∧ T ty.
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By combining Theorem 1.10 and Theorem 2.14 from [2] with Theorem
3, we can conclude that the mapping T t : (Et)+ → (F t)+ has a unique
extension T t : (Et) → (F t), which is a lattice homomorphism. Now, we
will show that T t ∈ Ln(E

t, F ). Let {xα} ⊆ (Et)+ be such that xα ↓ 0. Put
A = {y ∈ E+ : ∃α such that xα ≤ y}.

Since E majorizes Et, it follows that A is not empty. By using Theorem
5 since T is positive, T t is positive. Thus inf T (A) ≥ inf T txα ≥ 0 holds
in F . Since A ↓ 0 and T ∈ Ln(E,F ), it follows that inf T (A) = 0, and so
T txα ↓ 0.

3. Let x, y ∈ Et satisfying |x| ∧ |y| = 0. Assume that (xα), (yβ) ⊆ E+ such
that xα ↑ |x| and yβ ↑ |y|. It follows that (xα ∧ yβ) ↑ |x| ∧ |y| = 0, and so
xα ∧ yβ = 0, by [[2], Theorem 2.36], follows that |Txα| ∧ yβ = 0 for each α
and β. Since |Txα| ∧ yβ ↑ |Tx| ∧ |y|, we have |Tx| ⊥ |y|, and so by another
using [[2], Theorem 2.36], proof follows.

4. Let x, y ∈ Et satisfying x ⊥ y. Assume that (xα), (yβ) ⊆ E+ such that
xα ↑ |x| and yβ ↑ |y|. It follows that (xα ∧ yβ) ↑ |x| ∧ |y| = 0. Now since
T preserve disjointness, follows that Txα ⊥ Txβ . From our hypothesis, we
have Txα ∧ Txβ ↑ T t|x| ∧ T t|y| which follows that T t|x| ∧ T t|y| = 0. Since
|T tx| ∧ |T ty| ≤ T t|x| ∧ T t|y|, we have T tx ⊥ T ty.

5. Since T = T+ − T−, without loss generality, we assume that T is a pos-
itive operator. Assume that {xn} ⊆ (Et)+ is increasing sequence with
sup ∥xn∥t < +∞. By using Lemma 1, for each n ∈ N, there are positive
increasing sequences {xn,m}m with xn,m ↑m xn and ∥xn − xn,m∥t → 0.
Take yn =

∨n
i,j=1 xi,j . It follows that 0 ≤ yn ↑ and

sup ∥yn∥ ≤ sup
i,j

∥xi,j∥ ≤ sup ∥xn∥ < +∞.

By assumption there is s∗ ∈ F such that ∥Tyn − s∗∥ → 0. Then by using
[[2], Theorem 2.46], Tyn ↑ s∗. By Theorem 5, we know that T t is norm
continuous from Et into F . It follows that ∥T txn − Txn,m∥ m−→ 0 holds in
F . The inequality Txn,m ≤ Tyn ≤ T txn implies that

∥T txn − s∗∥ ≤ ∥T txn − Txn,m∥ for each n,m ∈ N.

Then
∥T txn − s∗∥ ≤ ∥T txn − Tyn∥+ ∥Tyn − s∗∥ → 0.

Thus T txn → s∗, and the proof follows.
The converse is straightforward.
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