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Abstract

Let E be a normed lattice and an g-order dense majorizing sublattice of a vector lattice Et . We extend the norm of E to Et ,

denoted by ∥.∥t . The pair (Et ,∥.∥t) forms a normed lattice and preserves certain lattices and topological properties whenever these

properties hold in E. As a consequence, every positive linear operator defined on a normed lattice E has a linear extension to Et .

This manuscript provides an explicit formula for these extensions. The extended operator T t is a lattice homomorphism from Et

into F , and it belongs to Ln(Et ,F) whenever 0 ≤ T ∈ Ln(E,F) and T (x∧ y) = T x∧ Ty for all 0 ≤ x,y ∈ E. Furthermore, if

T ∈ Lb(E,F) and certain lattice and topological properties hold for T , then T t ∈ Lb(Et ,F) will also preserve these properties.
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1 Introduction
A vector sublattice E of vector lattice G is said to be order dense in G whenever for each 0 < x ∈ G there exists some y ∈ E with 0 < y ≤ x

and E is generalized order dense (g-order dense) in G whenever for each 0 < x < z in G there exists some y ∈ E with 0 < x ≤ y ≤ z. It is

clear that each g-order dense subspace is order dense, but the converse not holds. For example, c0 is order dense in ℓ∞, but is not g-order

dense. Let us say that a vector subspace E of an ordered vector space G is majorizing of G whenever for each x ∈ G there exists some y ∈ E

with x ≤ y. Let E be a normed lattice that is both g-order dense and majorizing in a vector lattice Et . It is possible to extend the norm from

E to Et . In this paper, we investigate the method of this norm extension and demonstrate that certain lattice and topological properties can

be carried over from E to Et . Now, suppose T is a positive order bounded operator from a normed lattice E to a Dedekind complete normed

lattice F . Then, there exists a linear operator T t from Et to F that extends T , and furthermore, we have ∥T∥= ∥T t∥. In Section 1.2 of [2],

the authors studied some new extensions of operators on vector lattices. In [3], Onno van Gaans introduced and studied a generalization

of the notion of a seminorm on a directed partially ordered vector space. In this paper, we investigate this problem in a different way and

extend some results to the general case.

Let E be a normed lattice and a sublattice of G, and assume that E is order dense and majorizing in a vector lattice Et that is a subset of

G. The motivations of this manuscript are as follows:

1. We can extend the norm from E to Et as follows: For any x ∈ Et , we define ∥x∥t = inf{∥y∥ : y ∈ E,y ≥ |x|}, where |x| = x∨ (−x),
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which is the supremum of x and its additive inverse −x. Then, (Et ,∥ · ∥t) is a normed lattice.

2. Suppose T is an order-bounded operator from E to a Dedekind complete normed lattice F . We can define a linear extension T t :

Et → F of T to Et as follows:

For any x ∈ Et , we define T t(x) = sup{T (y) : y ∈ E,y ≤ x}, where the supremum is taken in F . Then, T t is well-defined and

order-bounded.

3. Moreover, T t is the unique linear extension of T from Et to F in the sense that if S : Et → F is any extension of T using the same

method, then T t = S.

If certain lattice and topological properties hold for T ∈ Lb(E,F), then T t ∈ Lb(Et ,F) will also preserve these properties.

To state our result, we need to fix some notation and recall some definitions. A Banach lattice E has order continuous norm if ∥xα∥ → 0

for every decreasing net (xα )α with infα xα = 0. A Banach lattice E is said to be an AL-space if we have ∥x+ y∥ = ∥x∥+ ∥y∥ for each

x,y ∈ E such that |x|∧ |y|= 0. A Banach lattice E is said to be KB-space whenever each increasing norm bounded sequence of E+ is norm

convergent. A Riesz space that is at the same time Dedekind complete and laterally complete is referred to as a universally complete Riesz

space. Let E and F be Riesz spaces. An operator T : E → F is said to be order bounded if it maps each order bounded subset of E into order

bounded subset of F . The collection of all order bounded operators from a Riesz space E into a Riesz space F will be denoted by Lb(E,F).

A linear operator between two Riesz spaces is order continuous (resp. σ -order continuous) if it maps order null nets (resp. sequences) to

order null nets (resp. sequences). The collection of all order continuous (resp. σ -order continuous) linear operators from vector lattice E

into vector lattice F will be denoted by Ln(E,F) (resp. Lc(E,F)).

A Dedekind complete vector lattice G is said to be a Dedekind completion of the vector lattice E whenever E is lattice isomorphism to

a majorizing order dense sublattice of G. A subset A of a vector lattice E is said to be order closed whenever (xα )α ⊆ A and xα
o−→ x in E

imply x ∈ A. A lattice norm ∥.∥ on a vector lattice E is said to be a Fatou norm (or that ∥.∥ satisfies the Fatou property) if 0 ≤ xα ↑ x in E

implies ∥xα∥ ↑ ∥x∥. σ -Fatou norm has similar definition. An operator T : E → E on a vector lattice is said to be band preserving whenever

T leaves all bands of E invariant, i.e., whenever T (B)⊆ B holds for each band B of E. An operator T : E → F between two vector lattices

is said to be preserve disjointness whenever x ⊥ y in E implies T x ⊥ Ty in F . For a normed lattice E, E ′ is the its order dual and σ(E,E ′) is

the weak topology for E. For unexplained terminology and facts on Banach lattices and positive operators, we refer the reader to [1, 2].

2 An Extension of the Norms

Let E be an Archimedean vector lattice. Then there exists a Dedekind complete vector lattice Eδ that contains a majorizing, order dense

vector subspace that is Riesz isomorphic to E, which we will identify as E. Eδ is called the Dedekind completion of E. Throughout this

manuscript, we assume that the vector lattices under consideration are Archimedean. Let E and G be a normed lattice and a vector lattice,

respectively, such that E is order dense and majorizing in G. The universal completion of a vector lattice E will be denoted by Eu. According

to [ [1], Theorem 7.21], every Archimedean vector lattice has a unique universal completion. In all parts of this manuscript, we assume that

E is g-order dense and majorizing in G. Throughout this paper, (E,∥ · ∥) denotes a normed space that serves as a vector sublattice of G.

Theorem 1. For each x ∈ G, let ρ(x) = sup{∥z∥ : z ≤ |x|, z ∈ E+}. Then ρ(x) is a norm on G, and moreover, (G,ρ(x)) is a normed lattice.

Proof. It is clear that ρ(x) = 0 if and only if x = 0, and ρ(λx) = |λ |ρ(x) for each real number λ and x ∈ G. Now we prove that ρ(x+ y)≤
ρ(x)+ρ(y) whenever x,y ∈ G.

Let x,y ∈ G. Fix z ∈ E+ such that z ≤ |x+y|. By Riesz Decomposition property, [ [1], Theorem 1.10], there are z1,z2 ∈ G such that |z1| ≤ |x|,
|z2| ≤ |y| and z = z1 + z2. Since E is order dense in G, there are w1,w2 ∈ E+ such that |z1| ≤ w1 ≤ |x| and |z2| ≤ w2 ≤ |y|. It follows that

z = z1 + z2 ≤ |z1|+ |z2| ≤ w1 +w2 ≤ |x|+ |y|.

Then we have

∥z∥ ≤ ∥w1 +w2∥ ≤ ∥w1∥+∥w2∥ ≤ ρ(x)+ρ(y).

Consequently, we have sup{∥z∥ : z ≤ |x+ y| and z ∈ E+} ≤ ρ(x)+ρ(y), which implies that ρ(x+ y)≤ ρ(x)+ρ(y).
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For a normed lattice (E,∥.∥), assume that Eρ is the set of all x ∈ G such that satisfies in the following equality,

ρ(x) = inf{∥y∥ : |x| ≤ y, y ∈ E+} (1)

= sup{∥z∥ : z ≤ |x|, z ∈ E+}. (2)

Then E is subspace of Eρ and ρ is a real function from Eρ into [0,+∞) and satisfies in the following properties:

1. ρ(x) = 0 iff x = 0

2. ρ(λx) = λρ(x) for each λ ∈ R+ and x ∈ Eρ .

3. ρ(x+ y)≤ ρ(x)+ρ(y), for x,y ∈ Eρ .

(Eρ ,ρ) is an extension of (E,∥ · ∥), meaning that E is a sublattice of Eρ and ∥x∥= ρ(x) for all x ∈ E.

To see why this is true, note that by Theorem 1, we can extend the norm on E to a complete lattice norm ρ on Eρ , such that ∥x∥= ρ(x) for

all x ∈ E. Therefore, (Eρ ,ρ) is indeed an extension of (E,∥ · ∥).
An example that illustrates this point is as follows.

Example 1. Let c be the collection of all real number sequences which are convergence in R with ℓ∞-norm. It is obvious that c is order

dense majorizing of ℓ∞. By easy calculation, we can prove that cρ = ℓ∞.

Definition 1. Assume that E ⊆ Et is a vector sublattice of G in which every element of Et satisfies the equalities (1) and (2), we can define

a new norm in Et called the t-norm, denoted by ∥x∥t = ρ(x).

It is evident that (Et ,∥.∥t) is a normed lattice. However, Et is not necessarily unique, and in general, we have E ⊆ Et ⊆ G. The objective

of this manuscript is to identify vector lattices Et that are distinct from E. Therefore, in this manuscript, E is a proper sublattice of Et .

In Theorem 2, we will demonstrate that Et = G whenever E is a Dedekind complete or has an order-continuous norm.

Theorem 2. By one of the following conditions, the equality (1) holds for each x ∈ G, that is, Et = G, (G,∥.∥t) is normed lattice and

∥y∥= ∥y∥t for each y ∈ E.

i) E is a Dedekind complete.

ii) E has order continuous norm.

Proof. i) According to Theorem 1, the function

ρ(x) = sup{∥z∥ : z ≤ |x|, z ∈ E+},

defines a norm for the vector lattice G. By contradiction, assume that

ρ(x)< inf{∥y∥ : |x| ≤ y, y ∈ E+}.

Let A = {y ∈ E+ : |x| ≤ y}. Since E is order dense in G, A is bounded below, and so A has infimum in E, by Dedekind completeness

of E. Take infA = y0 where y0 ∈ E. It is clear that y0 < |x| and ρ(x) ≤ ∥y0∥. Then ∥y0∥ = ρ(y0) = ρ(x). Let the natural number n

be enough large such that

ρ(x)< ∥y0∥+
1
n
∥y0∥< inf{∥y∥ : |x| ≤ y, y ∈ E+}.

Put z0 = (1+ 1
n )y0. Consequently we have z0 ∈ A, then

inf{∥y∥ : |x| ≤ y, y ∈ E+}< ∥z0∥,

which is impossible.
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ii) First we show that

inf{∥y∥ : |x| ≤ y, y ∈ E}= sup{∥z∥ : z ≤ |x|, z ∈ E},

holds whenever x ∈ G. Set

A = {z ≤ |x| : z ∈ E+},

and

B = {y ≥ |x| : y ∈ E}.

Since E is order dense and majorizing of G, it follows that A and B are not empty and they are directed sets. We consider the set A

as a net {zα}, where zα = α for each α ∈ A. In the same way we consider B = {yβ }, and by using [ [2], Theorem 1.34], we write

zα ↑ |x| and yβ ↓ |x|. Since zα ≤ |x| ≤ yβ for each α and β , it follows that yβ − zα ↓ 0, and so

0 ≤ ∥yβ ∥−∥zα∥ ≤ ∥yβ − zα∥→ 0.

It follows that ∥x∥t = inf∥yβ ∥= sup∥zα∥. Obviously that ∥.∥t is a norm for G and (G,∥.∥t) is a normed lattice.

In Example 1, we note that c is neither Dedekind complete nor equipped with an order-continuous norm, yet we observe that ct = ℓ∞.

However, Theorem 2 provides justification for extending the norm of E to a vector lattice Et in various other cases.

It is also important to determine when (Et)t = Et . In the following example, we demonstrate that Et exists whenever E satisfies the

Fatou property. It is worth noting that according to Example 4.3 and 4.4 from [1], every normed lattice with the Fatou property, in a general

sense, is neither order-continuous nor Dedekind complete.

Example 2. By [ [1], Theorem 4.12], if (E,∥.∥) satisfies the Fatou property, the Dedekind completion of E, Eδ is a normed space with

δ − norm. Let E be the vector lattice of all real-valued functions defined on an infinite set X whose range is finite, with the pointwise

ordering and satisfies the Fatou property. It can be seen that E is not Dedekind complete and Eδ = ℓ∞(X).

We now present an important lemma that plays a crucial role throughout this manuscript.

Lemma 1. Let E has order continuous norm. For each 0≤ x ∈ Et , there are sequences {xn}⊆ E+ and {yn}⊆ E+ such that xn ↑ x, xn
∥.∥t−−→ x,

yn ↓ x and yn
∥.∥t−−→ x.

Proof. Choose {rn} ⊆ R+ and {xn} ⊆ E+ satisfies in the following conditions:

1. rn ↓ 0,

2. xn ∈ {z ∈ E : z ≤ x and ∥x− z∥t < rn}, for each n ∈ N,

3. xn ↑ x.

The justification for the above statement is as follows:

By [ [2], Theorem 1.34], set

A = {z ≤ x : z ∈ E+}= {zα},

and

B = {y ≥ x : y ∈ E}= {yβ },

such that zα ↑ x and yβ ↓ x. Then zα ≤ x ≤ yβ holds for each α and β . Thus

∥x− yβ ∥t ,∥x− zα∥t ≤ ∥zα − yβ ∥t = ∥zα − yβ ∥→ 0.

Let 0 < r1 ∈ R. Then there exist

z1 ∈ {z ∈ A : ∥x− z∥t ≤ r1},
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and

0 < r2 < min{r1, ∥z1 − x∥t}.

We choose z2,z3, . . . ,zn and zn+1 ∈ {z ∈ A : ∥x− zn∥t ≤ rn} where

0 < rn < min{rn−1, ∥zn−1 − x∥t}.

We define xn = ∨n
i=1zi. Now, if xn ⩽ w ⩽ x for each n ∈ N, then

0 ⩽ x−w ⩽ x− xn ≤ x− zn.

It follows that

∥x−w∥t ⩽ ∥x− xn∥t ⩽ ∥x− zn∥t ⩽ rn ↓ 0.

Thus x = w, and so supxn = x. Therefore xn ↑ x and ∥xn − x∥→ 0.

The existence of {yn} follows the same argument.

Theorem 3. Suppose E is a normed lattice. If E is a KB-space or an AL-space, then Et is also a KB-space or an AL-space, respectively.

Proof. Assume that {xn} ⊆ (Et)+ is increasing sequence such that

sup∥xn∥t <+∞.

By using Lemma 1, for each n ∈ N, there is increasing sequences

{xn,m}m ⊆ E+,

such that xn,m ↑m xn and ∥xn − xn,m∥t
m−→ 0. Take yn =

∨n
i, j=1 xi, j. It follows that 0 ≤ yn ↑ and sup∥yn∥ ≤ supi, j ∥xi, j∥ ≤ sup∥xn∥ < +∞.

Since E is a KB-space, it follows that there exists x ∈ E such that ∥yn − x∥t → 0. On the other hand, the inequalities yn ≤ xn ≤ x implies

that ∥xn −x∥t ≤ ∥yn −x∥t for each n ∈N. It follows that ∥xn −x∥t → 0 holds in Et . Now, if E is an AL−space, then E has order continuous

norm. Now, let 0 < x,y ∈ Et with x∧ y = 0. By using Lemma 1, there are {xn} and {yn} in E+ such that xn ↑ x, yn ↑ y, ∥x− xn∥t → 0 and

∥y− yn∥t → 0. It follows that 0 ⩽ xn ∧ yn ↑ x∧ y = 0 implies that xn ∧ yn = 0 for each n ∈ N. Hence

∥xn + yn∥= ∥xn∥+∥yn∥,

for each n ∈ N. Then

∥x+ y∥t = lim
n
∥xn + yn∥= lim

n
∥xn∥+ lim

n
∥yn∥= ∥xn∥t +∥y∥t .

Consequently, Et is an AL−space.

Theorem 4. For a normed lattice E with order continuous norm, we have the following assertions

1. If Ê is a norm completion of E, then Et ⊆ Ê = Eu, and if E is norm complete, then Et = Eu = E.

2. For each x ∈ Et and A ⊆ E with supA = x, we have ∥x∥t = supz∈A ∥z∥.

3. For each x ∈ Et and A ⊆ E with infA = x, we have ∥x∥t = infz∈A ∥z∥.

4. (Et ,∥.∥t) has Fatou property and BEt = {x ∈ Et : ∥x∥t ≤ 1} is order closed.

5. If E is an ideal in Et , then Ê = Et .

Proof. 1. According to [ [1], Theorem 2.40], (Ê, ˆ∥.∥) is a normed lattice, where ˆ∥.∥ is the unique extension of the norm from E to Ê.

Let x ∈ Et . Then by Lemma 1, there exists {xn} in E+ such that xn ↑ x+ and ∥x+− xn∥t → 0. Thus {xn} is a norm Cauchy sequence

in E, and so convergence in Ê. It follows that x+ ∈ Ê. In the similar way x− ∈ Ê, which implies that x ∈ Ê. Now by Theorem 7.51

of [1], we conclude that Et ⊆ Ê = Eu and ∥.∥t = ˆ∥.∥. On the other hand if E is norm complete, it is obvious that Et = Eu = E and

∥.∥= ∥.∥t = ˆ∥.∥.
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2. By [ [1], Theorem 7.54], Eu has order continuous norm. Since by part (1), we have Et ⊆ Eu, it follows that Et has order continuous

norm. Consider A = (xα ) with supA = x. It follows that x− xα ↓ 0 which implies that ∥x− xα∥t → 0. Then by using inequalities

0 ≤ ∥x∥t −∥xα∥ ≤ ∥x− xα∥t , we have supα ∥xα∥= ∥x∥t .

3. The proof follows a similar argument as that of (2).

4. By [ [1], Lemma 4.2], (E,∥.∥) has Fatou property. The proof of the first statement follows a similar argument to that of Theorem

3(1), and we omit the details. The second part follows by [ [1], Theorem 4.6].

5. The proof follows by [ [1], Theorem 3.8].

Note that a linear subspace E of a partially ordered vector space G is said to be order dense if x = inf{y ∈ E : x ≤ y} for every x ∈ G.

Based on our earlier discussion, we can pose the following question:

Problem 1. If Et is a partially ordered vector space and E is order dense and majorizing in Et , is there a norm extension from (E,∥ · ∥) to

Et?

3 The Extension of Order Bounded Operators
In this section, we explore the extension properties of order-bounded operators. Specifically, we consider T to be an order-bounded operator

from a normed lattice E into a Dedekind complete normed lattice F , and we aim to introduce an operator T t from Et to F as an extension of

T . We investigate various lattice and topological properties of T t that hold when these properties are satisfied by T . Our analysis provides

insights into the behavior of order-bounded operators under extensions of normed lattices, which has important applications in the positive

operators studying and related fields.

Theorem 5. Let T be an order bounded operator from normed lattice E into Dedekind complete normed lattice F. We have the following

assertions.

1. There exists an extension order bounded operator T t from Et into F satisfying T t(y) = Ty for each y ∈ E.

2. For each positive continuous operator T , we have ∥T∥= ∥T t∥, and if T is norm continuous, then so is T t .

3. |T |t = |T t |.

4. For each T,S ∈ Lb(E,F), we have (T ∨S)t = T t ∨St .

5. If S : Et → F is an order bounded and norm continuous operator, then T t = S.

6. Each order interval of Et is σ(Et ,(Et)′)-compact.

Proof. 1. Since T is an order bounded operator and F Dedekind complete, we have T = T+ − T−. So first we assume that T is a

positive operator from E into F . According to [ [2], Theorem 1.32], the mapping p : Et → F defined via the formula

p(x) = inf{Ty : y ∈ E, x ⩽ y}, x ∈ Et .

is a monotone sublinear and Ty = p(y) for each y ∈ E. So by [ [3], Theorem 1.5.7], there is an extension T t from Et into F satisfying

T tx ≤ p(x+) for all x ∈ Et , and T ty = Ty for all y ∈ E. Now we define T t = (T+)t − (T−)t , and so for all y ∈ E, we have

T ty = (T+)t(y)− (T−)t(y) = T+y−T−y = Ty.

2. Assume that T is a positive operator and x ∈ Et . According part (1), we have T tx ≤ p(x+)≤ Ty for all y ∈ E such that y ≥ x+, and

so ∥T tx∥ ≤ ∥Ty∥ for all y ∈ E such that y ≥ x+. It follows that

∥T tx∥ ≤ ∥T∥ inf
y≥x+

∥y∥ ≤ ∥T∥∥x+∥t ≤ ∥T∥∥x∥t .

Then ∥T t∥ ≤ ∥T∥. Since BE ⊆ BEt , follows that ∥T∥⩽ ∥T t∥. Thus ∥T∥= ∥T t∥, and proof follows.
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3. In this part, we assume that x,y,z are members of E and xt ,yt ,zt are members of Et when there is not any confused. Now let xt ≥ 0.

Since E is order dense in Et , we have the following equalities

(T t)
+
(xt) = sup

0≤yt≤xt
T tyt

= sup
0≤yt≤xt

sup
0≤z≤yt

T tz

= sup
0≤y≤xt

Ty

= sup
0≤z≤xt

sup
0≤y≤z

Ty

= sup
0≤z≤xt

T+z

= (T+)t(xt).

Similarly, we have (T t)−(xt) = (T−)t(xt) for all xt ≥ 0. It is obvious that for each xt ∈ Et , we have (T t)+xt = (T+)t(xt) and

(T t)−xt = (T−)t(xt). Thus

|T |t = (T++T−)t = (T+)t +(T−)t = (T t)++(T t)− = |T t |.

4. By using the equality T ∨S = 1
2 (T +S+ |T −S|) and part (3), proof follows.

5. First let 0 ≤ x ∈ Et . By Lemma 1, there exists {xn} in E+ such that xn ↑ x+ and ∥x+− xn∥t → 0. Since S+xn ↑ and ∥x+− xn∥ → 0,

follows that S+xn ↑ S+x. We have T = S|E (restriction of S on E), which follows that T− = S−|E and T+ = S+|E . Obviously

(T−)t = S− and (T+)t = S+, and so by part (3), we have the following equalities

S = S+−S− = (T+)t − (T−)t = (T t)+− (T t)− = T t .

Thus S = T t on E− and E+, which follows that

Sx = Sx+−Sx− = T tx+−T tx− = T tx,

for each x ∈ Et .

6. Consider a,b ∈ (Et)+ and a < b. By Lemma 1, take {xn} and {yn} in E+ such that xn ↑ a, yn ↓ b, ∥a− xn∥t → 0 and ∥yn − b∥t →
0. Since E has order continuous norm, [xn,yn]∩E is σ(E,E ′)-compact subset of E for each n ∈ N. It follows that [a,b]∩E is

σ(E,E ′)-compact subset of E. Now, if we set

V = {s ∈ E : x′(s)< r and x′ ∈ E ′},

then by using part (5), the order density of V is

V t = {s ∈ Et : (x′)t(s)< r and (x′)t ∈ (Et)′}.

It is obvious that V ⊆ V t , and so σ(E,E ′) ⊆ σ(Et ,(Et)′). Since [a,b] ∩ E is order dense in [a,b], follows that [a,b] is

σ(Et ,(Et)′)-compact subset of Et .

In the following, we examine some properties of the operator T t , and we demonstrate that T t preserves certain lattice and topological

properties when these properties hold for T .

Theorem 6. Let 0 ≤ T ∈ Ln(E,F). Then we have the following assertions

1. If 0 ≤ x ≤ Et and {xα} ⊆ E+ with xα ↓ x, then T xα ↓ T tx.
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2. If T (x∧ y) = T x∧Ty for each 0 ≤ x,y ∈ E, then T t is a lattice homomorphism from Et into F and moreover T t ∈ Ln(Et ,F).

3. If 0 ≤ T : E → E is a band-preserving operator, then T t : Et → Et is also band-preserving.

4. If T : E → F is an order bounded operator that preserves disjointness, then T t : Et → F also preserves disjointness.

5. Suppose E has an order continuous norm. Then {T xn} is norm convergent in F for every positive increasing norm-bounded sequence

{xn} in E if and only if {T txn} is norm convergent in F for every positive increasing t-norm-bounded sequence {xn} in Et .

Proof. 1. Let {xα} ⊆ E+ such that xα ↓ x. If y ∈ E+ such that x ≤ y, then y∨xα ↓ y holds in E, and so by order continuity of T : E → F

and Theorem 4 (3), we see that

Ty = inf{T (xα ∨ y)} ≤ infT xα ≤ T tx.

This easily implies that T xα ↓ T tx.

2. Assume that 0 ≤ x,y ∈ Et . We prove that T t(x∧ y) = T tx∧T ty. By [ [2], Theorem 1.34], there are {xα} and {yβ } of E+ such that

xα ↓ x and yβ ↓ y. It follows that xα ∧ yβ ↓ x∧ y. Then by order continuity of T : E → F and Theorem 4 (3), we have the following

equalities,

T t(x∧ y) = inf{T (xα ∧ yβ )}= inf{T (xα )∧T (yβ )}

= inf{T (xα )}∧ inf{T (yβ )}= T tx∧T ty.

By combining Theorem 1.10 and Theorem 2.14 from [2] with Theorem 3, we can conclude that the mapping T t : (Et)+ → (Ft)+ has

a unique extension T t : (Et)→ (Ft), which is a lattice homomorphism. Now, we will show that T t ∈ Ln(Et ,F). Let {xα} ⊆ (Et)+

be such that xα ↓ 0. Put

A = {y ∈ E+ : ∃α such that xα ≤ y}.

Since E majorizes Et , it follows that A is not empty. By using Theorem 5 since T is positive, T t is positive. Thus infT (A) ≥
infT txα ≥ 0 holds in F . Since A ↓ 0 and T ∈ Ln(E,F), it follows that infT (A) = 0, and so T txα ↓ 0.

3. Let x,y∈Et satisfying |x|∧|y|= 0. Assume that (xα ),(yβ )⊆E+ such that xα ↑ |x| and yβ ↑ |y|. It follows that (xα ∧yβ ) ↑ |x|∧|y|= 0,

and so xα ∧ yβ = 0, by [ [2], Theorem 2.36], follows that |T xα | ∧ yβ = 0 for each α and β . Since |T xα | ∧ yβ ↑ |T x| ∧ |y|, we have

|T x| ⊥ |y|, and so by another using [ [2], Theorem 2.36], proof follows.

4. Let x,y ∈ Et satisfying x ⊥ y. Assume that (xα ),(yβ ) ⊆ E+ such that xα ↑ |x| and yβ ↑ |y|. It follows that (xα ∧ yβ ) ↑ |x| ∧ |y| = 0.

Now since T preserve disjointness, follows that T xα ⊥ T xβ . From our hypothesis, we have T xα ∧T xβ ↑ T t |x|∧T t |y| which follows

that T t |x|∧T t |y|= 0. Since |T tx|∧ |T ty| ≤ T t |x|∧T t |y|, we have T tx ⊥ T ty.

5. Since T = T+ − T−, without loss generality, we assume that T is a positive operator. Assume that {xn} ⊆ (Et)+ is increasing

sequence with sup∥xn∥t <+∞. By using Lemma 1, for each n ∈ N, there are positive increasing sequences {xn,m}m with xn,m ↑m xn

and ∥xn − xn,m∥t → 0. Take yn =
∨n

i, j=1 xi, j. It follows that 0 ≤ yn ↑ and

sup∥yn∥ ≤ sup
i, j

∥xi, j∥ ≤ sup∥xn∥<+∞.

By assumption there is s∗ ∈ F such that ∥Tyn − s∗∥→ 0. Then by using [ [2], Theorem 2.46], Tyn ↑ s∗. By Theorem 5, we know that

T t is norm continuous from Et into F . It follows that ∥T txn −T xn,m∥
m−→ 0 holds in F . The inequality T xn,m ≤ Tyn ≤ T txn implies

that

∥T txn − s∗∥ ≤ ∥T txn −T xn,m∥ for each n,m ∈ N.
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Then

∥T txn − s∗∥ ≤ ∥T txn −Tyn∥+∥Tyn − s∗∥→ 0.

Thus T txn → s∗, and the proof follows.

The converse is straightforward.
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