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Abstract In this paper, the stability of time-invariant (continuous-time) free
linear system with interval coefficients is researched. After the introduction of
parametric representation for intervals and subsequently the extension of this
representation to interval matrices, stability with the concept of Lyapunov is
discussed and investigated. The most important result of this idea, is the ability
of checking stability without considering some constraints on the system. By
presenting several examples, the stability of these systems, is researched by
using the expressed approach.

Keywords Asymptotically stability · Marginal stability · Lyapunov function ·
Sylvester criterion

1 Introduction

System stability is a very important feature in the system and is considered
an effective and decisive factor in the design of a system. In a stable system,
by disturbing the system components, the changes created do not disrupt the
system’s performance, and therefore, examining this factor is very vital for
any system. Stability in control theory, especially in optimal control prob-
lems, is a crucial topic of discussion. System instability is not considered a
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desirable feature for the system [1]-[6]. In most research on the stability of lin-
ear systems, researchers typically focus on specifying the coefficients of system
equations. The presence of indeterminate coefficients and the use of real num-
ber intervals in these equations have prompted discussions among researchers
regarding the behavioral characteristics of these systems. This is due to the
extensive applications and broad scope of scientific issues in this field. Xian et
al [7] examined the stability of large scale linear systems with interval coef-
ficients. They initially decomposed these systems to several subsystems, and
then studied the stability of them using the similarity principle and the vector
Lyapunov function. Kaczorek [8] researched on positive linear systems that
variables take positive values for positive initial conditions and positive in-
puts. He has conducted research on the positivity and stability of linear and
nonlinear systems [9]-[13] and in [14], examined the stability of positive time-
invariant (continuous-time) free linear systems with interval coefficients. Xian
et al. [7] focused on the stability analysis of large-scale linear systems with
interval coefficients by decomposing them into subsystems and applying the
similarity principle and vector Lyapunov function. On the other hand, Kac-
zorek [8] studied positive linear systems where variables are constrained to
positive values for positive initial conditions and inputs. He has also delved
into the positivity and stability of both linear and nonlinear systems in vari-
ous works [9]-[13], and specifically investigated the stability of positive time-
invariant (continuous-time) free linear systems with interval coefficients in [14].
These research efforts contribute significantly to understanding the behavior
and stability of systems with specific characteristics.

The motivation behind this paper lies in the necessity to study systems
where state variables may not be strictly positive values, as in the case of
positive linear systems. The primary objective is to analyze the stability of
time-invariant (continuous-time) free linear systems with interval coefficients,
without decomposing them into related subsystems.

The structure of the paper is organized as follows: In the second section,
the parametric representation of interval numbers is introduced, and the for-
mulation of time-invariant (continuous-time) linear systems with interval co-
efficients is presented. Section 3 defines the equilibrium point of these systems
and explores their stability using this concept. Section 4 introduces a Lya-
punov function with interval coefficients and investigates stability by utilizing
this function in conjunction with the Sylvester criterion.

2 Initial concepts and statement of problem

In this section, we begin by presenting the parametric representation of interval
numbers, initially introduced by Bhurjee and Panda in [15]. Let us regard
the interval number as X = [x1, x2], so that x1, x2 ∈ R. Each real number
x ∈ X = [x1, x2], can be shown in a parametric form as ([15])

x(λ) = x1 + λ(x2 − x1), 0 ≤ λ ≤ 1.
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Suppose Y = [y1, y2] = {y(λ2)|λ2 ∈ [0, 1]} is another interval number. The
algebraic operations on interval numbers are expressed using their parametric
representation as follows:
• X⊕ Y = {x(λ1) + y(λ2)|λ1, λ2 ∈ [0, 1]},
• X⊖ Y = {x(λ1)− y(λ2)|λ1, λ2 ∈ [0, 1]},
• X⊙ Y = {x(λ1).y(λ2)|λ1, λ2 ∈ [0, 1]},
• X = {kx(λ)|λ ∈ [0, 1]},
• X⊘ Y = {x(λ1)⧸y(λ2)|λ1, λ2 ∈ [0, 1], y(λ2) ̸= 0}.

Definition 1 Let S be a matrix. If all elements of the matrix are interval
numbers then S is called an interval matrix.

Consider the following notations:
• I(R) = The set of all interval numbers,
• I(R)n = The product space I(R)× I(R)× · · · × I(R),
• I(R)m×n = The set of all interval matrices S with m rows and n columns.
• J [0, 1]m×n = The set of all real matrices with m rows and n columns such

that all elements of these matrices belong to [0, 1].

Definition 2 Let S = [sij ]m×n and S = [Sij ]m×n ∈ I(R)m×n are respectively
real and interval matrices, where Sij = [s0ij , s

1
ij ]. S ∈ S if and only if sij ∈ Sij ,

for all i = 1, . . . ,m and j = 1, . . . , n.

Proposition 1 An interval matrix S is presented by the infinite set of real
matrices, i.e.

S = {SΛ|SΛ = [sij(λij)]m×n , Λ = [λij ]m×n ∈ J [0, 1]m×n,

sij(λij) = s0ij + λij(s
1
ij − s0ij) i = 1, . . . ,m , j = 1, . . . , n}.

Proof Suppose S ∈ S that, S = [sij ]m×n, then

sij ∈ Sij , i = 1, . . . ,m, j = 1, . . . , n.

There exists λij ∈ [0, 1] such that sij = s0ij + λij(s
1
ij − s0ij). In this case, for

each element of the matrix S, there exists a real number

λij ∈ [0, 1] , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Consider the matrix Λ = [λij ]m×n , λij ∈ [0, 1] and suppose

sij = s0ij + λij(s
1
ij − s0ij) = sij(λij),

for i = 1, . . . ,m , j = 1, . . . , n. Then, S = SΛ. Therefore, the real matrix S is
a member of the infinite set of real matrices.
Now, if a real matrix S = [sij ]m×n belongs to the infinite set of real matrices,
then, there is a real matrix Λ = [λij ]m×n , λij ∈ [0, 1] such that S = SΛ and

sij = sij(λij) = s0ij + λij(s
1
ij − s0ij) , λij ∈ [0, 1] , i = 1, . . . ,m , j = 1, . . . , n.

Then sij ∈ Sij , i = 1, · · · ,m , j = 1, · · · , n, and so S ∈ S.
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The key benefit of defining an interval matrix in the above proposition is that
it illustrates all real matrices that fall within the interval matrix.

Definition 3 Let S be an interval matrix. If the real matrix SΛ ∈ S is positive
definite for all real matrices Λ ∈ J [0, 1]n×n, then interval matrix S is called
positive definite.

Definition 4 Let in the interval matrix S, there is a real matrix Λ1 ∈ J [0, 1]n×n

such that the real matrix SΛ1
is semi-positive definite and the real matrix

SΛ is positive definite or semi-positive definite for all real matrices Λ ∈
J [0, 1]n×n , Λ ̸= Λ1, then the interval matrix S is called semi-positive def-
inite.

Consider the time-invariant (continuous-time) free linear system with interval
coefficients and by the initial state x(t0) as follows:

ẋ(t) = Ax(t), (1)

where A = {AΛ∥Λ ∈ J [0, 1]n×n} is an interval matrix in (I (R))n×n. Now,
consider the following system

ẋ(t) = AΛx(t) (2)

The system (2) has the similar structure with the system (1).

ϕ(t, t0) = eAΛ(t−t0),

is the transition matrix of the system (2) and also this system has a unique
solution as x(t) = ϕ(t, t0)x(t0), [16].

3 Equilibrium point and Stability

In this section, the equilibrium point for the system (1) is defined and then its
stability is examined.
Let the initial-value problem ẋ(t) = AΛx(t), x(t0) = x1, x1 ∈ Rn for all values
t ≥ t0 has a unique solution as x(t) = x1, x1 is the equilibrium point of the
system (2). In other words, whenever for all values t ≥ t0, (I−eAΛ(t−t0))x1 = 0
then, x1 is an equilibrium point of the system (2), [16].

Definition 5 If x1 is the equilibrium point of the system (2) for all real ma-
trices AΛ ∈ A , Λ ∈ J [0, 1]n×n then x1 is called the equilibrium point of the
system (1).

Example 1 Consider the interval matrix A in the system (1) as

A =

[
[−1, 2] 0

0 [−5, 3]

]
.
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For each real matrix Λ ∈ J [0, 1]2×2,

AΛ =

[
−1 + 3λ11 0

0 −5 + 8λ22

]
∈ A,

and

eAΛ(t−t0) =

[
e(−1+3λ11)(t−t0) 0

0 e(−5+8λ22)(t−t0)

]
.

The transition matrix, eAΛ(t−t0) is nonsingular for each real matrix Λ ∈
J [0, 1]2×2 and all values t > t0. Therefore, origin is unique equilibrium point
for the system (1).

Definition 6 Let x1 be equilibrium point of the system (2). Whenever

∀ε > 0, ∃δ > 0, ∀t > t0 : ∥x(t0)− x1∥ < δ =⇒ ∥eAΛ(t−t0)x(t0)− x1∥ < ε,

that ∥ ∥ is a norm, the system (2) is called marginal stable about an equilibrium
point x1. If

lim
t→∞

eAΛ(t−t0)x(t0) = x1,

then the system (2) is called asymptotically stable about equilibrium point x1.

Definition 7 The system (2) is called unstable about the point x1, if it is not
marginal stable about this point.

Definition 8 Let x1 be an equilibrium point of the system (1). The system
(2) is asymptotically stable about x1 that AΛ is the coefficient matrix of the
system for all real matrices Λ ∈ J [0, 1]n×n, then the system (1) is called
asymptotically stable about the equilibrium point x1.

Definition 9 Let x1 be an equilibrium point of the system (1). The system (2)
is marginal stable about the point x1 if there is a real matrix Λ1 ∈ J [0, 1]n×n

that AΛ1
is the coefficient matrix of the system (2) and the system (2) is

marginal or asymptotically stable about x1 that the real matrix AΛ is the
coefficient matrix of the system (2) for all real matrices Λ ∈ J [0, 1]n×n , Λ ̸=
Λ1, then the system (1) is marginal stable about the equilibrium point x1.

Definition 10 Let x1 be an equilibrium point of the system (1). The system
(2) is unstable about the point x1 that the real matrix AΛ2

, Λ2 ∈ J [0, 1]n×n is
the coefficient matrix of the system (2) then the system (1) is unstable about
the point x1.

Using proportional changes and for each real matrix AΛ that Λ ∈ J [0, 1]n×n,
origin is the equilibrium point of the system (2) and then it is the equilibrium
point of the system (1), [16].
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Example 2 In example 1, origin is a unique equilibrium point of the system.
Let position x(t0) = (δ1, δ2)

T ∈ R2 be initial state. For each real matrix

Λ =

[
λ11 λ12

λ21 λ22

]
∈ J [0, 1]2×2,

x(t) = eAΛ(t−t0)x(t0) = (δ1e
(−1+3λ11)(t−t0), δ2e

(−5+8λ22)(t−t0))T .

If λ11 < 1
3 and λ22 < 5

8 then

lim
t→+∞

∥ x ∥= 0.

The system (2) is asymptotically stable for real matrix AΛ that

Λ =

[
λ11 λ12

λ21 λ22

]
∈ J [0, 1]2×2,

and λ11 < 1
3 and λ22 < 5

8 . If λ11 = 1
3 and λ22 = 5

8 then x(t) = (δ1, δ2)
T . Let

δ ⩽ ε, ∥x(t)∥ < ε for all sufficiently large t whenever ∥x(t0)∥ < δ. The system
(2) is only marginal stable for real matrix AΛ that

Λ =

[
1
2 λ12

λ21
5
8

]
∈ J [0, 1]2×2,

and it is not asymptotically stable. The system (2) is unstable for real matrix
AΛ that

Λ =

[
λ11 λ12

λ21 λ22

]
∈ J [0, 1]2×2,

and λ11 > 1
3 or λ22 > 5

8 . Then, there is real matrix AΛ such that the system
(2) is unstable. Therefore, the system (1) is unstable that the interval matrix
is

A =

[
[−1, 2] 0

0 [−5, 3]

]
.

4 Examining stability using Lyapunov function

In this section, a Lyapunov function with interval coefficients is introduced,
followed by an investigation into the stability of the system (1) using this
function.

Definition 11 V(x) is a multivariate polynomial with interval coefficients
that V(x) = xSx′ and V(x) = {vΛ(x) = xSΛx

′ |vΛ : Rn −→ R, Λ ∈ J [0, 1]n×n},
then V(x) is called a Quadratic function with interval coefficients.

Definition 12 V̇(x) = {v̇Λ(x)|Λ ∈ J [0, 1]n×n} is called the derivative of the
Quadratic function with interval coefficients.

Definition 13 If V(x), the Quadratic function with interval coefficients, is
positive definite and the derivative of it, is negative definite, then V(x) is a
Lyapunov function with interval coefficients.
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Proposition 2 Let origin is an equilibrium point of the system (1). If a Lya-
punov function with interval coefficients is in the neighborhood of origin, then
origin is asymptotically stable. If the derivative of the Lyapunov function is
only semi-negative definite, then origin is marginal stable.

Proof There is a Lyapunov function with interval coefficients such as V(x) in
the neighborhood of origin. Let V(x) be a quadratic Lyapunov function with
interval coefficients. For each real matrix Λ ∈ J [0, 1]n×n, vΛ(x) is a quadratic
Lyapunov function in the neighborhood of origin and origin has asymptotically
stable. Then origin is an equilibrium point with asymptotically stable for the
system (2) that AΛ is coefficient matrix for all real matrices Λ ∈ J [0, 1]n×n

[17]. Therefore, origin is a equilibrium point with asymptotically stable for the
system(1). Let V̇(x) be semi-negative definite. There is a real matrix Λ1 ∈
J [0, 1]n×n that ˙vΛ1

(x) is semi-negative definite and for each real matrix Λ ∈
J [0, 1]n×n, Λ ̸= Λ1, v̇Λ(x) is negative definite or semi-negative definite. Origin
is marginal stable for the system ẋ = AΛ1

(x) and is marginal or asymptotically
stable for the system ẋ = AΛ(x) that Λ ∈ J [0, 1]n×n, Λ ̸= Λ1[17]. So origin is
marginal stable for the system (1).

For being asymptotically stable of the system (1), should take a interval sym-
metric matrix P such that V(x) = x

′Px is a positive definite quadratic func-
tion with interval coefficients and V̇ (x) be negative definite. For each real
matrix Λ ∈ J [0, 1]n×n that PΛ ∈ P , should take a positive definite quadratic
function with real coefficients as vΛ(x) = x

′
PΛx that v̇Λ(x) be negative defi-

nite. To differentiate from quadratic function vΛ(x) = x
′
PΛx and v̇Λ(x) should

be negative definite and I is positive definite matrix then the matrix equation

A
′

ΛPΛ + PΛAΛ = −I, (3)

is obtained.

Example 3 In example 2, the stability of the system (1) with the interval
coefficients

A =

[
[−1, 2] 0

0 [−5, 3]

]
,

was examined. Now the stability is investigated using Lyapunov function. Let

PΛ =

[
p11 p12
p12 p22

]
,

and from (3),

p11 =
−1

2(−1 + 3λ11)
, p22 =

−1

2(−5 + 8λ22)
, p12 = 0.

For being positive definite of the matrix PΛ, it uses of Sylvester criterion [17]
and then for this purpose 0 < λ11 < 1

3 , 0 < λ22 < 5
8 . There are some matrices

that Λ ∈ J [0, 1]2×2, the system (2) is not asymptotically stable. So, the system
(1) is not asymptotically stable. For λ11 ⩾ 1

3 or λ22 ⩾ 5
8 , the nonzero elements
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of the matrix PΛ are either unlimited or negative, and in this state, the matrix
PΛ is not semi-negative definite. The system (1) is not marginal stable and so
it is unstable.

Example 4 In the system (1), let the coefficient matrix be

A =

[
[0, 1] 0
[0, 2] 5

]
.

The real matrix
AΛ =

[
λ11 0
λ21 5

]
,

belongs to A for each real matrix Λ ∈ J [0, 1]2×2.

An
Λ =

[
λn
11 0

a21 5n

]
,

such that

a21 = 2λ21(λ
n−2
11 (λ11 + 5) +

n−3∑
k=1

λn−3−k
11 5k+1 + 5n−1).

eAΛ(t−t0) is the transition matrix of the system (2) and the solution of the
system is x(t) = eAΛ(t−t0)x(t0). Regarding the exponent of the matrix AΛ,

lim
x→+∞

∥x(t)∥ = +∞,

and the system (2) is unstable for each real matrix Λ ∈ J [0, 1]2×2 and so
the system (1) is unstable. For examining stability of the system (1) using
Lyapunov function from (3), the element of the matrix PΛ are

p11 = − 2λ2
21

5λ11(5 + λ11)
− 1

2λ11
, p12 =

λ21

5(5 + λ11)
, p22 = − 1

10
.

The real matrix PΛ is not positive definite for each real matrix Λ ∈ J [0, 1]2×2

and the system (2) is not asymptotically stable that each real matrix AΛ, Λ ∈
J [0, 1]2×2 is the coefficient matrix. Then the system (1) is not asymptotically
stable. No positive definite matrix as PΛ is obtained from (3) for each real
matrix Λ ∈ J [0, 1]2×2 and so the system (1) is not asymptotically stable.

Example 5 Let the coefficient matrix of the system (1) be

A =

[
[−3,−2] [1, 2]
[2, 4] [−4,−3]

]
.

If the system is positive, Kaczorek illustrated that the system is asymptotically
stable [14]. Now there is no constraint on the system and the stability of the
system is examined. There exists the real matrix

AΛ =

[
−3 + λ11 1 + λ12

2 + 2λ21 −4 + λ22

]
∈ A.
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The system of equation that is obtained from (3), is as following:


2 (−3 + λ11) p11 + 2 (2 + 2λ21) p12 = −1

(1 + λ12) p11 + (−7 + λ11 + λ22) p12 + (2 + 2λ21) p22 = 0

2 (1 + λ12) p12 + 2 (−4 + λ22) p22 = −1

(4)

If the system of equations (4) possesses a unique solution while satisfying
the Sylvester criterion, then the system is asymptotically stable. The deter-
minant of the coefficient matrix ranges from negative to positive values, the
system of equations may have multiple solutions for certain parameter values,
λ11, λ12, λ21, λ22. So the system is not asymptotically stable.

Example 6 Consider the free linear system with interval coefficients as:


ẋ1 = [−7,−5]x1

ẋ2 = [2, 3]x2

ẋ3 = [−2,−1]x3

ẋ4 = [−15,−11]x1 + [−1, 1]x2 + [−9,−6]x3 + [−7,−4]x4

(5)

The coefficient matrix of the system is

A =

[−7,−5] 0 0 0
0 [2, 3] 0 0
0 0 [−2,−1] 0

 ,

AΛ =


−7 + 2λ11 0 0 0

0 2 + λ22 0 0
0 0 −2 + λ33 0

−15 + 4λ41 −1 + 2λ42 −9 + 3λ43 −7 + 3λ44

 ∈ A,

for all real matrices Λ ∈ J [0, 1]4×4. The system of equation that obtain from
(3), has a coefficient matrix and its determinant is as following:

8(−7 + 2λ11)(−5 + 2λ11 + λ22)(−9 + 2λ11 + λ33)(−14 + 2λ11 + 3λ44)

(2 + λ22)(λ22 + λ33)(−5 + λ22 + 3λ44)(−2 + λ33)(−9 + λ33 + 3λ44)(−7 + 3λ44).

If λ22 and λ33 are not equal to zero then the determinant is not equal to zero.
So, the system of equation that obtains from (3), has a unique solution and it
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is as following:

p11 = − (−15 + 4λ41)
2

2(−7 + 2λ11)(−14 + 2λ11 + 3λ44)(−7 + 3λ44)
− 1

2(−7 + 2λ11)
,

p12 =
−(−1 + 2λ42)(−15 + 4λ41)

2(−5 + 2λ11 + λ22)(−14 + 2λ11 + 3λ44)(−7 + 3λ44)

− (−15 + 4λ41)(−1 + 2λ42)

2(−5 + 2λ11 + λ22)(−7 + 3λ44)(−5 + λ22 + 3λ44)
,

p13 =
−(−9 + 3λ43)(−15 + 4λ41)

2(−9 + 2λ11 + λ33)(−14 + 2λ11 + 3λ44)(−7 + 3λ44)

+
(−15 + 4λ41)(−9 + 3λ43)

2(−9 + 2λ11 + λ33)(−7 + 3λ44)(−9 + λ33 + 3λ44)
,

p14 =
−15 + 4λ41

2(−14 + 2λ11 + 3λ44)(−7 + 3λ44)
,

p22 = − (−1 + 2λ42)
2 + (−5 + λ22 + 3λ44)(−7 + 3λ44)

2(2 + λ22)(−5 + λ22 + 3λ44)(−7 + 3λ44)
,

p23 = − (−9 + 3λ43)(−1 + 2λ42)

2(λ22 + λ33)(−5 + λ22 + 3λ44)(−7 + 3λ44)

− (−1 + 2λ42)(−9 + 3λ43)

2(λ22 + λ33)(−9 + λ33 + 3λ44)(−7 + 3λ44)
,

p24 =
−1 + 2λ42

2(−5 + λ22 + 3λ44)(−7 + 3λ44)
,

p33 =
−(−9 + 3λ43)

2 − (−9 + λ33 + 3λ44)(−7 + 3λ44)

2(−2 + λ33)(−9 + λ33 + 3λ44)(−7 + 3λ44)
,

p34 =
−9 + 3λ43

2(−9 + λ33 + 3λ44)(−7 + 3λ44)
,

p44 =
−1

2(−7 + 3λ44)
.

p11 > 0 and ∣∣∣∣ p11 p12
p12 p22

∣∣∣∣ = p11p22 − p212 < 0,

for all real matrices Λ ∈ J [0, 1]4×4 then the real matrix PΛ is not positive
definite for all real matrices Λ ∈ J [0, 1]4×4. So, the system is not asymptotically
stable.

5 Conclusion

In this paper, we investigate the asymptotic and marginal stability of continuous-
time free linear systems with interval coefficients using parameterization of
interval numbers. Stability is analyzed through definitions and the applica-
tion of a Lyapunov function with interval coefficients. If a Lyapunov function
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with interval coefficients cannot be constructed, the system cannot be deemed
asymptotically stable, and its instability cannot be determined. If the matrix
equation (3) is not consistent for all positive definite matrices, stability can-
not be assessed using a Lyapunov function. Obtaining a Lyapunov function
with interval coefficients allows for determining the asymptotic stability of the
system (1), which yields more reliable results compared to other approaches.
The investigation of the stability of non-free system with interval coefficients
is left for future research endeavors.
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