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Abstract

Stochastic partial differential equations (SPDEs) are significant in various fields such as epidemiology, mechanics,

microelectronics, chemistry, and finance. Obtaining analytical solutions for SPDEs is either difficult or impossible; therefore,

researchers are very interested in effective numerical methods for studying the behavior of these equations. In this paper, we

introduce a stochastic finite difference (SFD) scheme for the numerical solution of the Itô stochastic advection–diffusion equation.

We discuss the consistency, stability, and convergence of the scheme, and we also determine its order of convergence. Finally, to

validate the effectiveness and accuracy of the SFD scheme, we analyze the numerical results and compare them with those from

existing SFD schemes.
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1 Introduction
Over the past several decades, SPDEs have been utilized to model realistic phenomena because they accurately represent real behaviors. The

footprints of SPDEs can be seen in many fields, including nonlinear filtering [1], turbulent flows [2], population biology [3, 5], microscopic

particle dynamics [4], groundwater flow [15], plasma physics, and finance. Only a limited number of SPDEs can be solved using analytical

techniques, while most cannot be addressed with these methods [16]. Consequently, several numerical methods have been developed to solve

these equations [17–19]. Many researchers have investigated numerical approaches for approximating the solutions of SPDEs. In [6], Allen

et al. applied finite element methods to solve SPDEs. In [7–10], Namjoo et al. utilized SFD schemes for solving SPDEs. In [12], a stochastic

compact finite difference scheme was proposed for solving a class of SPDEs. In [13], Roth applied finite difference schemes to solve

SPDEs. In [20], high–resolution finite volume methods were employed to address the numerical solution of SPDEs. Furthermore, in [21],

a stochastic compact finite difference scheme was used to solve a stochastic fractional partial differential equation. Fractional calculus, as

a generalization of classical calculus, is a powerful mathematical framework for representing and analyzing physical systems with complex

dynamics that cannot be well described using standard integer–order models. Recent studies have shown that fractional–order differential

equations can represent complex dynamic features more accurately than ordinary differential equations. This is because fractional–order

COPYRIGHTS: ©2023, Analytical and Numerical Solutions for Nonlinear Equations published by Damghan University.

This is an open access article published under the CC BY 4 DEED license
138 of 162

https://ansne.du.ac.ir/
https://portal.issn.org/resource/ISSN/3060-785X
namjoo@vru.ac.ir
https://doi.org/10.22128/gadm.2024.859.1118
https://creativecommons.org/licenses/by/4.0/


Stochastic Advection-Diffusion Partial Differential Equations 139 of 162

derivatives and integrals can effectively describe the characteristic of memory effects, which are a crucial element in many real–world

phenomena. In recent years, the use of fractional–order derivatives has significantly increased, and they have been widely applied in

modeling real–world phenomena, as well as in exploring disease transmission and control processes [23, 25, 27]. Furthermore, numerous

studies have been conducted in recent years on biological models and the generalized Scḧrodinger equation that incorporate fractional–order

derivatives [24, 26, 28]. This paper introduces an efficient SFD scheme for solving stochastic advection–diffusion equations.

The reminder of this paper is organized as follows: In Section 2, we construct a reliable implicit SFD scheme to implement numerical

solutions for stochastic advection–diffusion equations. In Section 3, we study the consistency, stability, and convergence properties of the

proposed SFD scheme. Section 4 presents some numerical simulations, and finally, the paper concludes with remarks in the last section.

2 The Upwind Scheme for SPDEs
In this section, we focus on constructing an efficient numerical method for approximating the solution of the stochastic advection–diffusion

equation as, described in [8].

Ut(x, t)+νUx(x, t) = γUxx(x, t)+σU(x, t)Ẇ (t), (x, t) ∈ [0,1]× [0,1], (1)

with initial and boundary conditions

U(x,0) =U0(x), U(0, t) =U1(t), U(1, t) =U2(t), x ∈ [0,1], t ∈ [0,1].

The function U(x, t) represents the concentration, while the parameter ν denotes the viscosity of material flow or convection. The constant γ
describes the rate of diffusion or dispersion of the material in space, and the coefficient σ characterizes the intensity of random fluctuations.

Moreover, W (t) is a Wiener process, and Ẇ (t) is referred to as a white noise process [11]. Equation (1) can be used to model the spread of

pollution in air or soil, particularly under conditions where convection and random fluctuations (such as wind or rain) affect the distribution

of pollutants. It can also be applied to heat transfer processes to model temperature distribution in environments influenced by convection

and randomness. In chemical reactions involving convection and the diffusion of substances, it effectively describes concentration dynamics.

Additionally, it can be utilized to model asset prices and financial processes, explaining price fluctuations influenced by random and

convective factors, such as market trends. In plasma physics, it describes the movement of particles in electric and magnetic fields affected

by convection and random fluctuations. In ecology, it is useful for modeling the spread of biological species and their environmental impacts.

Lastly, in biology, it can model the diffusion of nutrients or drugs in biological tissues, influenced by blood flow and random variations.

Let us consider a uniform time–space lattice with the step sizes ∆x and ∆t. Suppose Un
k represents the approximate solution at the nodal

point xk = k∆x and tn = n∆t, where ∆x = xk+1 − xk and ∆t = tn+1 − tn, for 0 ≤ k ≤ M−1 and 0 ≤ n ≤ N −1. To construct an SFD scheme

for the SPDE (1), the time and space partial derivatives can be approximated as follows [14, 22]

Ut(k∆x,n∆t)≈
Un+1

k −Un
k

∆t
,

Ux(k∆x,n∆t)≈
Un+1

k −Un+1
k−1

∆x
, (2)

Uxx(k∆x,n∆t)≈
Un+1

k+1 −2Un+1
k +Un+1

k−1
∆x2 .

By substituting the approximations from (2) into (1) and using the approximation of the white noise process for the problem (1), we obtain

the stochastic upwind implicit scheme as follows:

−(νλ + γρ)Un+1
k−1 +(1+νλ +2γρ)Un+1

k − γρUn+1
k+1 =Un

k +σUn
k ∆Wn, (3)

where λ = ∆t
∆x , ρ = ∆t

∆x2 , and ∆Wn =W ((n+1)∆t)−W (n∆t) is a Gaussian distribution with zero mean and variance ∆t [11].

In continuation, we examine several aspects of the stochastic scheme (3). To achieve this, we integrate both sides of the SPDE (1) with

respect to time over the interval [0, t], resulting in:

U(x, t)−U(x,0)+ν
∫ t

0
Ux(x,s)ds = γ

∫ t

0
Uxx(x,s)ds+σ

∫ t

0
U(x,s)dW (s). (4)



Analytical and Numerical Solutions for Nonlinear Equations | 2023, Volume 8, Issue 2 140 of 162

By substituting the values t = tn+1 and tn into (4), one obtains:

U(x, tn+1)−U(x,0)+ν
∫ tn+1

0
Ux(x,s)ds =γ

∫ tn+1

0
Uxx(x,s)ds+σ

∫ tn+1

0
U(x,s)dW (s), (5)

and

U(x, tn)−U(x,0)+ν
∫ tn

0
Ux(x,s)ds =γ

∫ tn

0
Uxx(x,s)ds+σ

∫ tn

0
U(x,s)dW (s). (6)

Subtracting (6) from (5) and setting x = xn, one concludes that:

U(xk, tn+1)−U(xk, tn)+ν
∫ tn+1

tn
Ux(xk,s)ds− γ

∫ tn+1

tn
Uxx(xk,s)ds−σ

∫ tn+1

tn
U(xk,s)dW (s) = 0. (7)

The equation (7) can be considered as:

LU(xk, tn) = F ,

in a way that

LU(xk, tn) =U(xk, tn+1)−U(xk, tn)+ν
∫ tn+1

tn
Ux(xk,s)ds− γ

∫ tn+1

tn
Uxx(xk,s)ds−σ

∫ tn+1

tn
U(xk,s)dW (s), (8)

and F = 0. To obtain the difference operator associated with the stochastic difference scheme (3), we consider the following

approximations: ∫ tn+1

tn
Ux(xk,s)ds ≈

∫ tn+1

tn
Ux(xk, tn)ds,∫ tn+1

tn
Uxx(xk,s)ds ≈

∫ tn+1

tn
Uxx(xk, tn)ds, (9)∫ tn+1

tn
U(xk,s)dW (s)≈

∫ tn+1

tn
U(xk, tn)dW (s).

By replacing the approximations in (2) with those in (9) and using (7), one achieves:

U(xk, tn+1)−U(xk, tn)+
ν∆t
∆x

(U(xk, tn+1)−U(xk−1, tn+1))

− γ∆t
∆x2

(
U(xk+1, tn+1)−2U(xk, tn+1)+U(xk−1, tn+1)

)
−σU(xk, tn)∆Wn = 0. (10)

The stochastic difference scheme (10) can be expressed in the following manner:

L n
k Un

k = F n
k ,

where

L n
k Un

k =U(xk, tn+1)−U(xk, tn)+
ν∆t
∆x

(U(xk, tn+1)−U(xk−1, tn+1))

− γ∆t
∆x2

(
U(xk+1, tn+1)−2U(xk, tn+1)+U(xk−1, tn+1)

)
−σU(xk, tn)∆Wn, (11)

and F n
k = 0. Consider an SPDE of the form LU = F . Let L n

k Un
k = F n

k represent the proposed difference scheme. To investigate

consistency, stability, and convergence, it is necessary to consider a norm. To this end, let {Un
k } be a sequence of numerical approximations

obtained from the stochastic difference scheme (3). Define

∥Un∥=
√

sup
0≤k≤M

|Un
k |2,

where Un = (Un
0 ,U

n
1 , . . . ,U

n
M). For further details on the concepts of consistency, stability, and convergence, see [13].
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Definition 1. A stochastic difference scheme L n
k Un

k = F n
k is said to be consistent in mean square with the SPDE LU = F at the point

(x, t) ∈ [0,1]× [0,1] if, for any continuously differentiable function ϒ(x, t), we have:

E∥(L ϒ(k∆x,n∆t)−F (k∆x,n∆t))− (L n
k ϒ(k∆x,n∆t)−F n

k )∥
2 → 0,

as ∆x → 0, ∆t → 0 and (k∆x,(n+1)∆t)→ (x, t).

Definition 2. The stochastic difference scheme L n
k un

k = F n
k , which approximates the SPDE L v = F , is said to be convergent in mean

square at time t = (n+1)∆t if E∥un+1 − vn+1∥2 → 0 as ∆x → 0 and ∆t → 0.

Definition 3. Let Ω be a domain in Rn (n ≥ 2). The Sobolev space of order m, denoted as Hm(Ω), is defined as the set of functions in L2(Ω)

for which all weak partial derivatives, up to and including those of order m, are also in L2(Ω).

3 Consistency, Stability, and Convergence of the Stochastic Upwind
Scheme

In this section, we demonstrate the properties of consistency, stability, and convergence of the stochastic upwind scheme (3).

Theorem 1. The stochastic difference scheme (3) is consistent in mean square in the sense of Definition 1.

Proof. Suppose that ϒ(x, t) is a smooth function. It follows from equations (8) and (11) that:

L (ϒ(k∆x,n∆t)) =ϒ(k∆x,(n+1)∆t)−ϒ(k∆x,n∆t)+ν
∫ (n+1)∆t

n∆t
ϒx(k∆x,s)ds− γ

∫ (n+1)∆t

n∆t
ϒxx(k∆x,s)ds

−σ
∫ (n+1)∆t

n∆t
ϒ(k∆x,s)dW (s),

and

L n
k ϒ(k∆x,n∆t) = ϒ(k∆x,(n+1)∆t)−ϒ(k∆x,n∆t)

+ν∆t
ϒ(k∆x,(n+1)∆t)−ϒ((k−1)∆x,(n+1)∆t)

∆x

− γ∆t
ϒ((k+1)∆x,(n+1)∆t)−2ϒ(k∆x,(n+1)∆t)+ϒ((k−1)∆x,(n+1)∆t)

∆x2

−σϒ(k∆x,n∆t)(W ((n+1)∆t)−W (n∆t)).

Using the square property of the Itô integral [11], one obtains:

E|L (ϒ(k∆x,n∆t))−L n
k ϒ(k∆x,n∆t)|2

= E
∣∣∣∣ν ∫ (n+1)∆t

n∆t

(
ϒx(k∆x,s)− ϒ(k∆x,(n+1)∆t)−ϒ((k−1)∆x,(n+1)∆t)

∆x

)
ds

− γ
∫ (n+1)∆t

n∆t

(
ϒxx(k∆x,s)

− ϒ((k+1)∆x,(n+1)∆t)−2ϒ(k∆x,(n+1)∆t)+ϒ((k−1)∆x,(n+1)∆t)
∆x2

)
ds

−σ
∫ (n+1)∆t

n∆t

(
ϒ(k∆x,s)−ϒ(k∆x,n∆t)

)
dW (s)

∣∣∣∣2
≤ 4ν2E

∣∣∣∣∫ (n+1)∆t

n∆t

(
ϒx(k∆x,s)− ϒ(k∆x,(n+1)∆t)−ϒ((k−1)∆x,(n+1)∆t)

∆x

)
ds
∣∣∣∣2

+4γ2E

∣∣∣∣∣
∫ (n+1)∆t

n∆t

(
ϒxx(k∆x,s)

− ϒ((k+1)∆x,(n+1)∆t)−2ϒ(k∆x,(n+1)∆t)+ϒ((k−1)∆x,(n+1)∆t)
∆x2

)
ds

∣∣∣∣∣
2

+4σ2
∫ (n+1)∆t

n∆t
|ϒ(k∆x,s)−ϒ(k∆x,n∆t)|2 ds.

Since ϒ(x, t) is a deterministic function, E|L (ϒ(k∆x,n∆t))− Ln
kϒ(k∆x,n∆t)|2 converges to zero as n, k → ∞. Therefore, the stochastic

upwind scheme (3) is consistent with the SPDE (1).
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Let Ûn+1 be the Fourier transform of Un+1. The Fourier inversion formula leads to:

Un+1
m =

1√
2π

∫ π
∆x

− π
∆x

eim∆xξÛn+1(ξ )dξ ,

where

Ûn+1 =
1√
2π

∞

∑
m=−∞

e−im∆xξUn+1
m ∆x, (12)

and ξ is a real variable. One can use the Von Neumann method to analyze the stability of an SFD scheme. By substituting (12) into the SFD

scheme and utilizing the properties of the Fourier transformation, one attains:

Ûn+1(ξ ) = g(∆xξ ,∆t,∆x)Ûn(ξ ),

where Ûn+1(ξ ) is the Fourier transformation of Un+1(ξ ). Hence,

E|g(∆xξ ,∆t,∆x)|2 ≤ 1+K∆t,

is a necessary and sufficient condition for the stability of the SFD scheme [13].

The stability of the SFD scheme (3) is demonstrated in the following theorem.

Theorem 2. The stochastic upwind scheme (3) is unconditionally stable according to Fourier transform analysis.

Proof. By substituting (12) into (3), one arrives at:

− (νλ + γρ)e−i∆xξÛn+1(ξ )+(1+νλ +2γρ)Ûn+1(ξ )− γρei∆xξÛn+1(ξ ) = Ûn(ξ )+σÛn(ξ )(W ((n+1)∆t)−W (n∆t)).

It follows that:

Ûn+1(ξ ) =
(

1
−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ + σ

W ((n+1)∆t)−W (n∆t)
−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

)
Ûn(ξ ).

Thus, the amplification factor of the stochastic upwind scheme is:

g(∆xξ ,∆t,∆x) =
1

−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

+σ
W ((n+1)∆t)−W (n∆t)

−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ .

Since the increments of the Wiener process are independent, one can deduce that

E|g(∆xξ ,∆t,∆x)|2 =
(

1
−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

)2

+

(
σ

−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

)2
∆t.

It is obvious that ∣∣∣∣ 1
−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

∣∣∣∣≤ 1.

Furthermore, there exists a positive constant K such that:∣∣∣∣ σ
−(νλ + γρ)e−i∆xξ +(1+νλ +2γρ)− γρei∆xξ

∣∣∣∣2 ≤ K.

This demonstrates that the stochastic upwind scheme (3) is unconditionally stable.

In the reminder of the paper, we consider vn+1 and un+1 as the exact and numerical solutions at the time level n+1, respectively.
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Theorem 3. Let v ∈ H4 ((0,1)× (0,1)). Then, the stochastic upwind scheme (3) for the SPDE (1) is convergent in mean square with respect

to ∥.∥∞.

Proof. The solution vn+1
k can be expressed using the Taylor expansions vx(x,s) and vxx(x,s) with respect to the spatial variable as follows:

vn+1
k = vn

k −ν
∫ (n+1)∆t

n∆t
vx(x,s)|x=xk ds+ γ

∫ (n+1)∆t

n∆t
vxx(x,s)|x=xk ds

+σ
∫ (n+1)∆t

n∆t
v(x,s)|x=xk dW (s)

= vn
k −ν

∫ (n+1)∆t

n∆t

(
vn+1

k − vn+1
k−1

∆x
−∆tvxt(k∆x,s+α∆t)

+
∆x
2

vxx((k+η)∆x,s+∆t)
)

ds

+ γ
∫ (n+1)∆t

n∆t

(
vn+1

k+1 −2vn+1
k + vn+1

k−1
∆x2 − ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)

+ vxxxx((k+δ )∆x,s+∆t)
)
−∆tvxxt(k∆x,s+ϑ∆t)

)
ds

+σ
∫ (n+1)∆t

n∆t
v(x,s)|x=xk dW (s),

where α, η , β , δ , ϑ ∈ (0,1). Let zn
k = vn

k −un
k be the error at the nodal point (xk, tn). Hence, one obtains:

zn+1
k = vn

k −un
k −ν

∫ (n+1)∆t

n∆t

(
vn+1

k − vn+1
k−1

∆x
−

un+1
k −un+1

k−1
∆x

+ν∆tvxx(k∆x,s+α∆t)

− γ∆tvxxx(k∆x,s+α∆t)+
∆x
2

vxx((k+η)∆x,s+∆t)

)
ds

+ γ
∫ (n+1)∆t

n∆t

(
vn+1

k+1 −2vn+1
k + vn+1

k−1
∆x2 −

un+1
k+1 −2un+1

k +un+1
k−1

∆x2

− ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)+ vxxxx((k+δ )∆x,s+∆t)

)
+ν∆tvxxx(k∆x,s+ϑ∆t)− γ∆tvxxxx(k∆x,s+ϑ∆t)

)
ds

+νσ∆t
∫ (n+1)∆t

n∆t
vx(x,s)|x=xk dW (s)

− γσ∆t
∫ (n+1)∆t

n∆t
vxx(x,s)|x=xk dW (s)

+σ
∫ (n+1)∆t

n∆t
(v(x,s)|x=xk −un

k)dW (s).

This implies that:

zn+1
k = zn

k −νλ (zn+1
k − zn+1

k−1)−ν
∫ (n+1)∆t

n∆t

(
ν∆tvxx(k∆x,s+α∆t)

− γ∆tvxxx(k∆x,s+α∆t)+
∆x
2

vxx((k+η)∆x,s+∆t)
)

ds

+ γρ(zn+1
k+1 −2zn+1

k + zn+1
k−1)

+ γ
∫ (n+1)∆t

n∆t

(
− ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)

+ vxxxx((k+δ )∆x,s+∆t)
)
+ν∆tvxxx(k∆x,s+ϑ∆t)
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− γ∆tvxxxx(k∆x,s+ϑ∆t)

)
ds

+νσ∆t
∫ (n+1)∆t

n∆t
vx(x,s)|x=xk dW (s)

− γσ∆t
∫ (n+1)∆t

n∆t
vxx(x,s)|x=xk dW (s)

+σ
∫ (n+1)∆t

n∆t
(v(x,s)|x=xk −un

k)dW (s).

So,

(1+νλ +2γρ)zn+1
k − (νλ + γρ)zn+1

k−1 − γρzn+1
k+1

= zn
k −ν

∫ (n+1)∆t

n∆t

(
ν∆tvxx(k∆x,s+α∆t)− γ∆tvxxx(k∆x,s+α∆t)

+
∆x
2

vxx((k+η)∆x,s+∆t)
)

ds

+ γ
∫ (n+1)∆t

n∆t

(
− ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)+ vxxxx((k+δ )∆x,s+∆t)

)
+ν∆tvxxx(k∆x,s+ϑ∆t)− γ∆tvxxxx(k∆x,s+ϑ∆t)

)
ds

+νσ∆t
∫ (n+1)∆t

n∆t
vx(x,s)|x=xk dW (s)− γσ∆t

∫ (n+1)∆t

n∆t
vxx(x,s)|x=xk dW (s)

+σ
∫ (n+1)∆t

n∆t
(v(x,s)|x=xk −un

k)dW (s),

where λ = ∆t
∆x and ρ = ∆t

∆x2 . Applying E|.|2 to the above equation and using the following inequality:

E|X +Y +Z +R+S|2 ≤ 4E|X |2 +8E|Y |2 +16E|Z|2 +16E|R|2 +2E|S|2,

we gain

E
∣∣(1+νλ +2γρ)zn+1

k − (νλ + γρ)zn+1
k−1 − γρzn+1

k+1

∣∣2
≤ 4E|zn

k |
2 +8E

∣∣∣∣−ν
∫ (n+1)∆t

n∆t

(
ν∆tvxx(k∆x,s+α∆t)− γ∆tvxxx(k∆x,s+α∆t)

+
∆x
2

vxx((k+η)∆x,s+∆t)
)

ds+ γ
∫ (n+1)∆t

n∆t

(
− ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)

+vxxxx((k+δ )∆x,s+∆t)
)
+ν∆tvxxx(k∆x,s+ϑ∆t)− γ∆tvxxxx(k∆x,s+ϑ∆t)

)
ds

∣∣∣∣∣
2

+16E
∣∣∣∣νσ∆t

∫ (n+1)∆t

n∆t
vx(x,s)|x=xk dW (s)

∣∣∣∣2
+16E

∣∣∣∣−γσ∆t
∫ (n+1)∆t

n∆t
vxx(x,s)|x=xk dW (s)

∣∣∣∣2
+4σ2

∫ (n+1)∆t

n∆t
E|v(x,s)|x=xk − vn

k |
2 ds+4σ2

∫ (n+1)∆t

n∆t
E|vn

k −un
k |

2 ds︸ ︷︷ ︸
E|zn

k |2∆t

.

Therefore,

E
∣∣∣(1+νλ +2γρ)zn+1

k − (νλ + γρ)zn+1
k−1 − γρzn+1

k+1

∣∣∣2 ≤ 4(1+σ2∆t)sup
k
E|zn

k |
2

+8sup
k
E
∣∣∣∣−ν

∫ (n+1)∆t

n∆t

(
ν∆tvxx(k∆x,s+α∆t)− γ∆tvxxx(k∆x,s+α∆t)

+
∆x
2

vxx((k+η)∆x,s+∆t)
)

ds
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+ γ
∫ (n+1)∆t

n∆t

{
− ∆x2

4!

(
vxxxx((k+β )∆x,s+∆t)

+ vxxxx((k+δ )∆x,s+∆t)
)

+ν∆tvxxx(k∆x,s+ϑ∆t)− γ∆tvxxxx(k∆x,s+ϑ∆t)
}

ds
∣∣∣2

+16(νσ∆t)2 sup
k

∫ (n+1)∆t

n∆t
E|vx(x,s)|x=xk |2 ds

+16(γσ∆t)2 sup
k

∫ (n+1)∆t

n∆t
E|vxx(x,s)|x=xk |2 ds

+4σ2 sup
k

∫ (n+1)∆t

n∆t
E|v(x,s)|x=xk − vn

k |
2 ds.

Let us define the following notations: 

φ1k = vxx(k∆x,s+α∆t),

φ2k = vxxx(k∆x,s+α∆t),

φ3k = vxx((k+η)∆x,s+∆t),

φ4k = vxxxx((k+β )∆x,s+∆t),

φ5k = vxxxx((k+δ )∆x,s+∆t),

φ6k = vxxx(k∆x,s+ϑ∆t),

φ7k = vxxxx(k∆x,s+ϑ∆t),

φ8k = vx(x,sk),

φ9k = vxx(x,sk),

where the above values are finite. Based on the following inequality:∫ (n+1)∆t

n∆t
E|v(x,s)|x=xk − vn

k |
2 ds = E

∫ (n+1)∆t

n∆t
|v(x,s)|x=xk − vn

k |
2 ds

≤ sup
s∈[n∆t,(n+1)∆t]

|v(x,s)|x=xk − v(k∆x,n∆t)|2∆t ≤ φ∗
k ∆t,

where

φ∗
k = sup

s∈[n∆t,(n+1)∆t]
|v(x,s)|x=xk − v(k∆x,n∆t)|2.

Therefore, for all k, we derive:

E
∣∣∣(1+νλ +2γρ)zn+1

k − (νλ + γρ)zn+1
k−1 − γρzn+1

k+1

∣∣∣2 ≤ 4(1+σ2∆t)sup
k
E|zn

k |
2

+8sup
k
E
∣∣∣∣∫ (n+1)∆t

n∆t

[(
−ν2∆tφ1k +νγ∆tφ2k −ν

∆x
2

φ3k

)
+

(
−γ

∆x2

4!
(φ4k +φ5k)+ γν∆tφ6k − γ2∆tφ7k

)]
ds
∣∣∣∣2

+16sup
k

∫ (n+1)∆t

n∆t

{
(νσ∆t)2E|φ8k|2 +(γσ∆t)2E|φ9k|2

}
ds+4σ2φ∗

k ∆t,

thus,

sup
k
E
∣∣∣(1+νλ +2γρ)zn+1

k − (νλ + γρ)zn+1
k−1 − γρzn+1

k+1

∣∣∣2 ≤ 4(1+σ2∆t)sup
k
E|zn

k |
2

+8sup
k
E
∣∣∣∣∫ (n+1)∆t

n∆t

[(
−ν2∆tφ1k +νγ∆tφ2k −ν

∆x
2

φ3k

)
+

(
−γ

∆x2

4!
(φ4k +φ5k)+ γν∆tφ6k − γ2∆tφ7k

)]
ds
∣∣∣∣2
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+16sup
k

∫ (n+1)∆t

n∆t

{
(νσ∆t)2E|φ8k|2 +(γσ∆t)2E|φ9k|2

}
ds+4σ2φ∗

k ∆t.

On the other hand, we have:

sup
k
E
∣∣∣(1+νλ +2γρ)zn+1

k − (νλ + γρ)zn+1
k−1 − γρzn+1

k+1

∣∣∣2 ≥ (|1+νλ +2γρ |− |νλ + γρ |− |γρ |
)2

sup
k
E|zn+1

k |2

= sup
k
E|zn+1

k |2.

Therefore

sup
k
E|zn+1

k |2 ≤ 4(1+σ2∆t)sup
k
E|zn

k |
2 +8sup

k
E
∣∣∣∣∫ (n+1)∆t

n∆t

[(
−ν2∆tφ1k +νγ∆tφ2k −ν

∆x
2

φ3k

)
+

(
−γ

∆x2

4!
(φ4k +φ5k)+ γν∆tφ6k − γ2∆tφ7k

)]
ds
∣∣∣∣2

+16(σ∆t)2 sup
k

∫ (n+1)∆t

n∆t

{
ν2E|φ8k|2 + γ2E|φ9k|2

}
ds+4σ2φ∗

k ∆t. (13)

Setting

Ω1 =−ν2∆tφ1k +νγ∆tφ2k −ν
∆x
2

φ3k − γ
∆x2

4!
(φ4k +φ5k)+ γν∆tφ6k − γ2∆tφ7k,

Ω2 = 16(σ∆t)2,

Ω3 = 4σ2φ∗
k .

From the last inequality (13), it can be concluded that:

sup
k
E|zn+1

k |2 ≤4(1+σ2∆t)sup
k
E|zn

k |
2 +8sup

k
E|Ω1|2∆t +Ω2 sup

(
ν2E|φ8k|2 + γ2E|φ9k|2

)
∆t +Ω3∆t.

This results in:

sup
k
E|zn+1

k |2 ≤ 4(1+σ2∆t)sup
k
E|zn

k |
2 +Φ∆t,

where

Φ = 8sup
k
E|Ω1|2 +Ω2 sup

(
ν2E|φ8k|2 + γ2E|φ9k|2

)
+Ω3. (14)

As the step size ∆t approaches zero, we see that:

E∥zn+1∥2
∞ ≤ 4(1+σ2∆t)E∥zn∥2

∞ +Φ∆t

≤
(

1+σ2 t
n+1

)n+1 n

∑
j=1

(4Φ∆t) j +Φ∆t

≤ eσ 2t
n

∑
j=1

(4Φ∆t) j +Φ∆t, (15)

and consequently E∥zn+1∥2
∞ → 0.

Let us examine the convergence order of the stochastic upwind scheme (3) with respect to space and time. Based on (14), we note that

Φ =8sup
k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)∆t − ν

2
∆xφ3k −

γ
4!
(φ4k +φ5k)∆x2|2

+16sup
k
(ν2E|φ8k|2 + γ2E|φ9k|2)σ2∆t2 +4σ2φ∗

k . (16)

By substituting (16) into (15) and noting that t ∈ [0,1], one obtains

E∥zn+1∥2 ≤ [eσ2
(4Φ)2 +(4eσ2

+1)Φ]∆t
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≤

[
16eσ2

{
16∆t2 sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +2ν2∆x2 sup

k
E|φ3k|2

+
γ2

72
∆x4 sup

k
E|φ4k +φ5k|2 +16σ2∆t2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)+4σ2φ∗

k

}2

+(4eσ2
+1)

{
16∆t2 sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +2ν2∆x2 sup

k
E|φ3k|2

+
γ2

72
∆x4 sup

k
E|φ4k +φ5k|2 +16σ2∆t2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)+4σ2φ∗

k

}]
∆t

=

[
16eσ2

{
16∆t2

[
sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]

+2ν2∆x2 sup
k
E|φ3k|2 +

γ2

72
∆x4 sup

k
E|φ4k +φ5k|2 +4σ2φ∗

k

}2

+(4eσ2
+1)

{
16∆t2

[
sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]

+2ν2∆x2 sup
k
E|φ3k|2 +

γ2

72
∆x4 sup

k
E|φ4k +φ5k|2 +4σ2φ∗

k

}]
∆t

≤ 64eσ2
{

16∆t2
[

sup
k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]}2

+(2ν2∆x2 sup
k
E|φ3k|2)2 +(

γ2

72
∆x4 sup

k
E|φ4k +φ5k|2)2 +(4σ2φ∗

k )
2

+(4eσ2
+1)

{
16∆t2

[
sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]

+2ν2∆x2 sup
k
E|φ3k|2 +

γ2

72
∆x4 sup

k
E|φ4k +φ5k|2 +4σ2φ∗

k

}]
∆t.

Putting

K1 = 1024eσ 2
[

sup
k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]2
,

K2 = 256ν4eσ 2
(sup

k
E|φ3k|2)2 +

γ2

72
(4eσ 2

+1)sup
k
E|φ4k +φ5k|2,

K3 =
γ4

81
eσ 2
(

sup
k
E|φ4k +φ5k|2

)2
,

K4 = 16(4eσ 2
+1)

[
sup

k
E|(−ν2φ1k +νγφ2k +νγφ6k − γ2φ7k)|2 +σ2 sup

k
(ν2E|φ8k|2 + γ2E|φ9k|2)

]
,

K5 = 2ν2(4eσ 2
+1)sup

k
E|φ3k|2,

K6 = 1024eσ 2
(σ2φ∗

k )
2 +4σ2φ∗

k (4eσ 2
+1),

we find that

E∥zn+1∥2 ≤
(

K1∆t4 +K2∆x4 +K3∆x8 +K4∆t2 +K5∆x2 +K6

)
∆t.

Consequently,

E∥zn+1∥2 = O(∆t)+O(∆t∆x2).

4 Numerical Simulations
In this section, we present the numerical results of the stochastic upwind scheme (3) applied to three test problems. All numerical results

were obtained using MATLAB 2018 on an Intel(R) Core(TM) i7 CPU with 12 GB RAM and a 64–bit system (Windows 10).
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Example 1. Consider the following SPDE:

Ut(x, t) = γUxx(x, t)+σU(x, t)Ẇ (t), x ∈ [0,1], t ∈ [0,1], (17)

with the following initial and boundary conditions:

U(x,0) = exp
(
− (x−0.2)2

γ

)
, x ∈ [0,1],

U(0, t) =
1√

4t +1
exp
(
− 0.04

γ(4t +1)

)
, t ∈ [0,1],

U(1, t) =
1√

4t +1
exp
(
− 0.64

γ(4t +1)

)
, t ∈ [0,1].

It can be seen that, in the absence of the stochastic term, the exact solution of the problem (17) can be expressed as follows:

U(x, t) =
1√

4t +1
exp
(
− (x−0.2)2

γ(4t +1)

)
.

In Figs. 1 and 2, the numerical simulations of the stochastic upwind scheme (3) are presented alongside the analytical solution for the

parameter values

γ = 0.005, σ = 1, ∆x = 0.01, ∆t = 0.005,

and

γ = 0.01, σ = 0.9, ∆x = 0.025, ∆t = 0.01.

From the numerical results in Figs. 1 and 2, one can see the high accuracy of the presented scheme for solving the SPDE (17). The analytical

solution and numerical solutions of the SPDE (17) using the stochastic upwind scheme (3) are shown in Figs. 3–6 on a 500×500 grid over

the time interval [0,1] for γ = 0.005, σ = 0.1, and γ = 0.001, σ = 0.01, respectively. Based on the numerical results obtained using the

stochastic upwind scheme (3) and their comparing with the exact solution of the problem (17), it can be concluded that the stochastic upwind

scheme (3) exhibits high accuracy. In Tables 1–3, the absolute errors of the stochastic upwind scheme (3) with γ = 0.001, σ = 1.5, ∆x= 0.01,

and ∆t = 0.01, 0.04, 0.05 are compared with the stochastic difference scheme in [9]. It can be observed that the absolute errors of the

stochastic upwind scheme (3) are less than those of the stochastic scheme proposed in [9].

Table 1. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [9] are evaluated with parameters

γ = 0.001, σ = 1.5, ∆x = 0.01, and ∆t = 0.01.

x Upwind scheme Scheme of [9]

0.1 2.1×10−5 4.3000×10−3

0.2 1.53×10−5 3.6800×10−2

0.3 2.1×10−5 4.3000×10−3

0.4 2.5342×10−7 3.4287×10−5

0.5 7.4031×10−11 9.2327×10−9

0.6 4.8454×10−17 6.7307×10−14

0.7 1.7376×10−23 3.3412×10−20

0.8 2.4592×10−32 7.7082×10−28

0.9 3.0018×10−40 3.4080×10−36

1 3.4864×10−75 6.4864×10−70

In Table 4, the CPU execution times for the stochastic upwind scheme (3) with the values γ = 0.005, σ = 1, ∆x = 0.01, and ∆t = 0.005

are compared to the difference schemes referenced in [8] and [9]. It can be seen that the stochastic upwind scheme (3) requires less CPU

time than the cited stochastic difference schemes in [8] and [9].
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Figure 1. Comparison between the exact solution and the stochastic upwind scheme (3) with γ = 0.005, σ = 1, ∆x = 0.01 and ∆t = 0.005.
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Figure 2. Comparison between the exact solution and the stochastic upwind scheme (3) with γ = 0.01, σ = 0.9, ∆x = 0.025 and

∆t = 0.01.

Example 2. Consider the following SPDE as a second example

Ut(x, t) = γUxx(x, t)+σU(x, t)Ẇ (t), (x, t) ∈ [0,1]× [0,1], (18)

subject to the initial condition

U(x,0) = sin(πx), x ∈ [0,1],
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Figure 3. The analytical solution of SPDE (17) for γ = 0.005, and σ = 0.1.

Figure 4. The numerical solutions of the stochastic upwind scheme (3) for γ = 0.005, and σ = 0.1.

with the boundary conditions

U(0, t) =U(1, t) = 0, t ∈ [0,1].

In the absence of the stochastic term, the exact solution is expressed as follows:

U(x, t) = e−γπ2t sin(πx).

In Figs. 7 and 8, the analytical solution and the stochastic upwind scheme (3) are compared for the values of γ = 0.05, σ = 0.5, ∆x =

0.005, ∆t = 0.005, and γ = 0.01, σ = 1.2, ∆x = 1
120 , ∆t = 0.01. From the numerical results in Figs. 7 and 8, one can see the high accuracy
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Figure 5. The analytical solution of SPDE (17) for γ = 0.001, and σ = 0.01.

Figure 6. The numerical solutions of the stochastic upwind scheme (3) for γ = 0.001, and σ = 0.01.

of the stochastic upwind scheme (3) for solving the SPDE (18). Figs. 9–12 show the exact solution and the numerical solution of the SPDE

(18) using the stochastic upwind scheme (3). Figs. 9 and 10, depict the results on a 500× 500 grid over the time interval [0,1] for the

values γ = 0.05, σ = 0.01, while Figs. 11 and 12, display the results for γ = 0.01, σ = 0.06. Based on the numerical results derived from

the stochastic upwind scheme (3) and their comparison with the exact solution of the problem (18), it can be concluded that the proposed

scheme demonstrates high accuracy. In Tables 5–7, the absolute errors of the stochastic upwind scheme (3) with γ = 1, σ = 1, ∆x = 0.01,

and ∆t = 0.01, 0.04, and 0.05 are compared with those of the stochastic difference scheme presented in [9]. It is evident that the absolute

errors associated with the stochastic upwind scheme (3) are less than those of the stochastic scheme presented in [9].
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Table 2. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [9] are evaluated with parameters

γ = 0.001, σ = 1.5, ∆x = 0.01, and ∆t = 0.04.

x Upwind scheme Scheme of [9]

0.1 4.52×10−7 5.8578×10−5

0.2 1.55×10−5 2.2000×10−3

0.3 4.52×10−7 5.8578×10−5

0.4 4.4365×10−8 5.0582×10−6

0.5 6.3474×10−12 7.3834×10−10

0.6 6.294×10−18 1.0652×10−15

0.7 3.1619×10−26 3.8851×10−22

0.8 4.5894×10−34 5.1278×10−30

0.9 2.1260×10−41 1.5900×10−37

1 3.4864×10−75 6.4864×10−70

Table 3. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [9] are evaluated with parameters

γ = 0.001, σ = 1.5, ∆x = 0.01, and ∆t = 0.05.

x Upwind scheme Scheme of [9]

0.1 5.2512×10−5 6.0000×10−3

0.2 3.66×10−4 4.7400×10−2

0.3 5.2512×10−5 6.0000×10−3

0.4 1.7317×10−8 6.1739×10−6

0.5 1.9297×10−11 2.2026×10−9

0.6 1.4632×10−17 1.6669×10−15

0.7 2.0693×10−25 2.1245×10−22

0.8 3.0994×10−33 4.8151×10−30

0.9 2.0264×10−42 2.9264×10−38

1 3.4867×10−75 6.4864×10−70

Table 4. Comparison of the CPU times for the stochastic upwind scheme (3) and the stochastic difference schemes in [8] and [9].

Upwind scheme Scheme of [8] Scheme of [9]

11.062321 18.638136 17.765299

In Table 8, the CPU times of the stochastic upwind scheme (3) with parameters γ = 1, σ = 1, and ∆x = ∆t = 0.01 are compared to

those of the stochastic difference schemes presented in [8] and [9]. According to the results presented in Table 8, it is evident that the CPU

time for the stochastic upwind scheme is less than that of the stochastic difference schemes referenced in [8] and [9].

Example 3. Consider the following SPDE as the third example

Ut(x, t)+νUx(x, t) = γUxx(x, t)+σU(x, t)Ẇ (t), (x, t) ∈ [0,1]× [0,1], (19)

with the following initial and boundary conditions:

U(x,0) = exp
(
− (x−0.5)2

γ

)
, x ∈ [0,1],

U(0, t) =
1√

4t +1
exp
(
− (0.5−νt)2

γ(4t +1)

)
, t ∈ [0,1],
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Figure 7. Comparison between the exact solution and the stochastic upwind scheme (3) with γ = 0.05, σ = 0.5, ∆x = 0.005 and

∆t = 0.005.
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Figure 8. Comparison between the exact solution and the stochastic upwind scheme (3) with γ = 0.01, σ = 1.2, ∆x = 1/120 and

∆t = 0.01.

U(1, t) =
1√

4t +1
exp
(
− (0.5−νt)2

γ(4t +1)

)
, t ∈ [0,1].

It is straightforward to demonstrate that, without the stochastic term, the exact solution (19) can be expressed as follows:

U(x, t) =
1√

4t +1
exp
(
− (x−0.5−νt)2

γ(4t +1)

)
.

In Figs. 13 and 14, the stochastic upwind scheme (3) is compared with the exact solution for the values γ = 0.005, ν = 0.1, σ = 1, ∆x =
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Figure 9. The analytical solution of the SPDE (18) for γ = 0.05, σ = 0.01.

Figure 10. The numerical solutions of the stochastic upwind scheme (3) for γ = 0.05, σ = 0.01.

0.01, ∆t = 0.005, and γ = 0.05, ν = 0.05, σ = 1.2, ∆x = ∆t = 0.01. The numerical results presented in Figs. 13 and 14 demonstrate the

high accuracy of the proposed scheme for solving the SPDE (19). In Figs. 15–18, we plot the exact solution alongside the approximate

solution for the SPDE (19), obtained using the stochastic upwind scheme on a 500×500 grid with parameters γ = 0.005, ν = 0.1, σ = 0.03,

and γ = ν = 0.05, σ = 0.07 over the time interval [0,1]. Based on the numerical solutions obtained from the stochastic upwind scheme (3)

and their comparison with the exact solution to problem (19), it is evident that the proposed stochastic scheme is effective and reliable. The

absolute errors of the stochastic upwind scheme (3) with parameters γ = 0.01, ν = 0.03, σ = 2, ∆x = 0.01, and ∆t = 0.0001, 0.0002, 0.001

are reported in Tables 9–11. It is apparent that the absolute errors associated with the stochastic upwind scheme (3) are less than those of
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Figure 11. The analytical solution of the SPDE (18) for γ = 0.01, σ = 0.06.

Figure 12. The numerical solutions of the stochastic upwind scheme (3) for γ = 0.01, σ = 0.06.

the stochastic scheme analyzed in [10].

In Table 12, the CPU times for the stochastic upwind scheme (3) and the proposed stochastic scheme in [8] are reported for the

parameters γ = 0.005, ν = 0.1, σ = 1, ∆x = 0.01, and ∆t = 0.005. The results presented in this table indicate that the stochastic upwind

scheme (3) requires less CPU time than the stochastic difference scheme referenced in [8].

5 Conclusion
In this study, we developed a stochastic upwind scheme for the numerical solutions of Itô stochastic advection–diffusion partial differential
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Table 5. Absolute errors of the stochastic upwind scheme (3) and the scheme mentioned in [9] are reported for γ = σ = 1, and

∆x = ∆t = 0.01.

x Upwind scheme Scheme of [9]

0.1 1.2341×10−9 2.2049×10−7

0.2 8.7736×10−9 4.1940×10−7

0.3 4.4411×10−9 5.7726×10−7

0.4 5.8697×10−9 6.7861×10−7

0.5 6.0174×10−9 7.1353×10−7

0.6 5.8697×10−9 6.7861×10−7

0.7 4.4411×10−9 5.7726×10−7

0.8 8.7736×10−9 9.1946×10−7

0.9 1.2341×10−9 2.2049×10−7

1 6.3343×10−23 6.3343×10−21

Table 6. Absolute errors of the stochastic upwind scheme (3) and the scheme mentioned in [9] are presented with

γ = 1, σ = 1, ∆x = 0.01, and ∆t = 0.04.

x Upwind scheme Scheme of [9]

0.1 2.1700×10−9 7.2438×10−7

0.2 1.276×10−8 1.3779×10−6

0.3 1.1711×10−8 1.8965×10−6

0.4 1.6785×10−8 2.2294×10−6

0.5 2.0222×10−8 2.3441×10−6

0.6 1.6785×10−8 2.2294×10−6

0.7 1.1711×10−8 1.8965×10−6

0.8 1.276×10−8 1.3779×10−6

0.9 2.1700×10−9 7.2438×10−7

1 6.3343×10−23 6.3343×10−21

Table 7. Absolute errors of the stochastic upwind scheme (3) and the scheme mentioned in [9] are evaluated for γ = 1, σ = 1, ∆x = 0.01,

and ∆t = 0.05.

x Upwind scheme Scheme of [9]

0.1 1.001×10−8 1.0274×10−6

0.2 1.0025×10−8 1.9542×10−6

0.3 2.1235×10−8 2.6897×10−6

0.4 2.0041×10−8 3.1619×10−6

0.5 2.9564×10−8 3.3247×10−6

0.6 2.0041×10−8 3.1619×10−6

0.7 2.1235×10−8 2.6897×10−6

0.8 1.0025×10−8 1.9542×10−6

0.9 1.001×10−8 1.0274×10−6

1 6.3343×10−23 6.3343×10−21

equations. We then investigated the consistency, unconditional stability, and convergence of the proposed stochastic scheme. Afterward,

we determined the order of convergence of the scheme with respect to space and time. Finally, to ascertain the accuracy and effectiveness
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Table 8. Comparison of CPU times for the stochastic upwind scheme (3) with the stochastic difference schemes mentioned in [8, 9].

Upwind scheme (3) Scheme of [8] Scheme of [9]

7.505272 13.865644 12.189545
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Figure 13. Comparison of the exact solution and the stochastic numerical solution of (19) with the parameters γ = 0.005, ν = 0.1, σ = 1,

∆x = 0.01, and ∆t = 0.005.
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Figure 14. Comparison of the exact solution and the stochastic numerical solution of (19) with the parameters γ = ν = 0.05, σ = 1.2,

∆x = 0.01, and ∆t = 0.01.
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Figure 15. The exact solution for SPDE (19) with the parameters γ = 0.005, ν = 0.1, and σ = 0.03.

Figure 16. The numerical solutions of the stochastic upwind scheme (3) for the parameters γ = 0.005, ν = 0.1, and σ = 0.03.

of the introduced stochastic scheme, we presented three test problems with different initial and boundary conditions and compared the

absolute errors and CPU times of our proposed scheme with those of existing stochastic schemes. The numerical simulations demonstrated

that implementing the stochastic upwind scheme, in comparison to several existing stochastic difference schemes, resulted in reduced CPU

time and fewer absolute errors when applied to stochastic advection–diffusion partial differential equations. Future work can be focused

on developing effective nonstandard finite difference schemes for SPDEs and exploring robust numerical methods for solving Itô stochastic

fractional–order partial differential equations.
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Figure 17. The exact solution for SPDE (19) with values γ = ν = 0.05, σ = 0.07.

Figure 18. The numerical solutions is obtained from the stochastic upwind scheme (3) with the parameters γ = ν = 0.05, and σ = 0.07.

Authors’ Contributions
All authors have the same contribution.

Data Availability
The manuscript has no associated data or the data will not be deposited.



Analytical and Numerical Solutions for Nonlinear Equations | 2023, Volume 8, Issue 2 160 of 162

Table 9. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [10] are reported with parameters

γ = 0.01, ν = 0.03, σ = 2, ∆x = 0.01, and ∆t = 0.0001.

x Upwind scheme Scheme of [10]

0.1 2.1219×10−6 3.12×10−4

0.2 3.1835×10−6 2.8512×10−3

0.3 5.3519×10−6 5.1714×10−3

0.4 6.1723×10−6 9.93×10−4

0.5 4.3891×10−6 8.1639×10−4

0.6 7.1349×10−6 5.3542×10−4

0.7 6.2790×10−6 5.7891×10−4

0.8 3.7517×10−6 3.1435×10−4

0.9 3.1728×10−6 6.32×10−4

1 1.0408×10−17 1.133×10−14

Table 10. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [10] are evaluated using the parameters

γ = 0.01, ν = 0.03, σ = 2, ∆x = 0.01, and ∆t = 0.0002.

x Upwind scheme Scheme of [10]

0.1 3.7125×10−4 5.49×10−2

0.2 3.1719×10−4 6.4860×10−2

0.3 3.5325×10−4 8×10−2

0.4 2.1214×10−3 3.3481×10−1

0.5 2.7823×10−3 3×10−1

0.6 3.2514×10−3 4.102×10−1

0.7 2.32×10−3 5.12×10−1

0.8 3×10−4 4.8263×10−2

0.9 3.1728×10−7 6.32×10−4

1 1.0408×10−17 1.0133×10−15

Table 11. The absolute errors of the stochastic upwind scheme (3) and the proposed scheme in [10] are evaluated with

γ = 0.01, ν = 0.03, σ = 2, ∆x = 0.01, and ∆t = 0.001.

x Upwind scheme Scheme of [10]

0.1 8.8098×10−4 3.2204×10−2

0.2 3.1×10−3 7.0249×10−1

0.3 7.4×10−3 9.2512×10−1

0.4 1.27×10−3 1.8256×10−1

0.5 1.6×10−3 2.2549×10−1

0.6 1.5×10−3 3.49×10−1

0.7 1.05×10−3 8.2549×10−1

0.8 5.4×10−3 5.48×10−1

0.9 2×10−3 5.24×10−1

1 1.0408×10−17 1.0133×10−15
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Table 12. Comparison of CPU times between the stochastic upwind scheme (3) and the stochastic difference scheme presented in [8].

Upwind scheme Scheme of [8]

7.497430 11.190063
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