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Abstract In this paper We introduce the notion of NeutroEngelGroups and
we show some of it’s results. Also, we show that the intersection of two Neu-
troEngelGroups and the quotient of a NeutroEngelGroups are NeutroEngel-
Groups too. Moreover, we prove that NeutroEngel is closed with respect to
homomorphic image. Also, by several examples we show the diferences between
Engel groups and NeutroEngelGroups.
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1 Introduction

Your text comes heLotfi A. Zadeh in 1965, introduced fuzzy sets as an exten-
sion of the classical notion of set. Then in 2003 Smarandache [14], generalized
the concept of fuzzy logic/set to neutrosophic logic/set. It has many applica-
tions in sciences, engineering, technology and social sciences, medical diagnosis
and multiple decision-making. Also, Neutrosophic set has been used in several
areas of mathematics. In 2019, Smarandache [12] introduced NeutroStructures
and AntiStructures. Also, in [13] he introduced the notion of NeutroAlgebras
and AntiAlgebras. In [9], he calculated the number of NeutroAlgebras and
AntiAlgebras in a classical algebra.
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Moreover, NeutroAlgebras as a generalization of Partial Algebras are stud-
ied by Smarandache (see [11]). Agboola et al [3], examined NeutroAlgebras
and AntiAlgebras viz a viz the classical number systems Z, Q, R and C.
Smarandache [13], introduced NeutroGroup.

Kandasamy and Smarandache studied several neutrosophic algebraic struc-
tures in [5–7]. Some of them are neutrosophic fields, neutrosophic vector spaces,
neutrosophic groups, neutrosophic bigroups, neutrosophic N -groups, neutro-
sophic semigroups, neutrosophic bisemigroups,neutrosophic loops, neutrosophic
groupoids, and so on. Also, in [2], Agboola studied NeutroRings by con-
sidering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemi-
group (multiplicative) and NeutroDistributivity (multiplication over addition).
Moreover, some autors introduced the new notions such as NutroRings, Neu-
troIdeals, NeutroQuotientRings and NeutroHomomorphism by the concept of
NeutroAxioms and NeutroLow (see [10], [2]).

Now, we introduce the notion of NeutroEngelGroups and provied a few
examples of NeutroEngelGroups and also we present some elementary results
of them. Moreover, we prove that the intersection of two NeutroEngelGroups
is a NeutroEngelGroup and the homomorphic image of a NeutroEngelGroup
is a NeutroEngelGroup too.

2 Preliminaries

In this section we sumerize some basic definitions and results which will be
used throughout the paper.

Definition 1 ([4]) A classical group is a nonempty set G endowed with a
binary operation ∗, denoted by (G, ∗), satisfying the following axioms:

(1) x ∗ y ∈ G for all x, y ∈ G.
(2) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G.
(3) There exists e ∈ G such that x ∗ e = e ∗ x = x for all x ∈ G.
(4) For all x ∈ G there exists y ∈ G such that x ∗ y = y ∗ x = e, where e is the

neutral element of G.

If (G, ∗) satisfies the following condition, then we call it an abelian group:
(5) x ∗ y = y ∗ x for all x, y ∈ G.

Definition 2 ([6])
A group (G, ∗) is called nilpotent if for all i the factor Gi+1/Gi is contained
in the center of G/Gi in a normal series e = G0 ≤ G1 ≤ . . . ≤ Gn = G. The
smallest such n is called the nilpotent class of G.

Definition 3 ([6]) If (G, ∗) is a group and x1, . . . , xn ∈ G, then

c(x1, x2) = x1
−1x2

−1x1x2,

is the commutator of x1 and x2. For n > 2 the commutator c(x1, . . . , xn) is
c(c(x1, . . . , xn1), xn), where c(x1) = x1.
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Definition 4 An algebra (T, ∗), where ∗ is a binary operation is a Neu-
troGroup if it satisfying the following axioms:
(T1) There are (x, y, z) and (u, v, w) ∈ T such that x ∗ (y ∗ z) = (x ∗ y) ∗ z and
u∗(v∗w) ̸= (u∗v)∗w oru∗(v∗w =indeterminate or (u∗v)∗w =indeterminate
(NeutroAssociativity).
(T2) There are exists at least an element a ∈ T that has a single neutral ele-
ment i.e., we have e ∈ T such that a ∗ e = e ∗ a = a and for b ∈ T there does
not exist e ∈ T such that b ∗ e = e ∗ b ̸= b or there exists e1, e2 ∈ T such that
b ∗ e1 = e1 ∗ b = b or b ∗ e2 = e2 ∗ b = b with e1 ̸= e2 or there exists at least
an element c ∈ T that there is d ∈ T such that c ∗ d = d ∗ c =indeterminate
(NeutroNeutralElement).
(T3) There exists an element a ∈ T that has an inverse b ∈ T w.r.t. a unit
element e ∈ T i.e., a ∗ b = b ∗ a = e, or there exists at least one element
b ∈ T that has two or more inverses c, d ∈ T w.r.t. some unit element u ∈ T
i.e., b ∗ c = c ∗ b = u, b ∗ d = d ∗ b = u or there exists at least one element
r ∈ T that has one element s ∈ T such that r ∗ s = s ∗ r =indeterminate
(NeutroInverseElement).
(T4) the structure (T, ∗) is said a NeutroAbelianGroup (NeutroAbelianGroup)
if there are (a, b) and (c, d) ∈ T such that c ∗ d ̸= d ∗ c, or c ∗ d =indeterminate
or d ∗ c =indeterminate.

Definition 5 Let (T, ∗) be a NeutroGroup and Φ ̸= H ⊆ G. Then H is called
a NeutroSubgroup of T if (H, ∗) is also a NeutroGroup of the same type as T
and we denote by H ⊑ T .

Example 1 Let U = {a, b, c, d, e, f} and T = {a, b, c, d} be a subset of U .
Consider table 1. Then ∗1 is a NeutroAbelian.

From now on, in this paper T is a NeutroGroup unless otherwise state. For
all x, y ∈ T we use xy instead of xy and ηx, εx represent the NeutroNeutral
element and the NeutroInverse elements, respectively.

3 Some Results On NeutroEngelGroups

In this section we define NeutroEngelGroup on a NeutroGroup T with three
NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral and NeutroIn-
verse elements). Then we study some results on NeutroEngelGroups.
The commutator of x, y ∈ T , is c(x, y) = (εxεy)(xy), where for any x ∈ T ,
we take εx = x if there is not εx. Also, for any x, y1, . . . , yn ∈ T , the commu-
tator of weigh n ∈ N is c(x, y1, . . . , yn) = c(c(x, y1, . . . , yn−1), yn) and we use
c(x,n y) instead of c(x, y, . . . , y︸ ︷︷ ︸

n

) .

Definition 6 Let for any x ∈ T there exists at least one g, z ∈ T such that
c(x,n g) = ηz. Then T is saied a NeutroEngelGroup. Let En be the class of all
n-NeutroEngelGroups.
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Table 1 The table of NeutoEngelGroup (T, ∗1)

∗1 a b c d
a b c d a
b c d a c
c d a b d
d a b c a

In the next Example we show that Z10 is a NeutroAbelianGroup which is in
E1.

Example 2 We define a binary operation ” ∗ ” on G = Z10 by x ∗ y = x +
2y for any x, y ∈ G, where ” + ” is addition modula 10. Then (G, ∗) is a
NeutroAbelianGroup (for more detailes see [1]). We have η0 = 0, η5 = 5 and
η1, η2, η3, η4, η6, η7, η8, η9 do not exist. Now, we can see that G ∈ E1.

Example 3 In Example 1, T is Neutro associative, because

a ∗1 (b ∗1 c) = (a ∗1 b) ∗1 c and b ∗1 (d ∗1 c) ̸= (b ∗1 d) ∗1 c.

Also, ηa = d, but ηb, ηc, ηd do not exist. Moreover, εa = c and εb, εc, εd do not
exist (see [1]). Since c(a, b) = (εa∗1εb)∗1 (a∗1 b) = c∗1 b∗1a∗1 b = d, c(c, b) = b,
c(d, b) = d and c(b, b) = a, so we have c(a,3 b) = d = ηa, c(c,3 b) = c(a, b) = ηa,
c(d,3 b) = ηa and c(b,3 b) = ηa. Therefore, T ∈ E3.

Definition 7 [8] Let there is g1, . . . , gn, z ∈ T such that c(x, g1, . . . , gn) = ηz
for any x ∈ T . Then T is called a NeutroNilpotentGroup of class n. Let Nn

be the class of all NeutroNilpotentGroup of class n.

In group theory every n-Engel group is n+ 1-Engel group. But we show that
it is not valid in NeutroGroups.

Example 4 As Example 3, we have T ∈ E3. Now, for any x ∈ T there exist
b ∈ T such that c(x,3 b) = ηa, so c(x,4 b) = c(c(x,3 b), b) = c(d, b) = d = ηa.
Therefore, T ∈ E4.

The following example shows a NeutroGroup H such that H ∈ E1 but H ̸∈ E2.

Example 5 Let U = {a, b, c, d} and T = {a, b, c} be a NeutroGroup by the
following tabel:

∗3 a b c
a a c b
b c a c
c a c d

∗4 a b
a a c
b c a

Let H = {a, b}. Then (H, ∗4) ⊑ T . We have ηa = a, εa = a, ηb and εb dont ex-
ist. So c(a, a) = c(b, b) = a = ηa. Therefore, H ∈ E1 and is a NeutroNilpotent.
Moreover, H ̸∈ E2. Since c(b,2 a) and c(b,2 b) dont exist.

Now, by Example 4 and 5, we have the following theorem.
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Table 2 The table of NeutoSubgroup (R, ∗5)

∗3 a c d
a b d a
c d b d
d a c a

Theorem 1 Every n-NeutroEngelGroup is not n + 1-NeutroEngelGroup in
general.

Theorem 2 Assume that T1 and T2 are two NeutroGroups. Then T1×T2 ∈ En

if and only if T1 and T2 ∈ En.

Proof Since T1 × T2 ∈ En so, for any (x, y) ∈ T1 × T2, there exist

(x1, y1) ∈ T1 × T2, z ∈ T1,

and t ∈ T2 such that (ηz, ηt) = c((x, y),n (x1, y1)) = (c(x,n x1), c(y,n y1)). So
c(x,n x1) = ηz and c(y,n y1) = ηt. Therefore, T1, T2 ∈ E2. The converse of
theorem is similar.

By the following example we have a NeutroSubgroup which is not NeutroN-
ilpotent and is not a NeutroEngelGroup.

Example 6 Assume the NeutroGroup (T, ∗1) as table 3 and R = {a, c, d}.
Then, (R, ∗5) is not a NeutroNilotentSubgroup of T (see [3]). Also, R is not
NeutroEngel, since c(a, d) = a, c(a, a) and c(a, c) do not exist, so c(a,n g) does
not exist for any g ∈ R.

Example 7 Let (R, ∗5) and (H, ∗4) be as Example 6 and 5 respectively. Then,
R is not a NeutroEngelGroup and H is a NeutroEngelGroup. But R × H is
not a NeutroEngelGroup.

We know that every nilpotent group is an Engel group and the converse is not
true in general. Now, we check this result in NeutroGroups.

Theorem 3 Every n-NeutroEngelGroup is NeutroNilpotent. Moreover, if T
is not a NeutroNilpotentGroup, then it is not NeutroEngel.

Proof Suppose that T ∈ En. Then, for any x ∈ T there exist g, z ∈ T such
that c(x,n g) = ηz and so c(x, g, . . . , g︸ ︷︷ ︸

n

) = ηz. Therefore, T ∈ Nn.

Theorem 4 If T ∈ N1, then T ∈ E1.

Proof We get the result by definitions of N1 and E1.

Theorem 5 ([1]) Let R ⊑ T . The sets

(T/R)l = {xR : x ∈ T},
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and
(T/R)r = {Rx : x ∈ T},

are two NeutroGroups with operations ◦l and ◦r where for any

xR, yR ∈ (T/R)l, Rx,Ry ∈ (T/R)r, x, y ∈ T,

we have
xR ◦l yR = xyR and Rx ◦r Ry = Rxy.

Theorem 6 If T ∈ En, then (T/R)l, (T/R)r ∈ En.

Proof Suppose that R ⊑ T and gR ∈ (T/R)l. Since T ∈ En there exist
g1, z ∈ T such that c(g,n g1) = ηz and so c(gR,n g1R) = c(g,n g1)R = ηzR.
On the otherhand, ηzR is a NeutroNatural element of (T/R)l, since (zR) ◦l
(ηzR) = (zηz)R = zR = ηzR ◦l zR. Therefore, (T/R)l ∈ En. In a similar way
(T/R)r ∈ En.

Example 8 Let T and H be as Example 3.6 and consider (T/H)l = {aH}. We
can see that (T/H)l is NeutroEngelGroup. Since c(aH, aH) = aH = ηaH .

We know that the intersection of two NeutroGroup is a NeutroGroup (see [1]).
Now we have the following theorem:

Theorem 7 The intersection of two NeutroEngelGroups is also a NeutroEn-
gelGroup.

Definition 8 ([1]) Let (T1, ∗) and (T2, ◦) be two NeutroGroups. NeutroGroup
homomorphism φ : T → R is a map such that for any x, y ∈ G, we have
φ(x ∗ y) = φ(x) ◦ φ(y).
A NeutroGroup isomorphism is a NeutroGroup homomorphism which is a
Neutrobijection. If φ from G to H is a NeutroGroup isomorphism, then we
denoted it by G ≈ H. NeutroGroup epimorphism, NeutroGroup monomor-
phism, NeutroGroup endomorphism are defined similarly.

Theorem 8 [1] Let φ : (T1, ∗) → (T2, ◦) be a NeutroGroup homomorphism
with NeutroNeutralElements e1 and e2, respectively. Then φ(e1) = e2.

Theorem 9 The homomorphic image of a n-NeytroEngelGroup is also a n-
NeutroEngelGroup.

Proof Assume R ⊑ T , where T is a n-NeutroEngelGroup, and e1, e2 be Neu-
troNeutralElements in T and R, respectively. Suppose that ψ : T → R is a
NeutroGroup epimorphism. Then for any h ∈ R there exist x ∈ T such that
h = ψ(x). Since T ∈ En for x ∈ T there exist g1 ∈ T such that c(x,n g1) = e1.
Put k1 = ψ(g1). Therefore, c(h,n k1) = ψ(c(x,n g1)) = ψ(e1) = e2, and so
R ∈ En.

In the following theorem, we define a NeutroEngelGroup by an n-Engel group.
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Theorem 10 Let (G, ·) be a n-Engel group and g0 ∈ G. Let a ̸∈ G and
PG = G ∪ {a}. Then (PG, ◦) is a NeutroEngelGroup where, ◦ is defined as
follows:
(1) a ◦ a = g0,
(2) a ◦ g = g ◦ a = a, for all g ∈ G− {a},
(3) x ◦ y = x.y, for all (x, y) ∈ G2.

Proof By (2), it is clear that ηa = g, for any g ∈ G. So ηa = g0. Now, using
(1), we conclude that εa = a. Therefore, (PG, ◦) is a NeutroGroup. We have,

c(a, g) = (εa ◦ εg) ◦ (a ◦ g) = (a ◦ g−1) ◦ (a ◦ g) = a ◦ a = ηa = g0,

and
c(g, a) = (εg ◦ εa) ◦ (g ◦ a) = (g−1 ◦ a) ◦ a = a ◦ a = ηa = g0.

Since G is n-Engel, we have c(a,n+1 g) = c(c(a, g),n g) = c(g0,n g) = e. Also,
c(g,n+1 a) = c(c(g, a),n a) = c(g0,n a) = ... = c(g0, a) = g0 = ηa. Therefore,
(PG, ◦) is a NeutroEngelGroup.
In the above theorem if a ◦ a = a, then (PG, ◦) is not a NeutroEngelGroup.
By the proof of Theorem 3.20, for all g ∈ G we have ηa = g. For all z ∈ G,

c(a, g) = (εa ◦ εg) ◦ (a ◦ g) = (a ◦ g−1) ◦ (a ◦ g) = a ◦ a = a ̸= ηz,

and c(a, a) = a ̸= ηz. Then c(a,n g) ̸= ηz and c(a,n a) ̸= ηz. Consequently,
(PG, ◦) is not a NeutroEngelGroup.
Example 9 We know D8 and Q8 are 2-Engel groups. Then by Theorem 3.20,
PD8 and PQ8 are neutroEngel groups.
Theorem 11 For the NeutroGroup isomorphism φ : T → R, if T ∈ En, then
R is too.
Proof Let x ∈ R. By f is an isomorphism, there exists x ∈ T such that
f(x′) = x. But x′/inEn. So there exists g′, z′ ∈ T such that c(x′,n g′) = z′.
Let z = f(x′), g = f(g′). Then

c(x,n g) = c(f(x′),n f(g
′)) = fc(x′, g′) = f(η′) = ηz.

Theorem 12 If K is a neutroGroup and G ≈ H, then G ×K ≈ H ×K. In
particular, if K and G are NeutroEngel groups, then H ×K is too.
Theorem 13 If f : G → H is a neutroGroup homomorphism and K is a
neutroEngel subgroup of G, then f(K) is a neutroEngel subgroups of H.
Theorem 14 If f : G → H is a neutroGroup homomorphism and K is a
neutroEngel subgroup of H, then f−1(K) is a neutroEngel subgroups of G.
Example 10 Let a, r ̸∈ Z, P = Z ∪ {a} and P ′ = ({0} × Z) ∪ {(0, r)}. By the
proof of Theorem 3.20, P and P ′ are two NeutroEngel groups. The function
f : P ⇒ P ′ by f(x) = (0, x) for x ∈ Z and f(x) = (0, r) for x = a, is a Neutro
isomomorhism. Since A = 2Z∪ {a} is a neutrpEngel subgroup of P , so by 13,
f(A) is a neutrpEngel subgroup of P ′

Theorem 15 If G ≈ H, then PG ≈ PH . Moreover, if G is an Engel group,
then PH is NeutroEngel group.
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4 Conclusion

In this paper, we introduce a subclass of NeutroNilpotentGroups, named Neu-
troEngelGroups, and their elementary properties were presented. We try to
show the differences between classic Engel groups and NeutroEngelGroups
throughout of several examples.
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