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Abstract

In this paper We introduce the notion of NeutroEngelGroups and we show some of it’s results. Also, we show that the intersection

of two NeutroEngelGroups and the quotient of a NeutroEngelGroups are NeutroEngelGroups too. Moreover, we prove that

NeutroEngel is closed with respect to homomorphic image. Also, by several examples we show the diferences between Engel

groups and NeutroEngelGroups.
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1 Introduction
Your text comes heLotfi A. Zadeh in 1965, introduced fuzzy sets as an extension of the classical notion of set. Then in 2003 Smarandache

[14], generalized the concept of fuzzy logic/set to neutrosophic logic/set. It has many applications in sciences, engineering, technology and

social sciences, medical diagnosis and multiple decision-making. Also, Neutrosophic set has been used in several areas of mathematics. In

2019, Smarandache [12] introduced NeutroStructures and AntiStructures. Also, in [13] he introduced the notion of NeutroAlgebras and

AntiAlgebras. In [9], he calculated the number of NeutroAlgebras and AntiAlgebras in a classical algebra.

Moreover, NeutroAlgebras as a generalization of Partial Algebras are studied by Smarandache (see [11]). Agboola et al [3], examined

NeutroAlgebras and AntiAlgebras viz a viz the classical number systems Z, Q, R and C. Smarandache [13], introduced NeutroGroup.

Kandasamy and Smarandache studied several neutrosophic algebraic structures in [5–7]. Some of them are neutrosophic fields,

neutrosophic vector spaces, neutrosophic groups, neutrosophic bigroups, neutrosophic N-groups, neutrosophic semigroups, neutrosophic

bisemigroups,neutrosophic loops, neutrosophic groupoids, and so on. Also, in [2], Agboola studied NeutroRings by considering three

NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication over addition).

Moreover, some autors introduced the new notions such as NutroRings, NeutroIdeals, NeutroQuotientRings and NeutroHomomorphism by

the concept of NeutroAxioms and NeutroLow (see [10], [2]).

Now, we introduce the notion of NeutroEngelGroups and provied a few examples of NeutroEngelGroups and also we present

some elementary results of them. Moreover, we prove that the intersection of two NeutroEngelGroups is a NeutroEngelGroup and the

homomorphic image of a NeutroEngelGroup is a NeutroEngelGroup too.
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2 Preliminaries
In this section we sumerize some basic definitions and results which will be used throughout the paper.

Definition 1 ( [4]). A classical group is a nonempty set G endowed with a binary operation ∗, denoted by (G,∗), satisfying the following

axioms:

(1) x∗ y ∈ G for all x,y ∈ G.

(2) x∗ (y∗ z) = (x∗ y)∗ z for all x,y,z ∈ G.

(3) There exists e ∈ G such that x∗ e = e∗ x = x for all x ∈ G.

(4) For all x ∈ G there exists y ∈ G such that x∗ y = y∗ x = e, where e is the neutral element of G.

If (G,∗) satisfies the following condition, then we call it an abelian group:

(5) x∗ y = y∗ x for all x,y ∈ G.

Definition 2 ( [6]). A group (G,∗) is called nilpotent if for all i the factor Gi+1/Gi is contained in the center of G/Gi in a normal series

e = G0 ≤ G1 ≤ ·· · ≤ Gn = G. The smallest such n is called the nilpotent class of G.

Definition 3 ( [6]). If (G,∗) is a group and x1, . . . ,xn ∈ G, then

c(x1,x2) = x1
−1x2

−1x1x2,

is the commutator of x1 and x2. For n > 2 the commutator c(x1, . . . ,xn) is c(c(x1, . . . ,xn1),xn), where c(x1) = x1.

Definition 4. An algebra (T,∗), where ∗ is a binary operation is a NeutroGroup if it satisfying the following axioms:

(T1) There are (x,y,z) and (u,v,w) ∈ T such that x ∗ (y ∗ z) = (x ∗ y) ∗ z and u ∗ (v ∗ w) ̸= (u ∗ v) ∗ w oru ∗ (v ∗ w =indeterminate or

(u∗ v)∗w =indeterminate (NeutroAssociativity).

(T2) There are exists at least an element a ∈ T that has a single neutral element i.e., we have e ∈ T such that a∗ e = e∗a = a and for b ∈ T

there does not exist e ∈ T such that b∗e = e∗b ̸= b or there exists e1,e2 ∈ T such that b∗e1 = e1 ∗b = b or b∗e2 = e2 ∗b = b with e1 ̸= e2

or there exists at least an element c ∈ T that there is d ∈ T such that c∗d = d ∗ c =indeterminate (NeutroNeutralElement).

(T3) There exists an element a ∈ T that has an inverse b ∈ T w.r.t. a unit element e ∈ T i.e., a ∗ b = b ∗ a = e, or there exists at least one

element b ∈ T that has two or more inverses c,d ∈ T w.r.t. some unit element u ∈ T i.e., b∗ c = c∗b = u, b∗d = d ∗b = u or there exists at

least one element r ∈ T that has one element s ∈ T such that r ∗ s = s∗ r =indeterminate (NeutroInverseElement).

(T4) the structure (T,∗) is said a NeutroAbelianGroup (NeutroAbelianGroup) if there are (a,b) and (c,d) ∈ T such that c ∗ d ̸= d ∗ c, or

c∗d =indeterminate or d ∗ c =indeterminate.

Definition 5. Let (T,∗) be a NeutroGroup and Φ ̸= H ⊆ G. Then H is called a NeutroSubgroup of T if (H,∗) is also a NeutroGroup of the

same type as T and we denote by H ⊑ T .

Example 1. Let U = {a,b,c,d,e, f} and T = {a,b,c,d} be a subset of U. Consider table 1. Then ∗1 is a NeutroAbelian.

From now on, in this paper T is a NeutroGroup unless otherwise state. For all x,y ∈ T we use xy instead of xy and ηx, εx represent the

NeutroNeutral element and the NeutroInverse elements, respectively.

3 Some Results On NeutroEngelGroups
In this section we define NeutroEngelGroup on a NeutroGroup T with three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral

and NeutroInverse elements). Then we study some results on NeutroEngelGroups.

The commutator of x,y ∈ T , is c(x,y) = (εxεy)(xy), where for any x ∈ T , we take εx = x if there is not εx. Also, for any x,y1, . . . ,yn ∈ T , the

commutator of weigh n ∈ N is c(x,y1, . . . ,yn) = c(c(x,y1, . . . ,yn−1),yn) and we use c(x,n y) instead of c(x,y, . . . ,y︸ ︷︷ ︸
n

) .
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Table 1. The table of NeutoEngelGroup (T,∗1)

∗1 a b c d
a b c d a

b c d a c

c d a b d

d a b c a

Definition 6. Let for any x ∈ T there exists at least one g,z ∈ T such that c(x,n g) = ηz. Then T is saied a NeutroEngelGroup. Let En be

the class of all n-NeutroEngelGroups.

In the next Example we show that Z10 is a NeutroAbelianGroup which is in E1.

Example 2. We define a binary operation ”∗” on G = Z10 by x∗y = x+2y for any x,y ∈ G, where ”+” is addition modula 10. Then (G,∗)
is a NeutroAbelianGroup (for more detailes see [1]). We have η0 = 0,η5 = 5 and η1,η2,η3,η4,η6,η7,η8,η9 do not exist. Now, we can see

that G ∈ E1.

Example 3. In Example 1, T is Neutro associative, because

a∗1 (b∗1 c) = (a∗1 b)∗1 c and b∗1 (d ∗1 c) ̸= (b∗1 d)∗1 c.

Also, ηa = d, but ηb,ηc,ηd do not exist. Moreover, εa = c and εb,εc,εd do not exist (see [1]). Since c(a,b) = (εa ∗1 εb) ∗1 (a ∗1 b) =

c ∗1 b ∗1 a ∗1 b = d, c(c,b) = b, c(d,b) = d and c(b,b) = a, so we have c(a,3 b) = d = ηa, c(c,3 b) = c(a,b) = ηa, c(d,3 b) = ηa and

c(b,3 b) = ηa. Therefore, T ∈ E3.

Definition 7. [8] Let there is g1, . . . ,gn,z ∈ T such that c(x,g1, . . . ,gn) = ηz for any x ∈ T . Then T is called a NeutroNilpotentGroup of

class n. Let Nn be the class of all NeutroNilpotentGroup of class n.

In group theory every n-Engel group is n+1-Engel group. But we show that it is not valid in NeutroGroups.

Example 4. As Example 3, we have T ∈ E3. Now, for any x ∈ T there exist b ∈ T such that c(x,3 b) = ηa, so c(x,4 b) = c(c(x,3 b),b) =

c(d,b) = d = ηa. Therefore, T ∈ E4.

The following example shows a NeutroGroup H such that H ∈ E1 but H ̸∈ E2.

Example 5. Let U = {a,b,c,d} and T = {a,b,c} be a NeutroGroup by the following tabel:

∗3 a b c

a a c b

b c a c

c a c d

∗4 a b

a a c

b c a

Let H = {a,b}. Then (H,∗4)⊑ T . We have ηa = a, εa = a, ηb and εb dont exist. So c(a,a) = c(b,b) = a = ηa. Therefore, H ∈ E1 and is a

NeutroNilpotent. Moreover, H ̸∈ E2. Since c(b,2 a) and c(b,2 b) dont exist.

Now, by Example 4 and 5, we have the following theorem.

Theorem 1. Every n-NeutroEngelGroup is not n+1-NeutroEngelGroup in general.

Theorem 2. Assume that T1 and T2 are two NeutroGroups. Then T1 ×T2 ∈ En if and only if T1 and T2 ∈ En.

Proof. Since T1 ×T2 ∈ En so, for any (x,y) ∈ T1 ×T2, there exist

(x1,y1) ∈ T1 ×T2,z ∈ T1,

and t ∈ T2 such that (ηz,ηt) = c((x,y),n (x1,y1)) = (c(x,n x1),c(y,n y1)). So c(x,n x1) = ηz and c(y,n y1) = ηt . Therefore, T1,T2 ∈ E2. The

converse of theorem is similar.
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Table 2. The table of NeutoSubgroup (R,∗5)

∗3 a c d
a b d a

c d b d

d a c a

By the following example we have a NeutroSubgroup which is not NeutroNilpotent and is not a NeutroEngelGroup.

Example 6. Assume the NeutroGroup (T,∗1) as table 3 and R = {a,c,d}. Then, (R,∗5) is not a NeutroNilotentSubgroup of T (see [3]).

Also, R is not NeutroEngel, since c(a,d) = a, c(a,a) and c(a,c) do not exist, so c(a,n g) does not exist for any g ∈ R.

Example 7. Let (R,∗5) and (H,∗4) be as Example 6 and 5 respectively. Then, R is not a NeutroEngelGroup and H is a NeutroEngelGroup.

But R×H is not a NeutroEngelGroup.

We know that every nilpotent group is an Engel group and the converse is not true in general. Now, we check this result in NeutroGroups.

Theorem 3. Every n-NeutroEngelGroup is NeutroNilpotent. Moreover, if T is not a NeutroNilpotentGroup, then it is not NeutroEngel.

Proof. Suppose that T ∈En. Then, for any x∈ T there exist g,z∈ T such that c(x,n g) =ηz and so c(x,g, . . . ,g︸ ︷︷ ︸
n

) =ηz. Therefore, T ∈Nn.

Theorem 4. If T ∈ N1, then T ∈ E1.

Proof. We get the result by definitions of N1 and E1.

Theorem 5 ( [1]). Let R ⊑ T . The sets

(T/R)l = {xR : x ∈ T},

and

(T/R)r = {Rx : x ∈ T},

are two NeutroGroups with operations ◦l and ◦r where for any

xR,yR ∈ (T/R)l , Rx,Ry ∈ (T/R)r, x,y ∈ T,

we have

xR◦l yR = xyR and Rx◦r Ry = Rxy.

Theorem 6. If T ∈ En, then (T/R)l ,(T/R)r ∈ En.

Proof. Suppose that R ⊑ T and gR ∈ (T/R)l . Since T ∈ En there exist g1,z ∈ T such that c(g,n g1) = ηz and so c(gR,n g1R) = c(g,n g1)R =

ηzR. On the otherhand, ηzR is a NeutroNatural element of (T/R)l , since (zR)◦l (ηzR) = (zηz)R = zR = ηzR◦l zR. Therefore, (T/R)l ∈ En.

In a similar way (T/R)r ∈ En.

Example 8. Let T and H be as Example 3.6 and consider (T/H)l = {aH}. We can see that (T/H)l is NeutroEngelGroup. Since

c(aH,aH) = aH = ηaH .

We know that the intersection of two NeutroGroup is a NeutroGroup (see [1]). Now we have the following theorem:

Theorem 7. The intersection of two NeutroEngelGroups is also a NeutroEngelGroup.

Definition 8 ( [1]). Let (T1,∗) and (T2,◦) be two NeutroGroups. NeutroGroup homomorphism φ : T → R is a map such that for any x,y ∈ G,

we have φ(x∗ y) = φ(x)◦φ(y).
A NeutroGroup isomorphism is a NeutroGroup homomorphism which is a Neutrobijection. If φ from G to H is a NeutroGroup isomorphism,

then we denoted it by G ≈ H. NeutroGroup epimorphism, NeutroGroup monomorphism, NeutroGroup endomorphism are defined similarly.
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Theorem 8. [1] Let φ : (T1,∗) → (T2,◦) be a NeutroGroup homomorphism with NeutroNeutralElements e1 and e2, respectively. Then

φ(e1) = e2.

Theorem 9. The homomorphic image of a n-NeytroEngelGroup is also a n-NeutroEngelGroup.

Proof. Assume R ⊑ T , where T is a n-NeutroEngelGroup, and e1, e2 be NeutroNeutralElements in T and R, respectively. Suppose that

ψ : T → R is a NeutroGroup epimorphism. Then for any h ∈ R there exist x ∈ T such that h = ψ(x). Since T ∈ En for x ∈ T there exist

g1 ∈ T such that c(x,n g1) = e1. Put k1 = ψ(g1). Therefore, c(h,n k1) = ψ(c(x,n g1)) = ψ(e1) = e2, and so R ∈ En.

In the following theorem, we define a NeutroEngelGroup by an n-Engel group.

Theorem 10. Let (G, ·) be a n-Engel group and g0 ∈ G. Let a ̸∈ G and PG = G∪{a}. Then (PG,◦) is a NeutroEngelGroup where, ◦ is

defined as follows:

(1) a◦a = g0,

(2) a◦g = g◦a = a, for all g ∈ G−{a},

(3) x◦ y = x.y, for all (x,y) ∈ G2.

Proof. By (2), it is clear that ηa = g, for any g ∈ G. So ηa = g0. Now, using (1), we conclude that εa = a. Therefore, (PG,◦) is a

NeutroGroup. We have,

c(a,g) = (εa ◦ εg)◦ (a◦g) = (a◦g−1)◦ (a◦g) = a◦a = ηa = g0,

and

c(g,a) = (εg ◦ εa)◦ (g◦a) = (g−1 ◦a)◦a = a◦a = ηa = g0.

Since G is n-Engel, we have c(a,n+1 g) = c(c(a,g),n g) = c(g0,n g) = e. Also, c(g,n+1 a) = c(c(g,a),n a) = c(g0,n a) = ...= c(g0,a) = g0 =

ηa. Therefore, (PG,◦) is a NeutroEngelGroup.

In the above theorem if a◦a = a, then (PG,◦) is not a NeutroEngelGroup. By the proof of Theorem 3.20, for all g ∈ G we have ηa = g.

For all z ∈ G,

c(a,g) = (εa ◦ εg)◦ (a◦g) = (a◦g−1)◦ (a◦g) = a◦a = a ̸= ηz,

and c(a,a) = a ̸= ηz. Then c(a,n g) ̸= ηz and c(a,n a) ̸= ηz. Consequently, (PG,◦) is not a NeutroEngelGroup.

Example 9. We know D8 and Q8 are 2-Engel groups. Then by Theorem 3.20, PD8 and PQ8 are neutroEngel groups.

Theorem 11. For the NeutroGroup isomorphism φ : T → R, if T ∈ En, then R is too.

Proof. Let x ∈ R. By f is an isomorphism, there exists x ∈ T such that f (x′) = x. But x′/inEn. So there exists g′,z′ ∈ T such that

c(x′,n g′) = z′. Let z = f (x′),g = f (g′). Then

c(x,n g) = c( f (x′),n f (g′)) = f c(x′,g′) = f (η ′) = ηz.

Theorem 12. If K is a neutroGroup and G ≈ H, then G×K ≈ H ×K. In particular, if K and G are NeutroEngel groups, then H ×K is too.

Theorem 13. If f : G → H is a neutroGroup homomorphism and K is a neutroEngel subgroup of G, then f (K) is a neutroEngel subgroups

of H.

Theorem 14. If f : G→H is a neutroGroup homomorphism and K is a neutroEngel subgroup of H, then f−1(K) is a neutroEngel subgroups

of G.

Example 10. Let a,r ̸∈ Z, P = Z∪{a} and P′ = ({0}×Z)∪{(0,r)}. By the proof of Theorem 3.20, P and P′ are two NeutroEngel groups.

The function f : P⇒P′ by f (x) = (0,x) for x∈Z and f (x) = (0,r) for x= a, is a Neutro isomomorhism. Since A= 2Z∪{a} is a neutrpEngel

subgroup of P, so by 13, f (A) is a neutrpEngel subgroup of P′

Theorem 15. If G ≈ H, then PG ≈ PH . Moreover, if G is an Engel group, then PH is NeutroEngel group.
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4 Conclusion
In this paper, we introduce a subclass of NeutroNilpotentGroups, named NeutroEngelGroups, and their elementary properties were

presented. We try to show the differences between classic Engel groups and NeutroEngelGroups throughout of several examples.
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