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Existence Results for a Dirichlet Quasilinear
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Abstract In this paper, existence results of positive classical solutions for a
class of second-order differential equations with the nonlinearity dependent on
the derivative are established. The approach is based on variational methods.
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1 Introduction

Dirichlet boundary value problems have been widely studied because of their
applications in various fields of applied sciences, as mechanical engineering,
control systems, computer science, economics, artificial or biological neural
networks and many others.

The aim of this paper is to establish the existence of at least one nontrivial
solution for the following Dirichlet quasilinear elliptic problem on a bounded
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interval [a, b] in R (a < b){
−(p− 1)|u′(x)|p−2u′′(x) = λf(x, u)h(x, u′), x ∈ (a, b),
u(a) = u(b) = 0,

(1)

where p > 1, λ is a positive parameter, h : [a, b]×R→ [0,+∞) is a bounded
and continuous function with m := inf(x,t)∈[a,b]×R h(x, t) > 0 and f : [a, b] ×
R→ R is an L1-Carathéodory function.

Our main tool is the Ricceri variational principle [4, Theorem 2.5] as given
in [1, Theorem 5.1] which is below recalled.

For a given non-empty set X, and two functionals Φ, Ψ : X → R, we define
the following functions

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)− Ψ(v)

r2 − Φ(v)
,

ρ2(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(v)− r1
,

for all r1, r2 ∈ R, with r1 < r2.

Theorem 1 ([1, Theorem 5.1]) Let X be a real Banach space; Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously
Gâteaux differentiable function whose Gâteaux derivative admits a continuous
inverse on X∗; Ψ : X → R be a continuously Gâteaux differentiable function
whose Gâteaux derivative is compact. Put Iλ := Φ−λΨ and assume that there
are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2). (2)

Then, for each λ ∈
]

1
ρ2(r1,r2)

, 1
β(r1,r2)

[
there is u0,λ ∈ Φ−1(]r1, r2[) such

that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

Let h : [a, b]×R→ [0,+∞) be a bounded and continuous function with

m := inf
(x,t)∈[a,b]×R

h(x, t) > 0,

and f : [a, b]×R→ R be an L1-Carathéodory function.
We recall that f : [a, b]×R→ R is an L1-Carathéodory function if

(a) x 7→ f(x, ξ) is measurable for every ξ ∈ R;
(b) ξ 7→ f(x, ξ) is continuous for almost every x ∈ [a, b];
(c) for every ρ > 0 there is a function lρ ∈ L1([a, b]) such that

sup
|ξ|≤ρ

|f(x, ξ)| ≤ lρ(x)

for almost every x ∈ [a, b].
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Corresponding to f and h we introduce the functions F : [a, b] ×R → R
and H : [a, b]×R→ [0,+∞), respectively, as follows

F (x, t) :=

∫ t

0

f(x, ξ)dξ

and

H(x, t) :=

∫ t

0

(∫ τ

0

(p− 1)|δ|p−2

h(x, δ)
dδ

)
dτ

for all x ∈ [a, b] and t ∈ R. Also, we use the following notation:

M := sup
(x,t)∈[a,b]×R

h(x, t).

Here and in the following, let X := W 1,p
0 ([a, b]), equipped with the norm

‖u‖ :=

(∫ b

a

|u′(x)|pdx
)1/p

.

Then, X is a reflexive real Banach space. Since p > 1, X is compactly embed-
ded in C0([a, b]) and

‖u‖∞ ≤
(b− a)(p−1)/p

2
‖u‖, (3)

for all u ∈ X.
By a classical solution of problem (1), we mean a function u such that

u ∈ C1([a, b]), u′ ∈ AC([a, b]), and u(t) satisfies (1) a.e. on [a, b]. We say that
a function u ∈ X is a weak solution of the problem (1) if∫ b

a

(∫ u′(x)

0

(p− 1)|τ |p−2

h(x, τ)
dτ

)
v′(x)dx− λ

∫ b

a

f(x, u(x))v(x)dx = 0

for all v ∈ X.
The following lemma is taken from [2, Lemma 2.2].

Lemma 1 A weak solution to (1) in X coincides with a classical solution to
(1).

2 Main results

In this section we present our main results.
Throughout the sequel, α, β are two positive constants such that α+ β <

b− a. Now, put

D :=
(p− 1)p−2

p

(
α−p+1 + β−p+1

)
.

Given two nonnegative constants c, d, with

m(2c)p 6= Ddp(b− a)p−1pM,
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put

ad(c) :=

∫ b

a

max
|t|≤c

F (x, t)dx−
∫ b−β

a+α

F (x, d)dx

m(2c)p −Ddp(b− a)p−1pM
.

Theorem 2 Assume that there exist a nonnegative constant c1 and two pos-
itive constants c2, d, with

c1 <
(b− a)(p−1)/p(pD)1/p

2
d <

(m
M

)1/p
c2, (4)

such that

(A1) F (x, t) ≥ 0 for all (x, t) ∈ ([a, a+ α] ∪ [b− β, b])× [0, d];
(A2) ad(c2) < ad(c1).

Then, for each

λ ∈ 1

(b− a)p−1pmM

]
1

ad(c1)
,

1

ad(c2)

[
,

problem (1) admits at least one nontrivial classical solution ū ∈ X, such that

2m1/p

(b− a)(p−1)/pM1/p
c1 < ‖ū‖ <

2

(b− a)(p−1)/p
c2.

Proof Our aim is to apply Theorem 1 to our problem. To this end, for each
u ∈ X, let the functionals Φ, Ψ : X → R be defined by

Φ(u) :=

∫ b

a

H(x, u′(x))dx, Ψ(u) :=

∫ b

a

F (x, u(x))dx,

and put
Iλ(u) := Φ(u)− λΨ(u) ∀ u ∈ X.

Note that the weak solutions of (1) are exactly the critical points of Iλ. The
functionals Φ and Ψ satisfy the regularity assumptions of Theorem 1.

Since m ≤ h(x, t) ≤M for all (x, t) ∈ [a, b]×R, we see that

1

pM
‖u‖p ≤ Φ(u) ≤ 1

pm
‖u‖p for all u ∈ X. (5)

Now, put

r1 :=
2p

(b− a)p−1pM
cp1, r2 :=

2p

(b− a)p−1pM
cp2,

and

w(x) :=


1

αp−1
d(x− a)p−1, if a ≤ x < a+ α,

d, if a+ α ≤ x ≤ b− β,
1

βp−1
d(b− x)p−1, if b− β < x ≤ b.
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It is easy to verify that w ∈ X and, in particular, one has

‖w‖p = dp(p− 1)p−2
(
α−p+1 + β−p+1

)
= pDdp.

So, from (5), we have
Ddp

M
≤ Φ(w) ≤ Ddp

m
.

From the condition (4), we obtain r1 < Φ(w) < r2. For all u ∈ X such that
Φ(u) < r2, taking (3) into account, one has |u(x)| < c2 for all x ∈ [a, b], from
which it follows

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

∫ b

a

F (x, u(x))dx ≤
∫ b

a

max
|t|≤c2

F (x, t)dx.

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤
∫ b

a

max
|t|≤c1

F (x, t)dx.

Since 0 ≤ w(x) ≤ d for each x ∈ [a, b], the assumption (A1) ensures that

Ψ(w) ≥
∫ b−β

a+α

F (x, d)dx.

Therefore, one has

β(r1, r2) ≤
sup

u∈Φ−1(]−∞,r2[)
Ψ(u)− Ψ(w)

r2 − Φ(w)

≤ (b− a)p−1pmM

∫ b

a

max
|t|≤c2

F (x, t)dx−
∫ b−β

a+α

F (x, d)dx

m(2c2)p −Ddp(b− a)p−1pM

=
[
(b− a)p−1pmM

]
ad(c2).

On the other hand, one has

ρ2(r1, r2) ≥
Ψ(w)− sup

u∈Φ−1(]−∞,r1])
Ψ(u)

Φ(w)− r1

≥ (b− a)p−1pmM

∫ b−β

a+α

F (x, d)dx−
∫ b

a

max
|t|≤c1

F (x, t)dx

Ddp(b− a)p−1pM −m(2c1)p

=
[
(b− a)p−1pmM

]
ad(c1).

Hence, from the assumption (A2), one has β(r1, r2) < ρ2(r1, r2). Therefore,

from Theorem 1, for each λ ∈ 1
(b−a)p−1pmM

]
1

ad(c1)
, 1
ad(c2)

[
, the functional Iλ

admits at least one critical point ū such that r1 < Φ(ū) < r2, that is

2m1/p

(b− a)(p−1)/pM1/p
c1 < ‖ū‖ <

2

(b− a)(p−1)/p
c2.

So, applying Lemma 1, the conclusion is achieved.
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Now, we point out an immediate consequence of Theorem 2 by taking
c1 = 0 and c2 = c.

Theorem 3 Assume that there exist two positive constants c, d, with

(b− a)(p−1)/p(pD)1/p

2
d <

(m
M

)1/p
c,

such that the assumption (A1) in Theorem 2 holds. Furthermore, suppose that

(A3)

∫ b

a

max
|t|≤c

F (x, t)dx

m(2c)p
<

∫ b−β

a+α

F (x, d)dx

Ddp(b− a)p−1pM
.

Then, for each

λ ∈

 Ddp

m

∫ b−β

a+α

F (x, d)dx

,
(2c)p

(b− a)p−1pM

∫ b

a

max
|t|≤c

F (x, t)dx

 ,
problem (1) admits at least one nontrivial classical solution ū ∈ X, such that
|ū(x)| < c for all x ∈ [a, b].

Let γ ∈ L1([a, b]) such that γ(x) ≥ 0 a.e. x ∈ [a, b], γ 6≡ 0, and let
g : R → R be a nonnegative continuous function. Consider the following
Dirichlet boundary value problem{

−(p− 1)|u′(x)|p−2u′′(x) = λγ(x)g(u)h(x, u′), x ∈ (a, b),
u(a) = u(b) = 0.

(6)

Put G(t) :=

∫ t

0

g(ξ)dξ for all t ∈ R, and set ‖γ‖1 :=

∫ b

a

γ(x)dx.

Theorem 4 Assume that there exist two positive constants c, d, with

(b− a)(p−1)/p(pD)1/p

2
d <

(m
M

)1/p
c,

such that

(A4)
G(c)

cp
<


2pm

∫ b−β

a+α

γ(x)dx

D(b− a)p−1pM‖γ‖1

 G(d)

dp
.

Then, for each

λ ∈

 D

m

∫ b−β

a+α

γ(x)dx

dp

G(d)
,

2p

(b− a)p−1pM‖γ‖1
cp

G(c)

 ,
problem (6) admits at least one positive classical solution ū ∈ X, such that
ū(x) < c for all x ∈ [a, b].
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Proof Put f(x, ξ) := γ(x)g(ξ) for all (x, ξ) ∈ [a, b] × R. Clearly, one has
F (x, t) = γ(x)G(t) for all (x, t) ∈ [a, b]×R. Therefore, taking into account that
G is a nondecreasing function, Theorem 3 ensures the existence of a non-zero
classical solution ū. Now, it is straightforward to show that ū is nonnegative.
Hence, owing to the strong maximum principle (see, e.g., [3, Theorem 11.1]) the
classical solution ū, being non-zero, is positive and the conclusion is achieved.

3 Conclusion

In this paper, employing a very recent local minimum theorem for differentiable
functionals obtained by Bonanno [1], the existence of at least one nontrivial
solution for problem (1) is established. It is worth noticing that, usually, to
obtain the existence of one solution, asymptotic conditions both at zero and
at infinity in the nonlinear term are requested, while, here, it is assumed only
a unique algebraic condition (see (A4) in Theorem 4).
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