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Abstract

Suppose that G is a connected graph constructed from pairwise disjoint connected graphs G1, . . . ,Gt by selecting a vertex of G1, a

vertex of G2, and identifying these two vertices. Then continue in this manner inductively. The graphs G1, . . . ,Gk are the primary

subgraphs of G. Some particular cases of these graphs are important in chemistry which we consider them in this paper and study

their elliptic Sombor index.
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1 Introduction
A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds of a molecule. Suppose that

G = (V,E) is a finite, connected, simple graph. As usual the degree of a vertex v in G is denoted by dv.

The topological indices are the numerical parameters associated with the graph which are usually graph invariant. The topological

index of a graph is based on the properties of graphs such as degree, distance, number of non-incident edges and so on. From this index it

is possible to analyze the mathematical values and further investigate some physicochemical properties of a molecule. Therefore, it is also

called a molecular descriptor. The first distance based topological index, is Wiener index

W (G) = ∑
{u,v}⊆G

d(u,v) =
1
2 ∑

u,v∈V (G)

d(u,v),

with the summation runs over all pairs of vertices of G [27]. The Wiener index is one of the most used topological indices with high

correlation with many physical and chemical indices of molecular compounds [27]. The Sombor index which is a vertex-degree-based

molecular structure descriptor introduced by Gutman in [16] and is defined as

SO(G) = ∑
uv∈E(G)

√
d2

u +d2
v .

In a remarkably brief period, the Sombor index has garnered considerable attention from both mathematicians and theoretical chemists.

Redžepović [23] delved into its efficacy in prognosticating alkanes’ entropy as well as enthalpy of vaporization, utilizing statistical analyzing
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Figure 1. A graph G obtained by point-attaching from G1, . . . ,Gt .

techniques. Owing to its notably enhanced predictive capabilities, the Sombor index is adopted regarding the purpose of modeling

thermodynamic properties of organic molecular structures [19]. For more details and aspects on the Sombor index we refer the reader

to [1, 5, 6, 8, 12, 14, 15, 23, 26].

In [17] a novel geometric method is proposed for constructing vertex-degree-based molecular structure descriptors (topological indices).

The model is based on an ellipse whose focal points represent the degrees of a pair of adjacent vertices. The approach enables a geometric

interpretation of several previously known topological indices, and lead to design of a few new. The area of the ellipse induces a

vertex-degree-based topological index of remarkable simplicity, which is called elliptic Sombor index. In [17]), the elliptic Sombor index

(ESO) of G is defined as

ESO(G) = ∑
uv∈E(G)

(du +dv)
√

d2
u +d2

v .

In [10], the extremal value problem for ESO over the set of (connected) graphs with equal number of vertices has studied. Also, the elliptic

Sombor energy has investigated in [2].

Suppose that G is a connected graph constructed from pairwise disjoint connected graphs G1, . . . ,Gt as follows. Select a vertex of G1,

a vertex of G2, and identify these two vertices. Then continue in this manner inductively. Note that the graph G constructed in this way has

a tree-like structure, the Gi’s being its building stones (see Figure 1). The graphs G1, . . . ,Gk are the primary subgraphs of G. Usually say

that G is a graph (polymer graph), obtained by point-attaching from G1, . . . ,Gt and that Gi’s are the monomer units of G. A particular case

of this construction is the decomposition of a connected graph into blocks (see [9]). For more details and aspects on the polymers, we refer

the reader to [1, 11, 13]. In [1] we have studied the Sombor index of polymers.

We follow the paper [1] and since we think that the similar results for elliptic Sombor index are useful for researchers, we consider the

elliptic Sombor index of graphs from primary subgraphs. In Section 2, the elliptic Sombor index of some graphs are computed from their

monomer units. In Section 3, we apply the results of Section 2, in order to obtain the elliptic Sombor index of families of graphs that are of

importance in chemistry.

2 Results for Graph from Primary Subgraphs
In this section, we study the elliptic Sombor index of polymers (see [1]). By the definition of the elliptic Sombor index, we have the

following easy result:

Proposition 1. If G is a polymer graph with composed of monomers {Gi}k
i=1, then

ESO(G)>
k

∑
i=1

ESO(Gi).

We consider some particular cases of these graphs and study their elliptic Sombor index. As an example of point-attaching graph,

consider the graph Km and m copies of Kn. Suppose that the graph Q(m,n) is obtained by identifying each vertex of Km with a vertex of a

unique Kn. The graph Q(5,4) is shown in Figure 2. The ESO index of Q(m,n) is easy to compute.
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Figure 2. The graph Q(m,n) and Q(5,4), respectively.
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Figure 3. Link of n graphs G1,G2, . . . ,Gn

Theorem 1. For the graph Q(m,n) (see Figure 2), and n ≥ 2 we have:

ESO(Q(m,n)) = m((m+n−2)2(m−1)+(n−1)3(n−2))
√

2

+m(n−1)(m+2n−3)
√

(m+n−2)2 +(n−1)2.

Proof. There are m(m−1)
2 edges with endpoints of degree m+n−2. Also there are m(n−1) edges with endpoints of degree m+n−2 and

n−1 and there are m(n−1)( n
2 −1) edges with endpoints of degree n−1. Therefore

ESO(Q(m,n)) =
m(m−1)(2m+2n−4)

2

√
(m+n−2)2 +(m+n−2)2

+m(n−1)(m+2n−3)
√

(m+n−2)2 +(n−1)2

+m(n−1)(2n−2)(
n
2
−1)

√
(n−1)2 +(n−1)2,

and so we have the result.

To obtain more results, we need the following theorem.

Theorem 2. Suppose that G = (V,E) is a graph and e = uv ∈ E. If dw is the degree of vertex w in G, then,

ESO(G− e)< ESO(G)− |d2
u −d2

v |√
2

.

Proof. First we remove edge e and find ESO(G− e). Obviously, by adding edge e to G− e and (du + dv)
√

d2
u +d2

v to SO(G− e), the

ESO(G) is greater than ESO(G− e). Since
√

a2 +b2 ≥ |a−b|√
2

, so

ESO(G)> ESO(G− e)+(du +dv)
√

d2
u +d2

v ≥ ESO(G− e)+
(du +dv)|du −dv|√

2
,

and therefore we have the result.

In the following we study the elliptic Sombor index for links of graphs, circuits of graphs, chains of graphs, and bouquets of graphs.

Theorem 3. Suppose that G is a polymer graph with composed of monomers {Gi}k
i=1 with respect to the vertices {xi,yi}k

i=1. If G is the link

of graphs (see Figure 3), then,

ESO(G)>
k

∑
i=1

ESO(Gi)+
k−1

∑
i=1

|d2
xi+1

−d2
yi
|

√
2

.

Proof. First we remove edge y1x2 (Figure 3). By Proposition 2, we have

ESO(G)> ESO(G− y1x2)+
|d2

y1
−d2

x2
|

√
2

.
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Figure 4. Circuit of n graphs G1,G2, . . . ,Gn

If G′ is the link graph related to graphs {Gi}k
i=2 with respect to the vertices {xi,yi}k

i=2, then,

ESO(G− y1x2) = ESO(G1)+ESO(G′),

and so,

ESO(G)> ESO(G1)+ESO(G′)+
|d2

y1
−d2

x2
|

√
2

.

By continuing this process, we have the result.

Theorem 4. Let G1,G2, . . . ,Gk be a finite sequence of pairwise disjoint connected graphs and let xi ∈V (Gi). Suppose that G is the circuit

of graphs {Gi}k
i=1 with respect to the vertices {xi}k

i=1 and obtained by identifying the vertex xi of the graph Gi with the i-th vertex of the

cycle graph Ck (Figure 4). Then,

ESO(G)>
|d2

x1
−d2

xn
|

√
2

+
k

∑
i=1

ESO(Gi)+
k−1

∑
i=1

|d2
xi
−d2

xi+1
|

√
2

.

Proof. First we remove edge xnx1 (Figure 4). By Proposition 2, we have

ESO(G)> ESO(G− xnx1)+
|d2

xn
−d2

x1
|

√
2

.

Now we remove edge x1x2. So,

ESO(G)> ESO(G−{xnx1,x1x2})+
|d2

xn
−d2

x1
|

√
2

+
|d2

x2
−d2

x1
|

√
2

.

Suppose that G′ is the graph related to circuit graph with {Gi}k
i=2 with respect to the vertices {xi}k

i=2 and removing the edge xnx1. Then we

have,

ESO(G−{xnx1,x1x2}) = ESO(G1)+ESO(G′),

and therefore,

ESO(G)> ESO(G1)+ESO(G′)+
|d2

xn
−d2

x1
|

√
2

+
|d2

x2
−d2

x1
|

√
2

.

By continuing this process, we have the result.

In the following theorem we present another lower bound for the elliptic Sombor index of the circuit of graphs.

Theorem 5. Let G1,G2, . . . ,Gk be a finite sequence of pairwise disjoint connected graphs and let xi ∈V (Gi). Suppose that G is the circuit

of graphs {Gi}k
i=1 with respect to the vertices {xi}k

i=1 and obtained by identifying the vertex xi of the graph Gi with the i-th vertex of the

cycle graph Ck (Figure 4). Then,

ESO(G)≥ 8k
√

2+
k

∑
i=1

ESO(Gi).

The equality holds if and only if for every 1 ≤ i ≤ k, Gi = K1.
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Figure 5. Chain of n graphs G1,G2, . . . ,Gn

Proof. Let di be the degree of the vertex xi before creating G. Since d(xi) = di +2, we have:

ESO(G) = (dk +2+d1 +2)
√

(dk +2)2 +(d1 +2)2

+
k−1

∑
i=1

(di +2+di+1 +2)
√

(di +2)2 +(di+1 +2)2

+
k

∑
i=1

(
∑

uv∈E(Gi−xi)

(du +dv)
√

d2
u +d2

v + ∑
xi∼u∈Gi

(di +2+du)
√

(di +2)2 +d2
u
)

≥ 4
√

4+4+
k−1

∑
i=1

4
√

4+4

+
k

∑
i=1

(
∑

uv∈E(Gi−xi)

(du +dv)
√

d2
u +d2

v + ∑
xi∼u∈Gi

(di +2+du)
√

(di +2)2 +d2
u
)

= 8k
√

2+
k

∑
i=1

SO(Gi).

If Gi has at least one edge then the equality does not hold and so we have the result.

Theorem 6. Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs and let xi,yi ∈V (Gi). Suppose that C(G1, . . . ,Gn)

is the chain of graphs {Gi}n
i=1 with respect to the vertices {xi,yi}k

i=1 which obtained by identifying the vertex yi with the vertex xi+1 for

i = 1,2, . . . ,n−1 (Figure 5). Then,

(i)

ESO(C(G1, . . . ,Gn))> ESO(C(G1, . . . ,Gn−1)+ESO(Gn − yn−1)+ ∑
u∼yn−1

u∈V (Gn)

|d2
u −d2

yn−1
|

√
2

.

(ii)

ESO(C(G1, . . . ,Gn))> ESO(C(G1))+
n

∑
i=2

ESO(Gi − yi−1)+
n−1

∑
i=1

∑
u∼yi

u∈V (Gi+1)

|d2
u −d2

yi
|

√
2

.

Proof. (i) Consider C(G1, . . . ,Gn) in Figure 5. Using inductively Theorem 2 for all edges in Gn which one of the their end vertices is

yn−1 we have the result.

(ii) It follows by induction and Part (i).

Similar to the Theorem 6 we have:

Theorem 7. Let G1,G2, . . . ,Gn be a finite sequence of pairwise disjoint connected graphs and let xi ∈ V (Gi). Let B(G1, . . . ,Gn) be the

bouquet of graphs {Gi}n
i=1 with respect to the vertices {xi}n

i=1 and obtained by identifying the vertex xi of the graph Gi with x (see Figure

6). Then,

ESO(B(G1, . . . ,Gn))> ESO(G1)+
n

∑
i=2

ESO(Gi − xi)+
n−1

∑
i=1

∑
u∼xi+1

u∈V (Gi+1)

|d2
u −d2

xi+1
|

√
2

.

3 Chemical Applications
In this section, using results of Section 2 to obtain the elliptic Sombor index of families of graphs that are of importance in chemistry.
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3.1 Spiro-Chains

Spiro-chains are defined in [7]. Using the concept of chain of graphs, a spiro-chain can be defined as a chain of cycles. We denote by Sq,h,k

the chain of k cycles Cq in which the distance between two consecutive contact vertices is h (see S6,2,8 in Figure 7).

Theorem 8. ESO index of the graph Sq,h,k, for h ≥ 2 is:

ESO(Sq,h,k) = (8qk−32k+32)
√

2+(24k−24)
√

5.

Proof. There are 4(k− 1) edges with endpoints of degree 2 and 4. Also there are qk− 4(k− 1) edges with endpoints of degree 2. So, we

have the result.

Theorem 9. The ESO index of the graph Sq,1,k is:

ESO(Sq,1,k) = (8qk+8k−48)
√

2+48k
√

5.

Proof. There are k−2 edges with endpoints of degree 4. Also there are 2k edges with endpoints of degree 4 and 2, and there are qk−3k+2

edges with endpoints of degree 2. Therefore we have the result.

Cactus graphs were first known as Husimi tree, are a class of simple linear polymers. They appeared in the scientific literature some

sixty years ago in papers by Husimi and Riddell [18, 20, 24]. For some aspects of parameters of cactus graphs, refer to [4, 22, 25] .

As an immediate result of Theorems 8 and 9 we have the following results for cactus chains:

Corollary 1. (i) If Tn is the chain triangular graph (see Figure 8) of order n, then for every n ≥ 2, ESO(Tn) = (32n−48)
√

2+32n
√

5.

(ii) If Qn is the para-chain square cactus graph (see Figure 8) of order n, then for every n ≥ 2, ESO(Qn) = 32
√

2+(48n−48)
√

5.

(iii) If On is the para-chain square cactus (see Figure 9) graph of order n, then for every n ≥ 2, ESO(On) = (40n−48)
√

2+24n
√

5.

(iv) If Oh
n is the Ortho-chain graph (see Figure 9) of order n, then for every n ≥ 2, ESO(Oh

n) = (56n−48)
√

2+24n
√

5.

(v) If Ln is the para-chain hexagonal cactus graph (see Figure 10) of order n, then for every n ≥ 2, ESO(Ln) = (16n+32)
√

2+(48n−
48)

√
5.



Elliptic Sombor Index of Graphs From Primary Subgraphs 105 of 109

b b b b

b

bb

b

b

b

b

b

b

b b b b

b

bb

b

b

b

b

b

b

b b b b

Figure 8. Chain triangular cactus Tn and para-chain square cactus Qn

b b

b b b b b

b b

b b

bb

b

b b

b

b b

bb b b

b

b

b b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

bb b

Figure 9. Para-chain square cactus On and ortho-chain graph Oh
n

(vi) If Mn is the Meta-chain hexagonal cactus graph (see Figure 10) of order n, then for every n ≥ 2, ESO(Mn) = (16n+32)
√

2+(48n−
48)

√
5.

3.2 Polyphenylenes

Similar to the definition of the spiro-chain Sq,h,k, we can define the graph Lq,h,k as the link of k cycles Cq in which the distance between the

two contact vertices in the same cycle is h (see L6,2,4 in Figure 11).

Theorem 10. The ESO index of the graph Lq,h,k, for h ≥ 2 is:

ESO(Lq,h,k) = (8qk−14k+14)
√

2+(20k−20)
√

13.

Proof. There are k− 1 edges with endpoints of degree 3. Also there are 4(k− 1) edges with endpoints of degree 3 and 2, and there are

qk−4(k−1) edges with endpoints of degree 2. Therefore we have the result.

Theorem 11. The ESO index of the graph Lq,1,k is:

ESO(Lq,1,k) = (8qk+12k−38)
√

2+10k
√

13.

Proof. There are 2k−3 edges with endpoints of degree 3. Also there are 2k edges with endpoints of degree 3 and 2, and there are qk−3k+2

edges with endpoints of degree 2. Therefore we have the result.

3.3 Triangulanes

We want to obtain the elliptic Sombor index of the triangulane Tk defined pictorially in [21]. The triangulane Tk is defined recursively in

a manner that is useful in our approach. First define recursively an auxiliary family of triangulanes Gk (k ≥ 1). Let G1 be a triangle and

denote one of its vertices by y1. Define Gk (k ≥ 2) as the circuit of the graphs Gk−1,Gk−1, and K1 and denote by yk the vertex where K1 has

been placed. The graphs G1,G2 and G3 are shown in Figure 12.
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Figure 14. Graphs F and G1, respectively.

Figure 15. Graphs G2 and G3, respectively.

Theorem 12. The ESO index of the graph Tk (see T3 in Figure 13) is:

ESO(Tk) =
(
288(2k−1 −1)+24(2k−1)+96

)√
2+36(2k)

√
5.

Proof. By recursive structure of the graph Tk, observe that there are 3+3∑k−2
n=0 3(2n) edges with endpoints of degree 4. Also there are 3(2k)

edges with endpoints of degree 4 and 2, and there are 3(2k−1) edges with endpoints of degree 2. Therefore

ESO(Tk) = (3+9
k−2

∑
n=0

2n)(8)
√

16+16+3(2k)(6)
√

16+4+3(2k−1)(4)
√

4+4,

and so we have the result.

3.4 Nanostar Dendrimers

In this subsection, we want to compute the elliptic Sombor index of the nanostar dendrimer Dk defined in [3]. In order to define Dk, we

follow [9]. First we define recursively an auxiliary family of rooted dendrimers Gk (k ≥ 1). We need a fixed graph F defined in Figure 14,

we consider one of its endpoint to be the root of F .

The graph G1 is defined in Figure 14, the leaf being its root. Now we define Gk (k ≥ 2) the bouquet of the following three graphs:

Gk−1,Gk−1, and F with respect to their roots; the root of Gk is taken to be its unique leaf (see G2 and G3 in Figure 15). Finally, we define

Dk (k ≥ 1) as the bouquet of three copies of Gk with respect to their roots (D2 is shown in Figure 16, where the circles represent hexagons).

Theorem 13. The ESO index of the dendrimer D3[n] (see D3[2] in Figure 16) is:

ESO(D3[n]) = (468×2n +204)
√

2+(90×2n +30)
√

13.

Proof. There are 3+ 9
n−1

∑
k=0

2k edges with endpoints of degree 3. Also there are 6+ 18
n−1

∑
k=0

2k edges with endpoints of degree 3 and 2, and

there are 12+18
n−1

∑
k=0

2k edges with endpoints of degree 2. Therefore

ESO(D3[n]) = (3+9
n−1

∑
k=0

2k)(6)
√

9+9+(6+18
n−1

∑
k=0

2k)(5)
√

9+4
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+(12+18
n−1

∑
k=0

2k)(4)
√

4+4,

and we have the result.
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