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Abstract

In this research paper, a numerical method for one- and two- dimensional heat equation with nonlinear diffusion conductivity and

source terms is proposed. In this work, the numerical technique is based on the polynomial differential quadrature method for

discretization of the spatial domain. The resulting nonlinear system time depending ordinary differential equations is discretize by

using the second order Runge-Kutta methods. The Chebyshev-Gauss-Lobatto points in this paper are used for collocation points in

spatial discretization. We study accuracy in terms of L∞ error norm and maximum absolute error along time levels. Finally, several

test examples demonstrate the accuracy and efficiency of the proposed schemes. It is shown that the numerical schemes give better

solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear diffusion equations.
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1 Introduction
Heat and mass transfer are useful models used to describe heat and mass distribution in various systems. These equations are important in

engineering and scientific fields such as thermodynamics, fluid mechanics, heat transfer, evaporation, oxygenation, geothermal reservoirs

and thermal energy storage.

There are many technical aspects for heat transfer process. The study of heat transfer has attracted much attention. Many publications

contain solutions to heat transfer problems can be found in [1]– [17]. In the real world, the problem domain is complex and there is no simple

analytical solution for the differential equations arising from the heat transfer process. Some examples of differential equation include the

heat transfer equation are diffusion equation for heat transfer analysis, Navier-Stokes equation for fluid dynamics analysis, and the bio-heat

transfer equation. Heat transfer processes are often modeled as nonlinear differential equations. In fact, the nonlinear differential equation

that governs the temperature field of the system usually occurs when residual energy is supplied to the system. Temperature-dependent

characteristics, modeling the temperature dependence of a convective heat transfer coefficient, and other natural process are examples of

situations in which nonlinear differential equations arise. Nonlinear differential equations are solved numerically because they do not have

closed-form analytical solutions. Verification of numerical solutions is necessary for best practices. The result of mathematical modeling
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of heat transfer phenomena is often nonlinear differential equations that can be solved using semi-analytical and numerical techniques.

An exact analytical solution to the problem of convective fin is given in [1]. In [2] the Adomian decomposition method (ADM) for the

analysis of a convective fin with temperature dependence is investigated. The differential transformation method (DTM) is used to solve a

similar problem in [3]. In [4], the nonlinear equation describing the temperature distribution is solved using the homotopy analysis method

(HAM). Another numerical technique for solving nonlinear differential problems that arise during the heat transfer process is the Green

function approach [6]. There are many numerical methods such as, finite element method [7, 8], finite difference method [9, 10], finite

volume method [11, 12], lattice Boltzmann method [13, 14], and other numerical methods for solving highly nonlinear problems in heat

and mass transfer. The differential quadrature (DQ) technique as a numerical approach is employed to solve initial and boundary problems

numerically. It was initially developed in the early 1970s by the late Richard Bellman and his colleagues, and it has since been effectively

applied to a wide range of engineering and physical scientific challenges. The differential quadrature method (DQM) has been developed

and is derived from the interpolation function [18]- [20].

Many researchers have suggested that the differential quadrature method is an accurate technique requires less computational effort.

The proposed method has been applied in various computational mechanic’s contexts [21]- [27]. Differential quadrature has proven to be

an effective technique that replaces the traditional method for solving initial and boundary problems. The method of differential quadrature

is based on approximating the derivatives of a function at a sample point as a weighted linear summation of functional values at all sample

points in the overall domain of that variable. Using this approximation, the differential equation is then converted into an algebraic equations

system. The differential quadrature weighted coefficients can be obtained using different techniques. To overcome the numerically poor

conditions in determining the weighted coefficients, the Lagrangian interpolation polynomial is introduced [28]- [31].

Motivated by the above research, the objective of this study is to investigate the nonlinear heat transfer equation with combined effect

of nonlinear heat capacity, thermal conductivity, and source terms, along with initial and boundary conditions in an arbitrary domain in

one and two dimensional cases. The governing equation for transfer process is formulated with the help of nonlinear partial differential

equations, which are further transformed into a system of time dependent ordinary differential equations using proposed numerical approach.

Numerical solutions have been obtained with the help of differential quadrature method and Chebyshev-Gauss- Lobatto collocation points.

Numerical simulations of some test problems are presented and discussed.

This structure of the paper is organized as follows; after the introduction in Section 1. Section 2 describes the mathematical formulation

of the problem. Section 3 is devoted to introduce the differential quadrature technique for the numerical solution methodology for governing

differential equation. In Section 4, the time discretization of the problem for resulting time dependent system of ordinary differential

equation with the help of second order Runge–Kutta method (RKM) is introduced. Section 5, illustrates the applying the proposed numerical

approach for some test problems and analysis of the results and considering the efficiency of the algorithm and finally, Section 6 is devoted

to conclusions.

2 Problem Formulation
In this work, the transient heat conduction equation can be described by the following governing equation in dimensionless form is

considered

C (u)
∂u
∂ t

= ∇.(K (u)∇u)+F (u) , X∈D t ∈ (0,T ), (1)

which can be written in the form

C (u)
∂u
∂ t

= K (u)∇2u+
∂K
∂u

(∇u.∇u)+F (u) .

Without loss of generality and for simplicity, the governing equation (1) can be rewritten in the following simple form, and therefore the

following equation is considered
∂u
∂ t

= K (u)∇2u+
∂K
∂u

(∇u.∇u)+F (u) , (2)

with the following initial condition

u(X,0) = f (X) , X ∈ D, (3)

and the following Dirichlet or Neumann boundary conditions

u(X, t) =p(X, t), X ∈ ∂D1, (4)
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or
∂u
∂n

(X, t) = q(X, t), X ∈ ∂D2, (5)

where ∂D = ∂D1∪∂D2 is the boundary of the region D ⊆ Rn(n = 1,2). In this problem u(X, t) is the temperature at time t in the space

vector X. C (u), K (u), and F(u) are the heat capacity, thermal conductivity and source terms, respectively. In this work, the space vector

X is assumed to X=x in one dimensional case and X = (x,y) in two dimensional case. f , p, and q are known functions of space and time.

The aim of this research is to solve the direct nonlinear heat conduction problem to obtain temperature distribution of u(X, t) at every point

(X, t). The operator ∇u denote the gradient of u and ∇2u the Laplacian operator of u.

3 Differential Quadrature Method for Space Discretization
The discretization technique is necessary to obtain an appropriate solution of a proposed mathematical problem considered in this paper.

Therefore, two main steps of the numerical approach were presented in this work are as follow: In the first step, the space variable is

discretized by using the differential quadrature method and, in this way, the original problem is transformed into a system of ordinary

differential equations. In the second step, time dependent system of ordinary differential equations is solved by using the RKM.

3.1 One-Dimensional Approximation

For the single variables function u(x), the first and second order derivatives of u at a point xi are approximated by

u(xi) =
d f
dx

∣∣∣
x=xi

=
N

∑
j=1

ai ju
(
x j
)
, i = 1,2, . . . ,N, (6)

u′ (xi) =
d f
dx

∣∣∣
x=xi

=
N

∑
j=1

bi ju
(
x j
)
, i = 1,2, . . . ,N, (7)

u′′ (xi) =
d f
dx

∣∣∣
x=xi

=
N

∑
j=1

ci ju
(
x j
)
, i = 1,2, . . . ,N, (8)

where ai j , bi j , and ci j are the weighting coefficients and N is the number of grid points in the whole domain. It should be noted that the

weighting coefficients vary depending on the location of xi since they depend on coordinates of the points. The important procedure in

DQ approximation is to determine the weighting coefficients ai j, bi j , and ci j efficiently. When the function u(x) is approximated by a high

order polynomial, one needs some explicit formulations to compute the weighting coefficients within the scope of a high order polynomial

approximation and a linear vector space. Here, for generality, two sets of base polynomials are used to determine the weighting coefficients

[31]. In this paper, set of base polynomials is chosen as the Lagrange interpolated polynomials. Define

rk (x) =
M(x)

(x− xk)M(1)(x)
, k = 1,2, . . . ,N,

where

M (x) = (x− x1)(x− x2) . . .(x− xN) ,

and

M(1) (xk) =
N

∏
j=1, j≠k

(xk − x j).

So, the coefficients bi j and ci j in the first and second order derivatives of u(x) at the point xi become

r′k (xi) = bik, r′′k (xi) = cik.

We finally obtain the coefficients bi j and ci j after some computations as follows [31]:

bi j =
M(1)(xi)

(xi − x j)M(1)(x j)
, i ̸= j, i, j = 1,2, . . . ,N, (9)
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ci j = 2bi j(bii − 1
xi − x j

), i ̸= j, i, j = 1,2, . . . ,N, (10)

bii =−
N

∑
j=1,i ̸= j

bi j, (11)

cii =−
N

∑
j=1,i ̸= j

ci j. (12)

3.2 Two Dimensional Approximations

In previous subsection DQM was introduced for one-dimensional case. In two-dimensional case the polynomial differential quadrature

(PDQ) is applied for the discretization of space derivatives of the unknown u(x,y, t) [31].

The first space derivatives of u with respect to x and y respectively, can be defined as follows:

∂u
∂x

(x,y, t)
∣∣∣
(x=xi,y=y j)

=
N

∑
k=1

wik
(1)uk j, (13)

∂u
∂y

(x,y, t)
∣∣∣
(x=xi,y=y j)

=
M

∑
k=1

w jk
(1)uik, (14)

∂ 2u
∂x2 (x,y, t)

∣∣∣
(x=xi,y=y j)

=
N

∑
k=1

wik
(2)uk j (15)

∂ 2u
∂y2 (x,y, t)

∣∣∣
(x=xi,y=y j)

=
M

∑
k=1

w jk
(2)uik, (16)

where N and M are the number of grid points in the x and y directions, respectively, and i = 1,2, . . . ,N and j = 1,2, . . . ,M.

wik
(1) and wik

(2) are the DQ weighting coefficients of the first and second derivative of u with respect to x and in a similar manner w jk
(1)and

w jk
(2) are defined in the y direction. Those coefficients are computed analogous to the coefficients bi j and ci j given in equations (9)-(12)

for one dimensional case as follows:

wik
(1) =

M(1)(xi)

(xi − xk)M(1)(xk)
, i ̸= k, (17)

w jk
(1) =

M(1)(y j)

(y j − yk)M(1)(yk)
, j ̸= k, (18)

wik
(2) = 2wik

(1)(wii
(1)− 1

xi − xk
), i ̸= k, i,k = 1,2, . . . ,N, (19)

w jk
(2) = 2w jk

(1)(w j j
(1)− 1

y j − yk
), j ̸= k, j,k = 1,2, . . . ,M, (20)

wii
(1) =−

N

∑
j=1,i̸= j

wi j
(1),wii

(2) =−
N

∑
j=1,i̸= j

wi j
(2), i = 1,2, . . . ,N, (21)

w j j
(1) =−

M

∑
i=1,i ̸= j

w ji
(1),w j j

(2) =−
M

∑
i=1,i ̸= j

w ji
(2), j = 1,2, . . . ,M. (22)

3.3 Discretization of the Governing Equation

In previous subsections DQ algorithm was introduced for discretization of space coordinates. The governing equation (2) in one and two

dimensions, at interior grids of region D can be discretized by using the DQ method as follows:

For one dimensional case, based on the equations (13) and (15) at interior point xi, i = 2,3, . . . ,N −1 of domain D, we have

C (u(xi, t))
∂u
∂ t

(xi, t) = K (u(xi, t))∇2u(xi, t)+
∂K
∂u

(xi, t)(∇u(xi, t).∇u(xi, t))

+F(u(xi, t)),

C (u(xi, t))
∂u
∂ t

(xi, t) = K (u(xi, t))
∂ 2u
∂x2 (xi, t)+

∂K
∂u

(xi, t)
(

∂u
∂x

(xi, t)
)2
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+F(u(xi, t)),

C (u(xi, t))
∂u
∂ t

(xi, t) = K (u(xi, t))
N−1

∑
k=2

wik
(2)u(xk, t)

∂K
∂u

(xi, t)
(N−1

∑
k=2

wik
(1)u(xk, t)

)2
+F(u(xi, t)).

By setting

ui = u(xi, t) ,
∂u
∂ t

∣∣∣∣
xi

=
∂u
∂ t

(xi, t),
∂K
∂u

∣∣∣∣
xi

=
∂K
∂u

(u(xi, t)),

C(ui) =C (u(xi, t)), K(ui) = K (u(xi, t)) , F(ui) =F(u(xi, t)),

we obtain

C (ui)
∂u
∂ t

∣∣∣∣
xi

= K (ui)
N−1

∑
k=2

wik
(2)uk+

∂K
∂u

∣∣∣∣
xi

(
N−1

∑
k=2

wik
(1) uk

)2

+F (ui), (23)

where i = 2,3, . . . ,N−1. In a similar manner, for two dimensional case at interior points (xi,y j) for i = 2,3, . . . ,N−1 and j = 2,3 . . . ,M−1

in domain D, the governing equation (2) is discretized based on DQ method as follows:

C
(
u(xi,y j, t

)
)

∂u
∂ t

(xi,y j, t) = K
(
u
(
xi,y j, t

))
∇2u(xi,y j, t)

+
∂K
∂u

(
xi,y j, t

)(
∇u(xi,y j, t).∇u(xi,y j, t

)
)

+F(u(xi,y j, t)),

C
(
u(xi,y j, t

)
)

∂u
∂ t

(xi,y j, t) = K
(
u
(
xi,y j, t

)){∂ 2u
∂x2 (xi,y j, t)+

∂ 2u
∂y2 (xi,y j, t)

}
+

∂K
∂u

(
xi,y j, t

){(∂u
∂x

(xi,y j, t)
)2

+

(
∂u
∂y

(xi,y j, t)
)2
}

+F(u(xi,y j, t)),

and finally we obtain

C(ui j)
∂u
∂ t

∣∣∣∣
(xi,y j)

=K(ui j)

{
N−1

∑
k=2

wik
(2)uk j+

M−1

∑
k=2

w jk
(2)uik

}

+
∂K
∂u

∣∣∣
(xi,y j)

{(
N−1

∑
k=2

wik
(1) uk j

)2

+

(
M−1

∑
k=2

w jk
(1)uik

)2}
+F(ui j), (24)

where i = 2,3, . . . ,N −1 and j = 2,3, . . . ,M−1.

3.4 Implementation of Boundary Conditions

The insertion of Dirichlet type boundary conditions is straightforward since the solution is already known on the boundary. If the boundary

condition is Neumann type boundary condition that involves normal derivatives of the unknown function u then these derivatives can also

be approximated by DQM.

The normal derivative of u can be written as

∂u
∂n

=
∂u
∂x

∂x
∂n

+
∂u
∂y

∂y
∂n

,

∂u
∂n

=
∂u
∂x

xn +
∂u
∂y

yn,
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and ∂u
∂x and ∂u

∂y are discretized by using PDQ method.

∂ui j

∂x
=

N

∑
k=1

wik
(1) uk j, i = 1,N, j = 1,2, . . . ,M,

∂ui j

∂y
=

N

∑
k=1

w jk
(1) uik, j = 1,M, i = 1,2, . . . ,N,

and so

∂u
∂n

∣∣∣∣
(xi,y j ,t)

=
∂u
∂x

∣∣∣
(xi,y j ,t)

xn +
∂u
∂y

∣∣∣
(xi,y j ,t)

yn

=
( N

∑
k=1

wik
(1) uk j

)
xn +

( N

∑
k=1

w jk
(1) uik

)
yn.

Thus, equations found by discretizing the normal derivatives of u on the boundary are updated using interior u values which are not known

yet. This problem is handled during the iterations performed in the Runge-Kutta method since the initial u values are given.

3.5 Matrix Representation of Discretized Governing Equation

3.5.1 Matrix Representation for One-Dimensional Case

The equation (23) is a set of DQ algebraic equations which can be written in a matrix form

U̇ = KAXXU +K[AXU ]2 +F ,

where U = [u2,u3, . . . ,uN−1]
T is (N −2)×1 vector for temperature u at grid points xi, U̇ denotes the (N −2)×1 vector for time derivative

of temperature u ( ∂u
∂ t ) at grid points xi, K denotes a diagonal matrix of size (N − 2)× (N − 2) whose diagonal elements are the thermal

conductivity K (ui), for i = 2,3, . . . ,N − 1, K is a diagonal matrix of size (N − 2)× (N − 2) whose diagonal elements are the thermal

conductivity derivatives with respect to u at nodal points in the domain, F = [ F (u2) , F (u3) , . . .,F (uN−1)]
T is (N −2)×1 vector contains

the information of the source term at grid points of domain. AXX = (wi j
(2))(N−2)×(N−2) and AX = (wi j

(1))(N−2)×(N−2) are the matrices of

size (N−2)×(N−2) whose elements are the second and first order weighting coefficients respectively, which are defined in equations (17),

(19), and (21).

3.5.2 Matrix Representation for Two-Dimensional Case

The equation (24) is a set of DQ algebraic equations which can be written in a matrix form

U̇ = K ⊙
[
AXXU +UAYY

T
]
+K ⊙

[
AXU +UAY

T
]2

+F ,

where U=
(
ui j
)

and U̇ =
(

∂ui j
∂ t

)
denote the (N−2)×(M−2) matrices for temperature u and its time partial derivative ∂u

∂ t at grid points (xi,y j)

for i = 2,3, . . . ,N−1 and j = 2,3, . . . ,M−1. K =
(
K
(
ui j
))

, K =
(
Ku
(
ui j
))

and F =
(
F
(
ui j
))

represent matrices of size (N−2)×(M−2)

whose elements are the values of thermal conductivity, its derivative to with respect to u and the values of source terms at nodal point (xi,y j).

AXX = (wi j
(2))(N−2)×(N−2) and AX = (wi j

(1))(N−2)×(N−2) are the matrices of size (N − 2)× (N − 2) whose elements are the second and

first order weighting coefficients is x-direction and AYY = (w jk
(2))

(M−2)×(M−2) and AY = (w jk
(1))

(M−2)×(M−2) are the matrices of size

(M − 2)× (M − 2) whose elements are the second and first order weighting coefficients is y-direction. The symbol ⊙ is the Hadamard

product operator which is defined for two matrices A and B of the same dimension m×n and is denoted by A⊙B.

4 Time Discretization
The second order RKM is applied to solve the resulting nonlinear system of time dependent ordinary differential equations obtained by the

DQM discretization of the space derivatives. The proposed method uses the n- time level values to find the solution at (n+ 1)-time level.

By considering the matrix representation in one-dimensional case as follows:

U̇ = KAXXU +K[AXU ]2 +F .
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By rewritten the matrix representation in the sample initial value problem U̇ = f (t,{U}). So,

f (t,{U}) = KAXXU +K[AXU ]2 +F .

Thus, the second order RKM gives for the governing nonlinear heat equation the following vector equation{
Un+1

}
= {Un}+ ∆t

2
[{K1}+{K2}] ,

where

{K1}= f (tn,{Un}),

{K2}= f (tn +∆t,{Un+∆tK1}),

where tn denotes the n-time level and ∆t is the time incerement. By using the t0 = 0 time level as the initial condition of problem, the next

time levels can be computed. The same approach can be applied in two-dimensional case.

4.1 Choice of Grid Points

Since the weighting coefficients (17)-(22) corresponding to the discretization of the first and second order derivatives in x and y directions

respectively, contain grid points xi, y j’s, the choice of these grid points becomes quite important. Equally spaced grid points, due to their

obvious convenience, have been in use by most investigators. However, unequally spaced grid points especially the zeros of orthogonal

polynomials like Legendre and Chebyshev polynomials usually give more accurate solutions than the equally spaced grid points.

The so-called Chebyshev-Gauss-Lobatto point distribution offer a better choice and have been found consistently better than the equally

spaced, Legendre and Chebyshev points in a variety of problems. For one- dimensional case these grid points on the interval [a,b] are given

as follows:

xi =
a+b

2
− a−b

2
cos

(i−1)π
N −1

, i = 1,2, . . . ,N.

For the domain [0,a]× [0,b] in two-dimensional case, Chebyshev-Gauss-Lobatto point are defined as follows in the x and y direction,

respectively.

xi =
1
2

[
1− cos

(
i−1
N −1

)
π
]

a, i = 1,2, . . . ,N,

y j =
1
2

[
1− cos

(
j−1

N −1

)
π
]

b, j = 1,2, . . . ,M.

5 Numerical Simulations
In this section, we will give some numerical examples to illustrate the effectiveness of the proposed algorithm given in the previous sections.

We also use the infinity-norm of absolute error u(x, t), to measure the accuracy as follows at the nth time step for one and two dimensional

cases, respectively

L∞ =
∥∥uExact −uApprox

∥∥
∞ = max

1≤i≤N

∣∣uExact(xi, tn)−uApprox(xi, tn)
∣∣ ,

L∞ =
∥∥uExact −uApprox

∥∥
∞ = max

1≤i≤N
1≤ j≤M

∣∣uExact(xi,y j, tn)−uApprox(xi,y j, tn)
∣∣ ,

where uExact and uApprox denote the exact and approximate solutions, respectively.

Example 1. In order to show the ability of the numerical method based on the strategy proposed in this work, the problem (1)-(5) in the

interval [−1,1] is considered with the following input data

C (u) = 1, K (u) = 1, F (u) = 1−u,

with the initial condition

u(x,0) = 0,
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and Dirichlet boundary conditions

u(−1, t) = 0, u(1, t) = 0.

The exact solution for this problem is as follows

u(x, t) = 1− coshx
cosh1

− 16
π2

∞

∑
n=1

(−1)n cos((2n−1) π
2 x)

(2n−1) [(2n−1)2π2 +4]
e
−
(

1+(2n−1)2 π2
4

)
t
.

In our computations, several step times are checked for the time interval discretization but finally, for this problem the time increment is

chosen with ∆t = 0.0001. The simulation are performed with different number of grid points N in x-direction. The obtained results in terms

of the maximum absolute errors at time level t = 1 are reported in Table 1. The agreement between the numerical solution and the exact

solution can be seen at different number of grid point in x-direction.

Table 1. The maximum absolute errors for Example 1 with ∆t = 0.0001, t = 1, and different values of N.

N 30 44 50 100 1000

L∞ 8.8330e−5 4.1075e−5 3.1810e−5 7.9538e−6 7.7977e−8

Example 2. In this example, we consider the problem (1) - (5) in the interval [100,200], with input data

C (u) = 1, K (u) = lnu, F (u) = 0,

with the initial condition

u(x,0) = e−
√

2x,

and Neumann boundary conditions

ux (100, t) =− 100√
200+2t

e(−
√

2x+2t),

ux (200, t) =− 200√
400+2t

e(−
√

2x+2t).

This problem has the following exact solution

u(x, t) = e(−
√

2x+2t).

Similarly to previous example, the number of nodal point is x-direction is taken N = 5 for simplicity of computations and the time step for

discretization of time interval is selected ∆t = 0.01. In Table 2, The maximum absolute errors at several time levels is reported. The good

agreement between the numerical solution and exact solution can be seen.

Table 2. The maximum absolute errors for Example 2 with ∆t = 0.01, and different time levels.

t 0.01 0.1 0.5 1.0 2.0

1.000e−06 1.000e−06 9.000e−07 7.1000e−07 6.2000e−07

Example 3. In this example the nonlinear heat problem (1)-(5) is considered in two dimensional case in domain D× (0,T ) where

D = {(x,y) | 0 < x < 1, 0 < y < 1} ,

with the following data

C (u) = 1, K (u) = 1, F (u) = u(1−u2).

The initial conditions and Dirichlet boundary conditions are taken by appropriate with the analytical solution

u(x,y, t) =
1
2

tanh
(

1
4

x+
1
4

y+
3
4

t
)
+

1
2
.
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Numerical computations have been performed using the uniform grid in x and y directions and the number of nodal point is x and y direction

are taken Nx = Ny = 80. In Table 3, The L∞ error for different time increment for this example is reported. We can define the convergence

order for the time accuracy for two time step k1 and k2 as follows:

Order =
log( L∞(k1)

L∞(k2)
)

log( k1
k2
)

.

In Table 3, the convergence order for time variable is listed. We can see that the time accuracy of the method for this example is second

order, which is consistent with the theoretical results of RKM.

Table 3. The L∞ error and convergence order with N = 80 and T = 1 for different time increment.

k = ∆t 1
10

1
20

1
40

1
80

L∞ 1.7227e−06 4.3479e−07 1.0865e−07 2.7163e−08

Order —— 2.0488 2.0133 2.0034

From obtained results for these examples, it can be seen that good accuracy for one and two dimensional cases between exact and

numerical solution can be obtained with small number of grid points in space discretization and low computational cost.

6 Conclusions
In this paper, a combination of the DQM method and the RKM are used to solved numerically the heat equations in one- and two-

dimensional cases. Heat equations generally are not easy to solve due to nonlinearity form. To solve the problem considered in this

paper, DQM is used to discretize spatial derivatives as a method that provides a small number of grid points and easy to implemented

with other discretization methods in the domain. With the DQM discretization, the resulting nonlinear system of time dependent ordinary

differential equations is solved using the second order RKM. The main idea of this research is to present a coupling method of DQM-

space discretization and RKM-time discretization for solving nonlinear heat transfer problem. Unlike the DQM space-time discretization

approach, which requires more than one grid point for each time subdomain, leading to a nonlinear system of high- dimensional equations,

in the proposed method, the RKM can improve the solution in the time direction by successively solving the system of equations, for each

time level, respectively.
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