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Abstract

A group G is called n-capable if for a suitable group H we have G ∼= H/Zn(H). In this article, we impose some conditions to an

n-capable group G and find a group H with the mentioned condition such that G ∼= H/Zn(H).
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1 Introduction
In 1938, Baer [1] initiated a systematic investigation of the question when a group G can be isomorphic to the group of inner automorphisms

of some group H. Also, in Philip Hall’s 1940 paper [4], it is shown the way towards the classification of groups of prime power order. Here

is what Hall himself had to say about it:

"The question of what conditions a group G must fulfill in order that it may be the central quotient group of another group H,

G ∼=
H

Z(H)

is an interesting one. But while it is easy to write down a number of necessary conditions it is not so easy to be sure that they are sufficient."

Calling a group which is a central factor group a capable group occurred much later and is due to M. Hall and Senior [5]. Of course

there are groups that are not capable (non-trivial cyclic groups for example), and so the condition that a group is capable imposes certain

restrictions on its structure. The notion of capable groups is already studied by many authors (see for instance [2, 3, 8]). A group G is said

to be n-capable if there is a group H such that G ∼= H/Zn(H). In the present paper, we impose some properties to n-capable group G and

we find a group H with these properties such that G ∼= H/Zn(H).
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2 Main Results
Let G and H be two groups. Then an n-isoclinism (n≥ 1) between G and H is a pair of isomorphisms (α,β ) with α : G/Zn(G)−→H/Zn(H)

and β : γn+1(G)−→ γn+1(H) such that the following diagram commutes:

G/Zn(G)×·· ·×G/Zn(G) //

αn+1

��

γn+1(G)

β
��

H/Zn(H)×·· ·×H/Zn(H) // γn+1(H)

where horizontal maps are defined by (x̄1, x̄2, . . . , x̄n+1) 7−→ [[x1,x2], . . . ,xn+1] such that x̄i = xiZn(G) and x̄i = xiZn(H) in the top and bottom

horizontal maps, respectively (see [6] for more details). If there exists such an n-isoclinism, we say that G is n-isoclinic to H.

Lemma 1. ( [6, Theorem 7.7]) Let G be a group. The following properties are equivalent.

(a) G is n-isoclinic to a finite group.

(a) G/Zn(G) is finite.

(a) G is n-isoclinic to a finite section of itself.

Lemma 2. ( [7]) Let G be a finite capable group. Then there is a finite group H such that G ∼= H/Z(H).

The following proposition generalizes the above result which is one of the main lemmas of [7]. The notion of n-isoclinism helped us to

provide a shorter proof than that presented in [7].

Proposition 1. Let G be an n-capable finite group. Then there is a finite group H such that G ∼= H/Zn(H).

Proof. Since G is n-capable, there exists a group K such that G ∼= K/Zn(K). As K/Zn(K) is finite, by part (b)⇒(a) of Lemma 1, K is

n-isoclinic to a finite group H, that is K/Zn(K)∼= H/Zn(H) and hence G ∼= H/Zn(H).

In the next results, we discuss the nilpotency and solvability conditions on H.

Proposition 2. Let G be a nilpotent group of class m and there exists a group K such that G ∼= K/Zn(K) (m,n ≥ 1). Then there is a nilpotent

group H such that G ∼= H/Zn(H).

Proof. By hypothesis K/Zn(K) is nilpotent of class m. Thus

K
Zn(K)

= Zm(
K

Zn(K)
) =

Zm+n(K)

Zn(K)
.

Therefore Zm+n(K) = K and K is nilpotent of class at most m+n. Now, if we put H := K, then the proof will be completed.

Proposition 3. Let G be an n-capable solvable group. Then there is a solvable group H such that G ∼= H/Zn(H).

Proof. Clearly, for an arbitrary group K and for every n ≥ 0, Zn(K) is solvable. Now, n-capability of G implies that for a group K we have

G ∼= K/Zn(K). Since K/Zn(K) and Zn(K) are solvable, K is also solvable. Therefore we can take H := K.

A group G is called polynilpotent if it has a subnormal series

{1}= G0 ⊆ G1 ⊆ ·· · ⊆ Gn = G,

which the quotient groups Gi+1/Gi are nilpotent, for all 1 ≤ i ≤ n.

Theorem 1. Let G be an n-capable polynilpotent group. Then there is a polynilpotent group H such that G ∼= H/Zn(H).



On n-Capable Groups 33 of 34

Proof. Suppose that G ∼= K/Zn(K) and consider the following subnormal series of G ∼= K/Zn(K)

{1}= G0 ∼=
K0

Zn(K)
⊆ G1 ∼=

K1

Zn(K)
⊆ ·· · ⊆ Gn = G ∼=

Kn

Zn(K)
.

Now, since for every group K and n ≥ 0, Zn(K) is nilpotent, it is sufficient to show that Ki+1/Ki is nilpotent for all 1 ≤ i ≤ n. The latter

assertion is trivial as
Ki+1

Ki
∼=

Ki+1/Zn(K)

Ki/zn(K)
∼=

Gi+1

Gi
,

is nilpotent. In fact, K has the following subnormal series

{1} ⊆ Zn(K) = K0 ⊆ K1 ⊆ . . .⊆ Kn = K.

Therefore we can choose H := K.

Theorem 2. Let G be a finitely generated n-capable group with r generators. Then there exists a finitely generated group H with r generators

such that G ∼= H/Zn(H).

Proof. Assume that G ∼= K/Zn(K) and
K

Zn(K)
= 〈x1Zn(K), . . . ,xrZn(K)〉.

Define H = 〈x1, . . . ,xr〉 ≤ K. First, we show that

Zn(H) = Zn(K)∩H.

Let x ∈ Zn(H) and k1, . . . ,kn be arbitrary elements of K. we can take ki = x jz j for some z j ∈ Zn(K), (1 ≤ i ≤ n and 1 ≤ j ≤ r). Now, since

we may consider Zn(K) as marginal subgroup of K

[k1,k2, . . . ,kn,x] = [x j1 z j1 ,x j2 z j2 , . . . ,x jn z jn ,x]

= [x j1 ,x j2 , . . . ,x jn ,x]

= 1.

Therefore x ∈ Zn(K)∩H and hence Zn(H)⊆ Zn(K)∩H. The converse of latter inclusion is obvious. Now, as HZn(K) = K we have

H
Zn(H)

=
H

Zn(K)∩H
∼=

HZn(K)

Zn(K)
=

K
Zn(K)

∼= G,

and this completes the proof.

Let π is a non-empty set of primes, a π-number is a positive integer whose prime divisors belong to π . An element of a group is called

a π-element, if its order is a π-number and finally a group is called π-group if all of its elements are π-element.

Lemma 3. ( [6, Lemma 7.8]) Let G be a finite group such that G/Zn(G) is a π-group. Then there exists a subgroup H of G such that H is

a π-group which is n-isoclinic to G.

Theorem 3. Let G be an n-capable finite π-group. Then there is a finite π-group H such that G ∼= H/Zn(H).

Proof. Assume that G ∼= K/Zn(K). Since K/Zn(K) is finite by Proposition 1, there is a finite group M such that K
Zn(K)

∼= M
Zn(M)

. As M is

finite and M/Zn(M) is π-group, then by Lemma 3, there exists a subgroup H of M such that H is a π-group and M is n-isoclinic to H, that

is M
Zn(M)

∼= H
Zn(H)

, which completes the proof.
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