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Abstract

In this paper, we deal with the existence of a positive solution for the following fractional discrete boundary-value problemT+1∇α
k
(

k∇α
0 (u(k))

)
= λ f (k,u(k)), k ∈ [1,T ]N0 ,

u(0) = u(T +1) = 0,

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the right nabla discrete fractional difference

f : [1,T ]N0 × (0,+∞) → R may be singular at t = 0 and may change sign and λ > 0 is a parameter. The technical method is

variational approach for differentiable functionals. An example is included to illustrate the main results.

Keywords: Discrete fractional calculus, Discrete nonlinear boundary value problem, Non trivial solution, Variational methods,

Critical point theory

Mathematics Subject Classification (2020): 26A33, 39A10, 39A27

1 Introduction
Initial and boundary value problems in discrete fractional calculus play a fundamental role in different fields of research, for example in

Biology, Atici and Şengül introduced and solved Gompertz fractional difference equation for tumor growth models [5]. In [6] authors

studied multiple positive solutions of singular discrete boundary value problems using variational methods. It is well known that variational

methods is an important tool to deal with the problems for differential and difference equations. Variational methods for dealing with

fractional difference equations with boundary value conditions have appeared in [10]. More, recently, in [9, 13, 14, 15, 16], the existence

and multiplicity of solutions for nonlinear discrete boundary value problems have been investigated by adopting variational methods. In

[7] authors employed the critical point theory to establish the existence of multiple solutions of some regular as well as singular discrete

boundary value problems. Other results on discrete boundary value problems can be found in [4, 17] in the nonsingular case and in

[18, 19, 20, 11] in the singular case. The first concepts of fractional nabla differences traces back to the works of Gray and Zhang [23].

We refer the reader to the new monograph [26] that works for differential and integral equations and systems and for many theoretical

and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods.
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Also we refer the reader to the recent monograph on the introduction to fractional nabla calculus [12]. Another well-known monograph is

[24] that is devoted to the systematic and comprehensive exposition of classical and modern results in the theory of fractional integrals and

derivatives and their applications.

There seems to be increasing interest in the existence of solutions to boundary value problems for finite difference equations with

fractional difference operator during the last two decades. In last decades, some researchers investigated q-fractional difference equations.

Later, q-fractional boundary value problems considered by many researchers; see for instance, [25] and references therein. The other

important tool in the study of nonlinear difference equations is upper and lower solution method; see, for instance, [18, 11] and references

therein. Morse theory is also other tool in the study of nonlinear fractional differential equations [21].

The aim of this paper is to establish the existence of non-trivial solution for the following discrete boundary-value problemT+1∇α
k
(

k∇α
0 (u(k))

)
= λ f (k,u(k)), k ∈ [1,T ]N0 ,

u(0) = u(T +1) = 0,
(1)

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the right nabla discrete fractional difference and

∇u(k) = u(k)−u(k−1),

is the backward difference operator and λ > 0 is a parameter and T ≥ 2 is fixed positive integer and N1 = {1,2,3, . . .} and TN= {. . . ,T −
2,T −1,T} and [1,T ]N0 is the discrete set {1,2, . . . ,T −1,T}= N1

∩
TN and we only assume that f : [1,T ]N0 × (0,∞)→ R satisfies

a0(k)≤ f (k, t)≤ a1(k)t−γ , (k, t) ∈ [1,T ]N0 × (0, t0) (2)

for some nontrivial functions a0,a1 > 0 and γ, t0 > 0, so that it may be singular at t = 0 and may change sign.

In this paper we ensure an exact interval of the parameter λ , in which the problem (1) admits at least a positive solution. Here, we point

out the following our main result.

Theorem 1. If (2) holds and

limsup
t→∞

f (k, t)
t

< λ1, k ∈ [1,T ]N0 , (3)

then (1) has a positive solution for any λ ∈
[
limsupt→∞

f (k,t)
t ,λ1

)
.

The rest of this paper is arranged as follows. In Section 2, we provide some basic definitions and preliminary results and fundamental

functionals and lemmas. In Section 3, we provide our main results and finally, we illustrate the result by giving example.

2 Preliminaries
The following definitions will be helpful for our discussion.

Definition 1. [3] (i) Let m be a natural number, then the m rising factorial of t is written as

tm =
m−1

∏
k=0

(t + k), t0 = 1. (4)

(ii) For any real number, the α rising function is increasing on N0 and

tα =
Γ(t +α)

Γ(t)
, such that t ∈ R\{. . . ,−2,−1,0}, 0α = 0. (5)

Definition 2. Let f be defined on Na−1
∩

b+1N, a < b, α ∈ (0,1), then the nabla discrete new (left Gerasimov-Caputo) fractional difference

is defined by

(
C
k ∇α

a−1 f
)
(k) =

1
Γ(1−α)

k

∑
s=a

∇s f (s)(k−ρ(s))−α , k ∈ Na, (6)
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and the right Gerasimov-Caputo one by(
C
b+1∇α

k f
)
(k) =

1
Γ(1−α)

b

∑
s=k

(−∆s f )(s)(s−ρ(k))−α , k ∈ bN, (7)

and in the left Riemann-Liouville sense by(
R
k ∇α

a−1 f
)
(k) =

1
Γ(1−α)

∇k

k

∑
s=a

f (s)(k−ρ(s))−α , k ∈ Na,

=
1

Γ(−α)

k

∑
s=a

f (s)(k−ρ(s))−α−1, k ∈ Na,

(8)

and the right Riemann-Liouville one by(
R
b+1∇α

k f
)
(k) =

1
Γ(1−α)

(−∆k)
b

∑
s=k

f (s)(s−ρ(k))−α , k ∈ bN,

=
1

Γ(−α)

b

∑
s=k

f (s)(s−ρ(k))−α−1, k ∈ bN,

(9)

where ρ(k) = k−1 be the backward jump operator.

For example, Let f (k) = 1 be defined on Na−1
∩

b+1N, therefore from (6) and (7), we have

C
b+1∇α

k 1 =C
k ∇α

a−11 = 0, k ∈ Na
∩

bN. (10)

The relation between the nabla left and right Gerasimov-Caputo and Riemann-Liouville fractional differences are as follow:

(
C
k ∇α

a−1 f
)
(k) =

(
R
k ∇α

a−1 f
)
(k)− (k−a+1)−α

Γ(1−α)
f (a−1), (11)

(
C
b+1∇α

k f
)
(k) =

(
R
b+1∇α

k f
)
(k)− (b+1− k)−α

Γ(1−α)
f (b+1). (12)

Thus by (10), (11), and (12), we have for any k ∈ Na
∩

bN,

R
b+1∇α

k 1 =
(b+1− k)−α

Γ(1−α)
, R

k ∇α
a−11 =

(k−a+1)−α

Γ(1−α)
. (13)

Regarding the domains of the fractional type differences we observe:

(i) The nabla left fractional difference k∇α
a−1 maps functions defined on a−1N to functions defined on aN.

(i) (The nabla right fractional difference b+1∇α
k maps functions defined on b+1N to functions defined on bN.

As in [8] one can show that, for α → 0, one has k∇α
a ( f (k)) → f (t) and for α → 1, one has k∇α

a ( f (k)) → ∇ f (t). We note that the

nabla Riemann-Liouville and Gerasimov-Caputo fractional differences, for 0 < α < 1, coincide when f vanishes at the end points, that is,

f (a−1) = 0 = f (b+1) (see [1]). Indeed, when 0 < α < 1, those conclude from (11) and (12). So, for convenience, from now on we will

use the symbol ∇α instead of R∇α or C∇α .

Let λ1 > 0 be the first and smallest eigenvalue and λ2 > 0 be the last and biggest eigenvalue ofT+1∇α
k
(

k∇α
0 (u(k))

)
= λu(k), k ∈ [1,T ]N0 ,

u(0) = u(T +1) = 0,
(14)

where

λ1 = min
u∈W\{0}

u†Au
u†u

= min
u∈W\{0}

∑T
k=1 |

(
k∇α

0 u
)
(k)|2

∑T
k=1 |u(k)|2

,

λ2 = max
u∈W\{0}

u†Au
u†u

= max
u∈W\{0}

∑T
k=1 |

(
k∇α

0 u
)
(k)|2

∑T
k=1 |u(k)|2

,
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which u† denotes the transpose of u and u†Au
u†u is called a Rayleigh quotient and A is called a matrix structure form of operator

T+1∇α
k
(

k∇α
0 (u(k))

)
. Taking the definition A into account, (14) converts to

A



u(1)

u(2)

u(3)
...

u(T )


= λ



u(1)

u(2)

u(3)
...

u(T )


.

where A :=C†C and

C =



γ1 0 0 · · · 0

γ2 γ1 0 · · · 0

γ3 γ2 γ1 · · · 0
...

...
...

...
...

γT γT−1 γT−2 · · · γ1


By (4), γi := −αΓ(i−1−α)

Γ(i).Γ(1−α)
for any i = 1,2,3,4, . . . ,T . It is clear that γ1 = 1 and γ2 = −α and γi+1 = i−1−α

i γi and −α < γi−1 < γi < 0 for

any i = 3,4, . . . ,T .

Remark 1. The matrix C = [ci j] has all the elements below the main diagonal as negative. The diagonal elements of the matrix C are 1,

that is, cii = 1, i = 1,2, . . . ,T and the determinant of the matrix C = [ci j] where denoted by the symbol |C| is 1 and then that is non-singular

or invertible.

Remark 2. ([22]) The matrix C−1 is lower triangular and it is obtained from the identity matrix In by performing the same sequence of

elementary row operations as were used to convert C−1 to In. By elementary row operations method, the diagonal elements of the matrix

C−1 = [ci j] are 1 and it has all the elements below the main diagonal as positive.

So, the matrix A = C†C is real symmetric matrixes and by Remark 1, the determinant of the matrix A is 1 and A is invertible and the

determinant of the matrix A−1 is 1.

Taking the definition A into account, (1) converts to

A



u(1)

u(2)

u(3)
...

u(T )


= λ



f (1,u(1))

f (2,u(2))

f (3,u(3))
...

f (T,u(T ))


.

Now, we present summation by parts formula in new discrete fractional calculus.

Theorem 2. ( [2, Theorem 4.4] Integration by parts for fractional difference) For functions f and g defined on Na
∩

bN, a ≡ b (mod 1), and

0 < α < 1, one has
b

∑
k=a

f (k)
(

k∇α
a−1g

)
(k) =

b

∑
k=a

g(k)
(

b+1∇α
k f
)
(k). (15)

Similarly,
b

∑
k=a

f (k)
(

b+1∇α
k g
)
(k) =

b

∑
k=a

g(k)
(

k∇α
a−1 f

)
(k). (16)

3 Main Results
In order to give the variational formulation of the problem (1), let us define the finite T−dimensional Hilbert space

W := {u : [0,T +1]N0 → R : u(0) = u(T +1) = 0},
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which W is equipped with the usual inner product and the norm

⟨u,v⟩=
T

∑
k=1

u(k)v(k), ∥u∥2 :=

(
T

∑
k=1

|u(k)|2
) 1

2

.

It is known that the following norm

∥u∥=

{
T

∑
k=1

|(k∇α
0 u)(k)|2

} 1
2

,

is an equivalent norm in W . It is clear that λ1 and λ2 are respectively the first and the last eigenvalues of A and

λ1 = min
u∈W\{0}

∥u∥2

∥u∥2
2
, λ2 = max

u∈W\{0}

∥u∥2

∥u∥2
2
.

So for any u ∈W , we have, √
λ1∥u∥2 < ∥u∥<

√
λ2∥u∥2. (17)

Therefor from (17), ∥u∥→+∞ if and only if ∥u∥2 →+∞.

Let Φ : W → R be the functional

Φ(u) :=
1
2

T

∑
k=1

|(k∇α
0 u)(k)|2. (18)

An easy computation ensures that Φ turns out to be of class C1 on W and Gateaux differentiable with

Φ′(u)(v) =
T

∑
k=1

(k∇α
0 (u(k)))(k∇α

0 v(k)) , for all u,v ∈W.

To study the problem (1), for every λ > 0, we consider the functional Iλ ,g : W → R defined by

Iλ ,g(u) := Φ(u)−λΨ(u), Ψ(u) :=
T

∑
k=1

G(k,u(k)), (19)

where G(k,u) =
∫ u

0 g(k, t)dt where g ∈C([1,T ]N0 ×R).

Lemma 1. The function u be a critical point of Iλ ,g in W, iff u be a solution of the problem (1).

For the approach of Lemma 1 see [13, Lemma 3.1].

Lemma 2. If

limsup
t→∞

g(k, t)
t

< λ1, k ∈ [1,T ]N0 , (20)

holds, then Iλ ,g has a global minimizer for any λ ∈ [limsupt→∞
g(k,t)

t ,λ1).

Proof. By (20), for any λ ∈ [limsupt→∞
g(k,t)

t ,λ1), there exists 1 < r2 such that

G(k, t)≤ λ
2
|t|2, for any (k, t) ∈ [1,T ]×R\ ([−r2,r2]).

Since G is continuous, then G(k, t) is bounded for any (k, t) ∈ [1,T ]× [−r2,r2], so we can choose C > 0 such that

G(k, t)≤ λ
2
|t|2 +C, for all (k, t) ∈ [1,T ]×R, (21)
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by (17) and (21), we have

Iλ ,g(u) = Φ(u)−λΨ(u)

=
1
2

T

∑
k=1

|(k∇α
0 u)(k)|2 −λ

T

∑
k=1

G(k,u(k))

=
1
2
∥u∥2 −λ

T

∑
k=1

G(k,u(k))

≥ 1
2
∥u∥2 − λ

2

T

∑
k=1

|u(k)|2 −TC

=
1
2
∥u∥2 − λ

2
∥u∥2

2 −TC

≥ 1
2
∥u∥2 − λ

2λ1
∥u∥2 −TC

=
1
2
(1− λ

λ1
)∥u∥2 −TC,

therefore as ∥u∥ → +∞, Iλ ,g(u)→ +∞. Hence Iλ ,g is coercive and bounded from below for any λ ∈ [limsupt→∞
g(k,t)

t ,λ1). So Iλ ,g has a

global minimizer for any λ ∈ [limsupt→∞
g(k,t)

t ,λ1) (see [27]).

We obtain the next result which guarantees the same conclusion of the Strong maximum principle.

Lemma 3. If λ > 0 and u ∈W be a non-trivial solution to problemT+1∇α
k
(

k∇α
0 (u(k))

)
= λa0(k), k ∈ [1,T ]N0 ,

u(0) = u(T +1) = 0,
(22)

then u > 0.

Proof. By taking account Remark 1, one can conclude that |A| = |C||C†| = 1, hence the matrix A is non-singular or invertible and the

equation (22) becomes 

u(1)

u(2)

u(3)
...

u(T )


= λA−1



a0(1)

a0(2)

a0(3)
...

a0(T )


,

where A−1 = [ai j], i, j ∈ [1,T ]N0 is the inverse of A and A−1 =C−1{C−1}†. Taking account Remark 2, C−1 has all the elements below the

main diagonal as positive and {C−1}† has all the elements above the main diagonal as positive. So A−1 has all the elements as positive.

Since λ > 0 and a0(k)> 0 for every k ∈ [1,T ]N0 and ai j > 0, i, j ∈ [1,T ]N0 , one can conclude that

u(k) = λ (ak1 +ak2 + · · ·+akT )a0(k)> 0, for every k ∈ [1,T ]N0 .

Here, we can provide the proof of main result of this paper (Theorem 1) which that was stated before in Introduction section.

Proof. Since a0 ∈C([1,T ]N0 ×R) and

limsup
t→∞

a0(k)
t

= 0 < λ1, k ∈ [1,T ]N0 ,
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by Lemma 2 the functional Iλ ,a0
has a global minimizer for any λ ∈ [0,λ1), so by Lemma 1, the problem (22) has a solution u0 ∈W for any

λ ∈ [0,λ1) also since a0(k)> 0 for any k ∈ [1,T ]N0 by Lemma 3 this solution is positive. Fix ε ∈ (0,1] small enough such that u := εu0 < t0.

Then by (2)

T+1∇α
k (k∇α

0 (u(k))) = λεa0(k)≤ λε f (k,u(k))≤ λ f (k,u(k)), (23)

so u is a sub-solution of (1). Let

fu(k, t) =

 f (k, t), t ≥ u(k),

f (k,u(k)), t < u(k).
(24)

so fu(k, t) ∈ C([1,T ]N0 ×R). By similar argument in [6], due to (3), there are λ ∈ (0,λ1) and T > t0 such that f (k, t) ≤ λ t for any

(k, t) ∈ [1,T ]N0 × (T,∞). Then taking account to (2), one can conclude that

fu(k, t)≤ a1(k)u−γ +max f ([1,T ]N0 × [t0,T ])+λ t, ∀t ≥ 0, (25)

and then limsupt→∞
fu(k,t)

t ≤ λ < λ1 and due to fu ∈C([1,T ]N0 ×R), by Lemma 2, the modified problemT+1∇α
k
(

k∇α
0 (u(k))

)
= λ fu(k,u(k)), k ∈ [1,T ]N0 ,

u(0) = u(T +1) = 0,
(26)

has a solution u for any λ ∈ [limsupt→∞
fu(k,t)

t ,λ1) = [limsupt→∞
f (k,t)

t ,λ1). If u < u by (26) and (24) and (23), one has

T+1∇α
k (k∇α

0 (u(k))) = λ fu(k,u(k)) = λ f (k,u(k))

≥ T+1∇α
k (k∇α

0 (u(k))) ,

so, T+1∇α
k
(

k∇α
0 (u−u(k))

)
≥ 0 for k ∈ [1,T ]N0 and then by Lemma 3, u ≥ u and it is a contradiction. So u ≥ u and then by (26), one can

conclude that u is a solution of (1) for any λ ∈ [limsupt→∞
f (k,t)

t ,λ1) and due to u ≥ u > 0, that is positive.

We now present an example to illustrate the result of Theorem 1.

Example 1. the singular fractional problem T+1∇α
k
(

k∇α
0 (u(k))

)
= λ

u2(k) , k ∈ [1,9],

u(0) = u(10) = 0,

has at least one positive solution u0 for any λ ∈ [0,λ1), since the function f (k, t) = 1
t2 satisfies (2) and limsup

t→+∞

f (k,t)
t = 0.

4 Conclusion
Most phenomena in the nature could be modeled by different types of fractional difference and differential equations with initial or boundary

conditions. Recently some scientists have been studying the role of fractional calculus in better describing of physical phenomena or

biological phenomena. They have found that by using the fractional difference equations they can provide a better representation by

some physical or biological concepts. Thus, we should investigate distinct fractional difference equations to increase our ability for exact

modelings of more phenomena. In this work, by using variational method on differentiable functionals, we study a singular fractional

problem with Dirichlet boundary value conditions. We provide an example to illustrate our main result.
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