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Abstract

This paper introduces two families of modified Householder’s method (HM) that are optimal in line with Kung-Traub conjecture

given in [4]. The modification techniques employed involved approximation of the function derivatives in the HM with divided

difference operator, a polynomial function approximation and the modified Wu function approximation in [17]. These informed the

formation of two families of methods that that are optimal and do not or require function derivative evaluation. The both families

do not breakdown when f (·)≈ 0 as in the case with the HM and many existing modified HM. From the convergence investigation

carried out on the methods, the sequence of approximations produced by the methods, converged to solution of nonlinear equation

with order four. The implementation of the methods was illustrated and numerical results obtained were compared with that of

some recently developed methods.
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1 Introduction
The Householder method (HM) in [2] is one of the traditional iterative methods for obtaining solution s0 of a nonlinear (NL) equation

f (s) = 0. It is given as

s j+1 = s j −η j

(
1+

η j

2
f ′′(s j)

f ′(s j)

)
, j = 0,1,2, . . . , (1)

where η j =
f (s j)
f ′(s j)

. Starting with initial guess s∗, the HM iteratively generates sequence of approximations that converges to the solution s0

of a NL equation with convergence order (CO) three. Some major setbacks of the HM includes:

(i) its involvement of second derivative ( f ′′(s j) ) evaluation,

(ii) failure of the method when f ′(·)≈ 0 or f ′(·) = 0 and,
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(iii) non-optimal in the sense of Kung-Traub conjecture in [4].

The Kung-Traub conjecture [4] posits that, an IM without memory that require n distinct function evaluation in one iteration cycle, is optimal

if it attain CO ν = 2n−1.

Sequel to the setbacks itemized in (i)-(iii) above, many researchers have put forward modifications of the HM with the motivation of

dealing with them. For instance, in the work [1, 6, 7, 8, 13, 16], modifications of HM were presented that resolved problem (i) with no

recourse to resolving problems (ii) and (iii). While the authors in [11] put forward family of methods with reduced number of function

derivative evaluation f ′(·) at two different points from two to one point, they failed to explicitly eliminate the setback in (ii). In [5, 15], the

authors considered modifications of the HM that have the advantages of resolving the setbacks (i) and (iii), but failed to deal with setback

(ii) also. The modifications of the HM that have the advantages of resolving the setbacks itemised in (i)-(iii) above are scarcely available.

This is the main motivation of this work.

From the foregoing, two families of modified HM that does not require second derivative of function, fail when f (·)≈ 0 and optimal are

developed in this manuscript. The approach used in the methods development, involved the use of the divided difference operator, modified

Wu function approximation and a newly introduced polynomial approximation of function derivative.

This manuscript is structured in the following order: Section 1 contains the review of related literature, while Section 2 presents

techniques employed in the methods development. The test for methods convergence is given in Section 3. Section 4 put forward results of

numerical implementation of the developed and compared methods. The last section of the manuscript contains conclusion.

2 Method Formulation
We acknowledge the traditional HM [2] put forward as in (1). The HM generates sequence of approximations that converges to solution of

NL equations when implemented. However, the presence of the first and second derivatives in its iterative procedure, hinders its practical

utilisation. This is because the method collapses when the derivatives f ′(·) ≈ 0 and evaluation of the second derivative of function incurs

additional cost to the iterative process.

To circumvent the presence of second derivative in the HM, Noor and Gupta in [8] set s j = y j and approximates f ′′(s j) as

f ′′(s j)≈
f ′(y j)− f ′(s j)

y j − s j
= G(s,y) , (2)

and then obtained a fourth order convergence method as:

s j+1 = s j −η j

(
1+

η j

2
G(s,y)
f ′(s j)

)
. (3)

Although the method in (3) successfully modified HM to a method that does not require second derivative, its efficiency index (EI) is far

less than that of the HM. The efficiency of Iterative Algorithms for solving NL equations, is measured using the Ostrowski efficiency index

[14] given as ν
1
n . Thus, method (3) has EI ≈ 1.4142 while HM is EI ≈ 1.4417.

Further, the method (3) fails or breakdown whenever f ′(·)≈ 0. To eliminate the problem of breakdown of the iterative process and also make

the method optimal as conjectured by Kung-Traub in [4], we used an obtained polynomial function approximation P(s, t) to approximate

f ′(y j) as

f ′(y j)≈ f ′(s j)
[
1−2t + t2

]
= P(s, t) , (4)

where t = f (y j)
f (s j)

and the Wu approximation for f ′(s j) in [17] that is given as

f ′(s j)≈ f ′(s j)+δ f (s j), δ ∈ (−1,1)−{0} . (5)

Define the real-valued (RV) function Q(s, t) (a modified Wu second iteration stage approximation for f ′(y j)) as

Q(s, t) =
[
P(s, t)+α f (s j)

]
+δ f (y j), (6)

then a family of modified HM is put forward next.
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Algorithm 1. Suppose s∗ an initial guess, then the solution s j+1 of NL equation can be obtained using the iterative procedure

y j = s j −
f (s j)

f ′(s j)+δ f (s j)
,

s j+1 = y j −
f (y j)

Q(s, t)

[
1+

1
2

f (y j)

Q(s, t)

(
( f ′(s j)+δ f (s j))−Q(s, t)

f (s j)

)]
.

(7)

To put forward the derivative free version of Algorithm 1, consider the approximation of the derivative f ′(s j) as

f ′(s j)≈ f
[
s j,ω j

]
+δ f (s j), ω j = s j +δ

(
f (s j)

)m
, (8)

where m ≥ 2 and f [·, ·] a divided difference operator. By the definition

f ′(y j)≈
(

f
[
s j,ω j

]
+δ f (s j)

)[
1−2t + t2

]
= R(s, t) , (9)

and the RV functions Φ(s, t) defined as:

Φ(s, t) =
[
R(α,s)+α f (s j)

]
+δ f (y j), (10)

a new family of derivative free modified HM is provided in Algorithm 2.

Algorithm 2. Suppose s∗ an initial guess and m = 3, then the solution s j+1 of NL equation can be obtained using the iterative procedure

y j = s j −
f (s j)

f [s j,ω j]+δ f (s j)
,

s j+1 = y j −
f (y j)

Φ(s, t)

[
1+

1
2

f (y j)

Φ(s, t)

(
( f [s j,ω j]+δ f (s j))−Φ(s, t)

f (s j)

)]
,

(11)

3 Convergence Analysis
To prove the convergence of Algorithm 1 and Algorithm 2, suffice to deriving an equation in the form D j+1 = ϕDν

j +O(Dν+1
j ) (where the

error at jth iteration point is D j = s j − s0 ) from the Algorithms by the use of the Taylor series expansion of the functions f (s) and f ′(s).

When this equation is derived, then ν is referred to as the Algorithm CO. For more details on this technique see [9, 10, 12].

Theorem 1. Consider a sufficiently differentiable scalar function f : Ω ⊂ ℜ → ℜ in domain Ω with a simple solution s0. Then, for s∗

(an initial guess) close to s0 and utilised in Algorithm 1 implementation, a sequence
{

s j
}

j≥0 ,
(
s j ∈ D

)
of approximations of s0 will be

generated that converges to s0 with CO four, provided the free parameters α,δ ∈ (−1,1)−{0} are equal.

Proof. . Consider replacing s with s j in Taylor expansion of f ′ (s) and f (s) about s0, the expansions are obtained next.

f (s j) = f ′(s0)

[
D j +

4

∑
m=2

cmDm
j +O(D5

j)

]
, j=0,1,2, . . . (12)

and

f ′(s j) = f ′(s0)

[
1+

4

∑
m=2

mcmDm−1
j +O(D5

j)

]
, j=0,1,2, . . . (13)

where cm = 1
m!

f m(s0)
f ′(s0)

, m ≥ 2.

From the results in (12) and (13), the next expression for y is obtained.

y j =s j −
f (s j)

f ′(s j)+δ f (s j)
= (δ + c2)D2

j

+
(
−δ 2 −2δc2 −2c2

2 +2c3

)
D3

j

+
(

δ 3 +3δ 2c2 +5δc2
2 +4c3

2 −4δc3 −7c2c3 +3c4

)
D4

j +O
(

D5
j

)
.

(14)
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Using (14), the Taylor expansion for f (y j) is obtained as

f (y j) =(δ + c2)D2
j +
(
−δ 2 −2δc2 −2c2

2 +2c3

)
D3

j

+
(

δ 3 +3δ 2c2 +5δc2
2 +4c3

2 + c2 (δ + c2)
2 −4δc3 −7c2c3 +3c4

)
D4

j

+O
(

D5
j

)
.

(15)

From (15) and (12), the expansion for t j is obtained next.

t j =
f (y j)

f (s j)
= (δ + c2)D j +

(
−δ 2 −3δc2 −3c2

2 +2c3

)
D2

j

+
(

δ 3 +5δ 2c2 +10δc2
2 +8c3

2 −5δc3 −10c2c3 +3c4

)
D3

j +O
(

D4
j

)
.

(16)

From (16), we obtained the expansion for P(s, t) as

P(s, t) = 1−δD j +(δ 2 +3δc2 +3c2
2 − c3)δ 2

+(−δ 3 −6δ 2c2 −11δc2
2 −8c3

2 +5δc3 +10c2c3 −2c4)D3
j

+(δ 4 +9δ 3c2 +21c4
2 +δ 2(25c2

2 −7c3)−37c2
2c3 +8c2

3 +14c2c4

+δ (35c3
2 −32c2c3 +7c4)−3c5)D

4
j +O

(
D4

j

)
.

(17)

By combining (15) and (17), the expansion for Q(s, t) is obtained next as

Q(s, t) = [P(s, t)+α f (s)]+δ f (y j) = 1+(α −δ )D j

+(2δ 2 +αc2 +4δc2 +3c2
2 − c3)D2

j

+(−2δ 3 −8δ 2c2 −13δc2
2 −8c3

2 +αc3 +7δc3 +7δc3 +10c2c3 −2c4)D3
j

+(2δ 4 +13δ 3c2 +21c4
2 +δ (32c2

2 −11c3)−37c2
2c3 +8c2

3 +αc4 +14c2c4

+δ (40c3
2 −39c2c3 +10c4)−3c5)D

4
j +O(D5

j).

(18)

From (12), (13), (14), (15) and (18), we have:

s j+1 = y j −
f (y j)

Q(α,s)

[
1+

1
2

f (y j)

Q(α,s)

(
( f ′(s j)+δ f (s j))−Q(α,s)

f (s j)

)]
= s0 +(α −δ )(δ + c2)D3

j

+(δ 3 +3δ 2c2 +4δc2
2 + c3

2 −α(δ + c2)−δc3 − c2c3

+
α
2
(3δ 2 +4δc2 +4c3))D4

j +O(D5
j).

(19)

Our desire is to reduce the coefficients of Dn
j , n = 2,3 to zero. This is achievable when the parameters α and δ are equal. That is α = δ .

Consequently, (19) is reduced to

s j+1 = s0 +

(
(δ + c2)(3δ 2 +5δc2 +2c2

2 −2c3)

2

)
D4

j +O(D5
j). (20)

But D j+1 = s j+1 − s0. Therefore, from (20) we have

D j+1 =

(
(δ + c2)(3δ 2 +5δc2 +2c2

2 −2c3)

2

)
D4

j +O(D5
j). (21)

By comparing the error expression in (21) with the general error equation D j+1 = ϕDν
j + O(Dν+1

j ), we conclude that the CO (ν) of

Algorithm 1 is four. This completes the proof.
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3.1 Algorithm 1 Concrete Member

For δ = 0.001, a concrete member that falls under Algorithm 1 is as following:

Algorithm 3. Suppose s0 an initial guess, then the solution sk+1 of NL equation can be obtained using the iterative procedure

y j = s j −
f (s j)

f ′(s j)−0.001 f (s j)
,

s j+1 = y j −
f (y j)

Q(s, t)

[
1+

1
2

f (y j)

Q(s, t)

(
( f ′(s j)−0.001 f (s j))−Q(s, t)

f (s j)

)]
.

(22)

Theorem 2. Consider a sufficiently differentiable scalar function f : Ω ⊂ ℜ → ℜ in domain Ω with a simple solution s0. Then, for s∗

(an initial guess) close to s0 and utilised in Algorithm 2 implementation, a sequence
{

s j
}

j≥0 ,
(
s j ∈ D

)
of approximations of s0 will be

generated that converges to s0 with CO four, provided the free parameters α,δ ∈ (−1,1)−{0} are equal.

Proof. . The proof follows same procedures used in the proof of Theorem 1. Consequently, the error equation is obtained as:

s j+1 = s0 +

(
(δ + c2)(3δ 2 +5δc2 +2c2

2 −2c3)

2

)
D4

j +O(D5
j). (23)

3.2 Algorithm 2 Concrete Member

For δ = 0.001, a typical member of Algorithm 2 is put forward as:

Algorithm 4. Suppose s0 an initial guess, then the solution sk+1 of NL equation can be obtained using the iterative procedure

y j = s j −
f (s j)

f [s j,ω j]−0.001 f (s j)
,

s j+1 = y j −
f (y j)

Φ(s, t)

[
1+

1
2

f (y j)

Φ(s, t)

(
( f [s j,ω j]−0.001 f (s j))−Φ(s, t)

f (s j)

)]
.

(24)

4 Numerical Results
The concrete members (Algorithm 3 (Alg 3) and Algorithm 4 (Alg 4)) of methods developed (Algorithm 1 and Algorithm 2) in this work

are tested in this section to verify their performance when utilised to solve NL equations. For performance comparison sake, the obtained

computation outputs by the developed methods were put side by side with the outputs of some existing CO four methods that are also

modification of HM and are optimal. The compared methods includes Nadeem et al., method (NM) in [5] given as:

s j+1 = y j −
f (y j)

F(s j,y j)
−

(
f 2(y j)G(s j,y j)

2F3(s j,y j)

)
,

F(s j,y j) =
2[ f (s j)− f (y j)]

x j − y j
− f ′(s j),

G(s j,y j) =
6[ f (s j)− f (y j)]−2(s j − y j)[2 f ′(s j)+F(s j,y j)]

(s j − y j)2 .

(25)

and Sarima et al., method (SM) in [15] and presented as:

s j+1 = y j −
f (y j)

F(s j,y j)
−M(s j,y j)

f 2(y j)

2 f ′3(s j)
,

M(s j,y j) =
10 f (y j)+4 f (s j)

(y j − s j)2 ,

(26)
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where y j = s j −
(

f (s j)/ f ′(s j)
)
.

The computational CO νcoc due to Jay in [3] given as

νcoc =
log
∣∣ f (s j+1)

∣∣
log
∣∣ f (s j)

∣∣ , (27)

number of iterations to achieve convergence (NIT) and absolute function of last iteration point value (
∣∣ f (s j

)∣∣) obtained from each method

were used for comparison. To obtain computation results, programs were written and implemented in MAPLE 2017 software domain

using a computer with the specifications: 2GB RAM processor Intel Celeron(R). To terminate all programs execution, a tolerance of∣∣ f (s j
)∣∣≤ 10−1000 was adopted. In order to minimize truncation error, all computation outputs were given in 2000 digits of precision. The

format for computation result presentation is X−Y = X ×10−Y , where X ,Y ∈ ℜ.

Table 1 presents the NL equations f j(s) = 0 utilized for testing the methods applicability and computational comparison.

Table 1. Test equations

fi(s) = 0 s∗

f1(s) = 2s− ln s−7s = 0 4.2199064837 . . .

f2(s) = s3 −9s+1 = 0 2.9428200577 . . .

f3(s) = s−3 ln (s) = 0 1.8571838602 . . .

f4(s) =−20s5 − s
2 +

1
2 = 0 0.4276772969 . . .

f5(s) = s(s2 −1)+3 = 0 −1.6716998816 . . .

f6(s) = 1− (s2 − sin2(s)) = 0 1.4044916482 . . .

4.1 Results Discussion

The computational outcomes obtained when the developed Alg 3, Alg 4 and the compared methods (NM and SM) were used to solve the

NL equations in Table 1, are presented in Table 2-5. From Table 2-4, observe that Alg 3 and Alg 4 solved the NL equations f1(s), f2(s)

and f3(s) when f ′(s) = 0. While the compared methods failed because of the presence of evaluation of quotients with zero as divisor. That

is, the evaluation of f ′(·) vanished. Furthermore, for NL equations with non-vanishing f ′(·), the Alg 3 and Alg 4 in most cases, performed

better than the compared methods.

Table 2. Methods results comparison for f1(s) = 0

Methods s0 NIT
∣∣ f (s j+1)

∣∣ νcoc

NM Failed -

SM Failed -

Alg 3 0.5 7 1.5−1131 4.0

Alg 4 10 2.4−1276 4.0

NM 5 5.6−1264 4.0

SM 5 4.1−1310 4.0

Alg 3 3.0 5 2.0−1290 4.0

Alg 4 5 8.9−1297 4.0

5 Conclusion
In this manuscript, the HM have been successfully modified to attain optimal CO four and further enhanced to not require the evaluation

of function derivatives in its implementation. The presented methods, also possess the advantages of obtaining solution of NL equations

even when f ′(s) = 0 or f ′(s) ≈ 0. These results, are the major advantages of the methods presented herein, over existing modified HM in

literature.
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Table 3. Methods results comparison for f2(s) = 0

Methods s0 NIT
∣∣ f (s j+1)

∣∣ νcoc

NM Failed -

SM Failed -

Alg 3
√

3 12 9.3−0813 4.0

Alg 4 6 4.2−1584 4.0

NM 5 2.1−0495 4.0

SM 6 1.8−0846 4.0

Alg 3 2.5 5 3.8−0632 4.0

Alg 4 5 6.3−0694 4.0

Table 4. Methods results comparison for f3(s) = 0

Methods s0 NIT
∣∣ f (s j+1)

∣∣ νcoc

NM Failed -

SM Failed -

Alg 3 3.0 10 1.0−1999 4.0

Alg 4 10 7.2−1480 4.0

NM 9 8.2−1050 4.0

SM 6 3.9−0698 4.0

Alg 4 0.5 6 1.5−0993 4.0

Alg 6 6 5.3−1030 4.0

Table 5. Methods results comparison for f4(s) = 0, f5(s) = 0 and f6(s) = 0

f (s) Methods s0 NIT | f (s j+1)| νcoc

NM 6 5.73−0576 4.0

SM 27 3.2−1878 4.0

f4(s) Alg 3 0.26 6 5.1−1328 4.0

Alg 4 6 1.1−1197 4.0

NM Failed -

SM 22 8.7−0610 4.0

f5(s) Alg 3 0.0 8 7.3−1634 4.0

Alg 4 13 8.8−1025 4.0

NM 7 8.7−0762 4.0

SM 17 2.9−0650 4.0

f6(s) Alg 3 0.5 7 7.4−1054 4.0

Alg 4 7 9.4−0907 4.0
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