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Abstract If L(G) is the line graph of G, it is difficult to get the adjacency
matrix of Lt(G) = L(L(L . . . L(G))); t ≥ 3 and also its spectrum. In this paper,
we present a formula to compute the spectrum of Lt(G), for each positive
integer t, where G is a regular graph.
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1 Introduction

Modeling problems in various sciences can somehow lead to the study of
corresponding graphs [1,5,10]. Suppose G(V,E) is a graph with n vertices
{v1, v2, . . . , vn} and m edges {e1, e2, . . . , em}. All over this paper a graph
is undirected, without loops and multiple edges, unless indicated otherwise.
When vi and vj are the endpoints of an edge, they are adjacent. Such vertices
are also called neighbors of each other. We say the graph is complete if any two
vertices are adjacent. The complement Ḡ of a graph G is the graph with same
vertex set, but with complementary edge set, that is, two vertices are adjacent
in Ḡ if they are not adjacent in G. The degree of a vertex is its number of
neighbors. If all vertices have the same degree then the graph is called regular.

The adjacency matrix A of a graph G,A(G), is a square matrix of order n
whose rows and columns correspond to the vertices of G such that (A)ij = 1
if and only if vi and vj are adjacent and (A)ij = 0, otherwise. The incidence
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matrix of G is the 0 − 1 matrix M , with rows indexed by the vertices and
columns indexed by the edges, where (M)ij = 1 when vertex vi is an endpoint
of edge ej . The line graph L(G) of a graph G is constructed by taking the
edges of G as vertices of L(G), and joining two vertices in L(G) whenever
the corresponding edges in G have a common vertex [5]. The eigenvalues of a
matrix A are the numbers λ such that Ax = λx has a nonzero solution vector;
each such solution is an eigenvector associated with A. The eigenvalues of a
graph are the eigenvalues of its adjacency matrix A [2,6,11]. These are the
roots λ1, λ2, . . . , λn of the characteristic polynomial

χ(G;λ) = det(λI −A) =

n∏
i=1

(λ− λi) .

The spectrum is the list of distinct eigenvalues with their multiplicities b1, b2, . . . , bt,
we write

Spec(G) =

(
λ1 λ2 · · · λt

b1 b2 · · · bt

)
.

According to the above definitions, if G has adjacency matrix A, then Ḡ
has adjacency matrix Ā = J − I − A in which J denote the matrix each
of whose entries is +1 and I denote the identity matrix. If G is k-regular
with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, then the eigenvalues of the comple-
ment are n − k − 1,−1 − λ2, . . . ,−1 − λn. It is difficult to draw Lt(G) =
L(L(L . . . L(G))); t ≥ 3, for graphs and to get its adjacency matrix and also
its spectrum [3,4]. In this paper, we will describe a formula to obtain the spec-
trum of Lt(G), for each positive integer t, where G is a regular graph. Finally,
we determine the spectrum of the complete graph with 4 vertices using the
given formula. However, this graph is the smallest regular graph (note that a
cycle is isomorphic to its line graph [5,9]), it is difficult to draw Lt(G); t ≥ 3,
for this graph and to get its spectrum. As noted, the line graph L(G) has a
vertex for each edge of G, and ei, ej ∈ E(G) are neighbor in L(G) if they have
a common endpoint in G. If G be a simple graph, the edges of L(G) correspond
to the incident pairs of edges in G. Such pairs share exactly one vertex, and
each vertex vi ∈ V (G) contributes exactly

(
di
2

)
such incident pairs where di

is the degree of vi. Therefore, for a simple graph G, we have

|E(L(G))| =
n∑

i=1

(
di
2

)
.
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We note that if G be a loopless graph with aij + 1 edges between vi and
vj , i, j = 1, . . . , n, the number of edges in L(G) is

|E(L(G))| =
∑

vi∈V (G)

(
d◦i
2

)

+

n∑
i=1

 n∑
j ̸=i,j=1

aij

 di

− 3

2

 n∑
i=1

 n∑
j ̸=i,j=1

aij (aij + 1)


−

 n∑
i=1

n∑
j=1

n∑
k=1

aijajk

 , (1)

where d◦i is the degree of vertex vi in the simple graph G◦ formed by deleting
aij edges between vi and vj , i, j = 1, . . . , n, in G. In the above formula, the
coefficient of di equals to the sum of the number of the additional edges in
which vi is their endpoint. Furthermore, the last term on the right of formula
is the product of pairwise additional edges in each vertex.

2 The spectra of line graphs

The spectra of line graphs have been studied extensively. We will describe
a formula to obtain the spectrum of Lt(G) = L(L(L . . . L(G) . . .)), for each
positive integer t, where G is a regular graph. First, we represent outline the
basic results in this field. Let G be a k-regular graph with n vertices and m
edges. Since a given edge e in G is adjacent with k − 1 edges in each of its
endpoint, so the line graph is (2k − 2)-regular. So, briefly, we have

G : |V | = n

|E| = m

k − regular

and
L(G) : n(1) = m =

1

2
nk

m(1) =

n∑
i=1

(
di
2

)
=

1

2
nk(k − 1)

k(1) = 2(k − 1),

where n(1),m(1) and k(1) denote the number of vertices, edges and regularity
of the line graph L(G), respectively.
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Theorem 1 Let G be a k-regular graph, then [1]
(1) k is an eigenvalue of G.
(2) If G is connected, then the multiplicity of k is one.
(3) For any eigenvalue λ of G, we have |λ| < k.

Since L(G) is (2k−2)-regular, therefore (2k−2) is the maximum eigenvalue of
L(G) with multiplicity one. This is a linkage between the maximum eigenvalues
of G and L(G). We can find a relationship between the spectra of G and L(G)
by means of the following theorem.

Theorem 2 If G is a k-regular graph with n vertices and m = 1
2nk edges,

then [7]

χ(L(G);λ) = (λ+ 2)m−nχ(G;λ+ 2− k).

In other words, if the spectrum of G is

Spec(G) =

(
k λ1 λ2 · · · λs

1 o1 o2 · · · os

)
,

then the spectrum of L(G) is

Spec(L(G)) =

k − 2

λ
(1)
1︷ ︸︸ ︷

k − 2 + λ1

λ
(1)
2︷ ︸︸ ︷

k − 2 + λ2 · · ·

λ(1)
s︷ ︸︸ ︷

k − 2 + λs

µ1
1︷︸︸︷

−2
1 o1 o2 · · · os m− n

 .

Theorem 3 If λ is an eigenvalue of a line graph L(G), then λ ≥ −2 [1].

The condition that all eigenvalues of a graph be not less than −2 is a restrictive
one, but it is not sufficient to characterize line graphs [8].

Now, we can consider L(G) as main graph and obtain the spectrum of
L2(G) = L(L(G)) by means of the Theorem 2. First, we compute the number
of vertices, edges and regularity of L2(G), namely n(2),m(2) and k(2). Similarly
to the previous, a given edge e in L(G) is adjacent with (2k− 3) edges in each
of its endpoint, so L2(G) is 2(2k− 3)-regular and also

L2(G) : n(2) = m(1) =
1

2
nk(k − 1)

m(2) =
1

2
n(2)k(2) =

1

2
nk(k − 1)(2k − 3)

k(2) = 2(2k − 3)



Computing the Spectrum of Lt(G) for A Regular Graph 223

With respect to Theorem 2, the spectrum of L2(G) is

Spec(L2(G)) =

2(2k − 3)

λ
(2)
1︷ ︸︸ ︷

k(1) − 2 + λ
(1)
1 · · ·

1 o1 · · ·


 · · ·

λ(2)
s︷ ︸︸ ︷

k(1) − 2 + λ(1)
s

µ
(2)
1︷ ︸︸ ︷

k(1) − 2 + µ
(1)
1

µ2
2︷︸︸︷

−2
· · · os m− n m(1) − n(1)



=

2(2k − 3)

λ
(2)
1︷ ︸︸ ︷

3(k − 2) + λ1

λ
(2)
2︷ ︸︸ ︷

3(k − 2) + λ2 · · ·
1 o1 o2 · · ·


 · · ·

λ(2)
s︷ ︸︸ ︷

3(k − 2) + λs

µ
(2)
1︷ ︸︸ ︷

2(k − 3)

µ2
2︷︸︸︷

−2
· · · os m− n m(1) − n(1)

 .

Note that all eigenvalues of L2(G) satisfy the condition of the Theorem 3.
Because, otherwise, there is an index (as l ) such that k(1) + λ

(1)
l < 0 or

k(1) < 2 that are contradiction (Without loss of generality, we can suppose
k > 2, because a cycle is isomorphic to its line graph [9]). We can use the
same argument iteratively and obtain a recurrence relation to find the number
of vertices, edges and regularity of Lt(G) for each positive integer t and then
compute the spectrum of it.

Theorem 4 If G is a k-regular graph with n vertices and m = 1
2nk edges and

its spectrum is

Spec(G) =

(
k λ1 λ2 · · · λs

1 o1 o2 · · · os

)
,

then the spectrum of Lt(G), for each positive integer t, is

Spec
(
Lt(G)

)
=

(
k(t) λ

(t)
1 λ

(t)
2 · · · λ

(t)
s µ

(t)
1

1 o1 o2 · · · os m− n
· · ·

µ
(t)
2 · · · µ

(t)
t−1 µ

(t)
t

m(1) − n(1) · · · m(t−1) − n(t−1) −2

)
,

where for each r = 1, 2, · · · , t

n(r) =
1

2
nk ×

r−2∏
i=0

(
2i(k − 2) + 1

)
m(r) =

1

2
nk ×

r−1∏
i=0

(
2i(k − 2) + 1

)
k(r) = 2r(k − 2) + 2
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and
λ
(t)
l =

(
2t − 1

)
(k − 2) + λl; l = 1, · · · s

µ
(t)
l = 2l

(
2t−1 − 1

)
(k − 2)− 2; l = 1, · · · t− 1.

Proof We have used induction on r to prove formulas specifying the number
of vertices and regularity of Lr(G); r = 1, · · · , t. Regularity: Basis step: for
r = 1, 2, the formula holds. Because: k(1) = 2(k − 1) = 21(k − 2) + 2, k(2) =
2
(
k(1)− 1) = 2(2k − 3) = 22(k − 2) + 2. Induction step: We suppose that the

formula holds for k(r−1), that is k(r−1) = 2r−1(k− 2) +2. Therefore

k(r) = 2
(
kr−1 − 1

)
= 2

[
2r−1(k − 2) + 2− 1

]
= 2r(k − 2) + 2.

The number of vertices: Basis step: for r = 2, the formula holds. Because

n(2) =
1

2
nk(k − 1) =

1

2
nk ×Π0

i=0

(
2i(k − 2) + 1

)
.

Induction step: We suppose that the formula holds for n(r−1), that is

n(r−1) =
1

2
nk ×Πr−3

i=0

(
2i(k − 2) + 1

)
.

Therefore

n(r) = m(r−1) =
1

2
n(r−1)k(r−1)

=
1

2

[
1

2
nk ×Πr−3

i=0

(
2i(k − 2) + 1

)] [
2r−1(k − 2) + 2

]
=

1

2
nk ×Πr−2

i=0

(
2i(k − 2) + 1

)
.

The number of edges

m(r) =
1

2
n(r)k(r) =

1

2

[
1

2
nk ×Πr−2

i=0

(
2i(k − 2) + 1

)]
[2r(k − 2) + 2]

=
1

2
nk ×Πr−1

i=0

(
2i(k − 2) + 1

)
.

Now, we compute the eigenvalues of Lt(G). Using Theorem 2, for each l =
1, · · · s, we have

λ
(t)
l = k(t−1) − 2 + λ

(t−1)
l = k(t−1) − 2 +

(
k(t−2) − 2 + λ

(t−2)
l

)
= k(t−1) − 2 +

(
k(t−2) − 2 +

(
k(t−3) − 2 + λ

(t−3)
l

))
= k(t−1) − 2 +

(
k(t−2) − 2 +

(
k(t−3) − 2 +

(
· · ·+

(
k(1)

−2 + (k − 2 + λl))))

= k(t−1) + k(t−2) + k(t−3) + · · ·+ k(1) + k − 2t+ λl.
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k(r); r = 1, · · · , t− 1 can be counted using the regularity formula, so

λ
(t)
l =

[
2t−1(k − 2) + 2

]
+
[
2t−2(k − 2) + 2

]
+ · · ·+

[
21(k − 2) + 2

]
+ k − 2t+ λl

=
(
2t − 1

)
(k − 2) + λl.

Finally, we prove the formula specifying µ
(t)
l ; l = 1, · · · , t− 1 using induction

on t. Basis step: for t = 2 (so l = 1 ), the formula holds. Because

µ
(2)
1 = k(1) − 2− 2 = 2k − 6 = 21

(
22−1 − 1

)
(k − 2)− 2.

Induction step: We suppose that the formula holds for µ
(t−1)
l ; l = 1, · · · , t− 2,

that is
µ
(t−1)
l = 2l

(
2t−2 − 1

)
(k − 2)− 2; l = 1, · · · , t− 2.

Therefore
µ
(t)
l = k(t−1) − 2 + µ

(t−1)
l

= 2t−1(k − 2) + 2− 2 + 2l
(
2t−l−1 − 1

)
(k − 2)− 2

= 2l
(
2t−l−1 + 2t−l−1 − 1

)
(k − 2)− 2

= 2l
(
2t−1 − 1

)
(k − 2)− 2; l = 1, · · · , t− 1.

Corollary 1 If G is a k-regular graph with n vertices and m = 1
2nk edges

and its spectrum is
Spec(G) =

(
k λ1 λ2 · · · λs

1 o1 o2 · · · os

)
and the spectrum of Lt(G), for each positive integer t, is

Spec
(
Lt(G)

)
=

(
k(t) λ

(t)
1 λ

(t)
2 · · · λ

(t)
s µ

(t)
1

1 o1 o2 · · · os m− n
· · ·

µ
(t)
2 · · · µ

(t)
t−1 µ

(t)
t

m(1) − n(1) · · · m(t−1) − n(t−1) −2

)
,

then
k(t) − λ

(t)
1 = k − λ1

λ
(t)
l − λ

(t)
l+1 = λl − λl+1; l = 1, · · · , s− 1,

λ(t)
s − µ

(t)
1 = k + λs

µ
(t)
l − µ

(t)
l+1 = 2l(k − 2); l = 1, · · · , t− 1

Finally, suppose G be the complete graph with 4 vertices. However, this graph
is the smallest regular graph (k > 2), it is difficult to draw Lt(G); t ≥ 3, for
this graph and to get its spectrum. Using the Theorem 4, we have

L10 (K4) : n
(10) = 1, 958, 457, 114, 900

m(10) = 1.00468850E + 15

k(10) = 1026
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Also, we compute the spectrum of Lt (K4) ; t = 1, · · · , 10. The results are
shown in Table 1.

Fig. 1 G (n = 4,m = 6, k = 3)

Fig. 2 L(G) (n′ = 6,m′ = 12, k′ = 4)

3 Conclusion and future work

Most of the results obtained in this work are based on the study of simple,
undirected, and finite graphs. Further studies are to be done and appropriate
proof techniques are to be employed to generalize and direct graphs. However,
the results can be obtained for every graph.
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