ISSN: 2476-5341

Research Article

Isoclinism of *n*-Hom-Lie Algebras

 $\begin{tabular}{ll} Mina Sadeghloo & Mahboubeh Alizadeh \\ Sanati & \\ \end{tabular}$

Received: 8 November 2022 / Accepted: 1 March 2023

Abstract In the present article, we define the concept of isoclinism in the context of n-Hom-Lie algebras and investigate some of its properties. Also, we introduce factor sets on n-Hom-Lie algebras. By restricting these structures to semisimple linear operators of these structures, it is shown that the equivalency between isoclinism and isomorphism of two finite-dimensional n-Hom-Lie algebras just depends on whether one of the operators of them is onto

Keywords Isoclinism · n-Hom-Lie algebra · Factor set · Semisimple linear operator

Mathematics Subject Classification (2010) 17B61 · 17B99 · 17B66

1 Introduction

In 2002, Hartwig, Larsson, and Silvestrov introduced the notion of Hom-Lie algebras [14], and outlined some of their fundamental properties which are studied in mathematical physics, for generalizing the Yang-Barter equation and braid group representations [24]. A Hom-Lie algebra is an F-vector space equipped with a bilinear skew-symmetric bracket that satisfies the Jacobi identity twisted by a linear operator φ . When φ is the identity map, the definition of Hom-Lie algebras coincides with Lie algebras. The construction of Hom-Lie

M. Sadeghloo

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran, P.O. Box 49138-15759.

Tel.: +98-1732254163

E-mail: mina.sadeghloo@yahoo.com

M. Alizadeh Sanati (Corresponding Author)

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran, P.O.

Box 49138–15759.

 $\hbox{E-mail: m.alizadeh@gu.ac.ir}$

algebras as a generalization of Lie algebras, leads to the category of Hom-Lie algebras which is denoted by HomLie [5]. In fact, Hom-Lie algebras can be considered as the objects of the category HomLie, and its morphisms are Lie algebra homomorphisms $f:(V,\varphi)\longrightarrow (W,\psi)$ such that $f\circ\varphi=\psi\circ f$. Hom-Lie algebras are studied in various areas related to Lie algebras such as semisimple Lie algebras, (co)homology theory, representation theory, universal central extension, non-abelian tensor product, and simple Lie algebra, respectively in [16, 27, 1, 9, 25, 7, 8, 18].

Philip Hall, in 1940, introduced group isoclinism [13], and Kay Moneyhun extended this notion to Lie algebras in 1994 and defined factor sets for Lie algebras. As a result, it was shown that for a given finite dimension, isomorphism and isoclinism are equivalent [16].

The concept of n-Lie algebras was defined by Filippov in 1987. Also, he proved all n-Lie algebras of dimension n+1 over an algebraically closed field were classified [12]. Eshrati and Moghaddam presented similar results of isoclinism in n-Lie algebras. Utilizing the notion of isoclinism, they proved that isomorphism and isoclinism are identical on n-Lie algebras of the same finite dimension [11]. The notion of an n-Hom-Lie algebra which is a generalization of an n-Lie algebra was introduced in 2011, [2]. Then several aspects of algebraic structures about n-Hom-Lie algebras, for example, the cohomologies, central extensions and deformations were studied.

The first purpose of this paper, is to provide a definition of isoclinism for an n-Hom-Lie algebra. In order to investigate its properties, we concentrate on such an n-Hom-Lie lgebra whose linear map is semisimple linear operator. Then by defining Hom-stem n-Hom-Lie algebras, we prove that the Homcenters of two isoclinic Hom-stem n-Hom-Lie algebras are isomorphic. Finally, we introduce the notion of factor sets on n-Hom-Lie algebras. As a conclusive result, we show that the equivalency between isoclinism and isomorphism of two finite-dimensional n-Hom-Lie algebras with semisimple linear operator, depend on that only one of the operators of them be onto.

2 Preliminaries

Throughout this paper, we fix F as a ground field and all the vector spaces are considered over F and linear operators are F-linear operators.

Definition 1 A Lie algebra (V, [-, -]) with a linear operator $\varphi : V \longrightarrow V$ is called *Hom-Lie algebra* provided

(i)
$$[x, y] = -[y, x]$$
, $(skew - symmetry)$

(ii)
$$[\varphi(x),[y,z]]+[\varphi(y),[z,x]]+[\varphi(z),[x,y]]=0,$$
 $(Hom-Jacobi\ identity)$ for all $x,y,z\in V.$

In this paper, we assume that φ preserves the bracket i.e. $\varphi([x,y]) = [\varphi(x), \varphi(y)]$, for all $x, y \in V$ and it is called *Lie algebra endomorphism*.

In the case of $\varphi = id_V$, Hom-Lie algebras are exactly Lie algebras. A vector space V endowed with a linear operator $\varphi: V \longrightarrow V$ is called Hom-vector space. A Hom-vector space (V,φ) with the trivial bracket and any linear operator $\varphi: V \longrightarrow V$ constructs a Hom-Lie algebra which is called abelian Hom-Lie algebra.

Example 1 For any Lie algebra V and Lie algebra endomorphism

$$\varphi: V \longrightarrow V$$
,

we have Hom-Lie algebra (V, φ) , if we define the bracket by

$$[x, y]_{\varphi} := [\varphi(x), \varphi(y)],$$

for all x, y in V.

Definition 2 A Hom-Lie subalgebra of (V, φ) is a vector subspace W of V, which is closed under bracket and φ , i.e. $[w, w'], \varphi(w) \in W$, for all $w, w' \in W$. A Hom-Lie subalgebra $(W, \varphi_{|})$ which $\varphi_{|}$ is restriction of φ to W, is said to be an *ideal* if $[w, v] \in W$, for all $w \in W, v \in V$. A Hom-Lie algebra (V, φ) is said to be *regular* if φ is bijective. Recall that the center of a Lie algebra, Z(V), is defined as $Z(V) = \{x \in V | [x, v] = 0, \forall v \in V\}$.

As a generalization, the set $Z_{\varphi}(V) = \{x \in V \mid [\varphi^k(x), v] = 0, \forall v \in V, k \geq 0\}$, where $\varphi^0 = id_V$ and φ^k , $k \geq 1$ is the k times composition of φ with itself, is the largest central ideal of (V, φ) which is called the *Hom-center* of (V, φ) . Let (V, φ) and (W, ψ) be two Hom-Lie algebras. A linear map $f: V \longrightarrow W$ is a *Hom-Lie algebra morphism*, if $f([v_1, v_2]) = [f(v_1), f(v_2)]$, for all $v_1, v_2 \in V$ and $f \circ \varphi = \psi \circ f$. This property may be more palatable by asserting that the following diagram is commutative.

$$V \xrightarrow{f} W$$

$$\varphi \downarrow \qquad \qquad \downarrow \psi$$

$$V \xrightarrow{f} W$$

In 1987, Filippov introduced the notion of n-Lie algebras which we recall that in the following definition [12].

Definition 3 Let $n \in \mathbb{N}$ and $n \geq 2$. An n-Lie algebra is a pair $(V, [-, \cdots, -])$ where V is a vector space and

$$[-,\ldots,-]:V\oplus\cdots\oplus V\longrightarrow V,$$
$$(v_1,\ldots,v_n)\longmapsto [v_1,\ldots,v_n],$$

is a skew-symmetric n-linear map, called n-Lie bracket, that satisfies the following generalized Jacobi identity

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n] = \sum_{i=1}^n [x_1,\ldots,[x_i,y_2,\ldots,y_n],\ldots,x_n].$$

Clearly, such an algebra becomes an ordinary Lie algebra, when n=2.

A generalization of Hom-Lie algebras is the following notion which is defined by H. Ataguema, A. Makhlouf, and S. Silvestrov in [3].

Definition 4 An *n-Hom-Lie algebra* is a triple $(V, [-, \cdots, -], \varphi)$ in which $(V, [-, \cdots, -])$ is an *n-*Lie algebra and $\varphi : V \to V$ is a linear operator such that for all $v_1, \ldots, v_n, w_2, \ldots, w_n \in V$ the following identity holds

$$[[v_1, \dots, v_n], \varphi(w_2), \dots, \varphi(w_n)] = \sum_{i=1}^n [\varphi(v_1), \dots, [v_i, w_2, \dots, w_n], \varphi(v_{i+1}), \dots, \varphi(v_n)].$$

It is denoted by (V, φ) briefly.

A subspace W of n-Hom-Lie algebra (V, φ) , which is closed under the n-Lie bracket and φ is called n-Hom-Lie subalgebra. An n-Hom-Lie subalgebra W of V is called an n-Hom-Lie ideal, provided

$$[W, \underbrace{V, \dots, V}_{(n-1)-times}] \subseteq W.$$

The *n*-Hom-Lie ideal generated by $\langle [v_1, \ldots, v_n] \mid v_i \in V \rangle$ is the *derived* ideal and denoted by V^2 . The *Hom-center* of *n*-Hom-Lie algebra (V, φ) is defined as

$$Z_{\varphi}(V) = \{x \in V : [\varphi^k(x), v_1, \dots, v_{n-1}] = 0 \ \forall v_i \in V, 1 \le i \le n-1, k \ge 0\},\$$

which is an ideal.

Definition 5 Let (V, φ) and (W, ψ) be two *n*-Hom-Lie algebras. A linear map $f: V \longrightarrow W$ is an *n-Hom-Lie algebra morphism*, if

$$f([v_1, \dots, v_n]) = [f(v_1), \dots, f(v_n)],$$

for all $v_1, \ldots, v_n \in V$ and $f \circ \varphi = \psi \circ f$.

In our investigation the following definition is fundamental.

Definition 6 Let (V, φ) and (W, ψ) be two *n*-Hom-Lie algebras and

$$\alpha: V/Z_{\varphi}(V) \longrightarrow W/Z_{\psi}(W),$$

and $\beta:V^2\longrightarrow W^2$ be two Hom-Lie algebra morphisms such that the following diagram commutes

$$V/Z_{\varphi}(V) \oplus \cdots \oplus V/Z_{\varphi}(V) \xrightarrow{\rho} V^{2}$$

$$\uparrow^{\beta}$$

$$W/\psi(W) \oplus \cdots \oplus W/\psi(W) \xrightarrow{\sigma} W^{2}$$

in which ρ and σ are defined by $\rho(\overline{v}_1,\ldots,\overline{v}_n)=[v_1,\ldots,v_n]$, for all

$$\overline{v}_i = v_i + Z_{\varphi}(V) \in V/Z_{\varphi}(V),$$

and $\sigma(\widetilde{w}_1,\ldots,\widetilde{w}_n) = [w_1,\ldots,w_n]$, for all

$$\widetilde{w}_i = w_i + Z_{\psi}(W) \in W/Z_{\psi}(W), \quad 1 \leqslant i \leqslant n.$$

In other words, $\beta([v_1,\ldots,v_n])=[w_1,\ldots,w_n]$, whenever $w_i \in \alpha(v_i+Z_{\varphi}(V))$ for $i=1,\ldots,n$. Then the pair (α,β) is called *homoclinism* and if they are both isomorphism, then (α,β) is *isoclinism* and we write $V \sim W$.

The proof of the following lemmas are straightforward, so we refer the reader to [4] for obtaining more information.

Lemma 1 If (V, φ) is an n-Hom-Lie algebra and (W, ψ) is an abelian n-Hom-Lie algebra, then $V \sim V \oplus W$.

Lemma 2 Let N be an ideal of n-Hom-Lie algebra (V, φ) . Then we have

- (i) $N \cap V^2 = 0$ implies $V \sim V/N$.
- (ii) if (V,φ) is of finite dimension and $V \sim V/N$, then $N \cap V^2 = 0$.

Lemma 3 If (α, β) is the isoclinism pair between two n-Hom-Lie algebras (V, φ) and (W, ψ) , then

(i)
$$\alpha(a + Z_{\varphi}(V)) = \beta(a) + Z_{\psi}(W)$$
.

(ii)
$$\beta([a, v_2, \dots, v_n]) = [\beta(a), w_1, \dots, w_n], \text{ for all } a \in V^2, \ v_i \in V, \text{ and}$$

$$w_i \in \alpha(v_i + Z_{\varphi}(V)), \quad 2 \le i \le n.$$

In 1994, Moneyhun defined the notion of stem Lie algebra, [16]. Now, we define $Hom\text{-}stem\ n\text{-}Hom\text{-}Lie$ algebras which some results in the next section are given based on this concept. An n-Hom-Lie algebra $(V, [-, \cdots, -], \varphi)$ is called Hom-stem if $Z_{\varphi}(V) \subseteq V^2$.

The existance of a Hom-stem n-Hom-Lie algebra in each isoclinism family of n-Hom-Lie algebras, is stated in the following lemma which can be proved easily.

Lemma 4 Let V be an isoclinism family of n-Hom-Lie algebras. Then

- (i) V contains a Hom-stem n-Hom-Lie algebra.
- (ii) any finite-dimensional n-Hom-Lie algebra (V, φ) in V is Hom-stem if and only if (V, φ) has a minimal dimension in V.

The following proposition shows that the Hom-centers of two isoclinic Hom-stem n-Hom-Lie algebras are isomorphic.

Proposition 1 If (V, φ) and (W, ψ) are two isoclinic Hom-stem n-Hom-Lie algebras, then $Z_{\varphi}(V) \cong Z_{\psi}(W)$.

Proof Let (α, β) be an isoclinism pair between (V, φ) and (W, ψ) . Let $v \in Z_{\varphi}(V)$ be arbitrary. Since $Z_{\varphi}(V) \subseteq V^2$, by using Lemma 3 (i), we have

$$\alpha(v + Z_{\varphi}(V)) = \beta(v) + Z_{\psi}(W),$$

which implies $\beta(v) \in Z_{\psi}(W)$ and thus $\beta(Z_{\varphi}(V)) \subseteq Z_{\psi}(W)$. On the other hand, for $z \in Z_{\psi}(W)$, since β is onto, there exists $x \in V^2$ such

that $\beta(x) = z$. By Lemma 3 (i), we can write

$$\alpha(x + Z_{\varphi}(V)) = \beta(x) + Z_{\psi}(W) = z + Z_{\psi}(W) = 0.$$

Now, since α is an isomorphism we conclude $x \in Z_{\varphi}(V)$ and so

$$z = \beta(x) \in \beta(Z_{\varphi}(V)), \quad \text{or} \quad Z_{\psi}(W) \subseteq \beta(Z_{\varphi}(V)).$$

Hence $Z_{\psi}(W) = \beta(Z_{\varphi}(V))$ and consequently $Z_{\varphi}(V) \cong Z_{\psi}(W)$.

3 Factor sets in n-Hom-Lie algebras

In studying n-Hom-Lie algebras, the concept of factor sets is a basic tool. In 1994, the factor sets in Lie algebras are defined by Moneyhun, [16]. In this section, we introduce them for n-Hom-Lie algebras and investigate some of their properties.

Definition 7 Let (V, φ) be a finite-dimensional *n*-Hom-Lie algebra. The *n*-linear map

$$r: \frac{V}{Z_{\wp}(V)} \oplus \cdots \oplus \frac{V}{Z_{\wp}(V)} \longrightarrow Z_{\wp}(V)$$

is said to be a factor set when

- (i) $[\overline{v}_1, \dots, \overline{v}_i, \dots, \overline{v}_j, \dots, \overline{v}_n] = 0$, for all $\overline{v}_k = v_k + Z_{\varphi}(V) \in V/Z_{\varphi}(V)$ with $\overline{v}_i = \overline{v}_j$,
- (ii) $r([\overline{v}_1, \dots, \overline{v}_n], \overset{\sim}{\varphi}(\overline{w}_2), \dots, \overset{\sim}{\varphi}(\overline{w}_n)) = \sum_{i=1}^n r(\overset{\sim}{\varphi}(\overline{v}_1), \dots, [\overline{v}_i, \overline{w}_2, \dots, \overline{w}_n], \dots, \overset{\sim}{\varphi}(\overline{v}_n)),$

for all $\overline{v}_i, \overline{w}_i \in V/Z_{\varphi}(V), 1 \leq i \leq n, 2 \leq j \leq n$, where

$$\widetilde{\varphi}$$
: $V/Z_{\varphi}(V) \longrightarrow V/Z_{\varphi}(V)$,

defined by $\overset{\sim}{\varphi}(\overline{v}) := \varphi(v) + Z_{\varphi}(V)$, $\forall \overline{v} \in V/Z_{\varphi}(V)$. The factor set r is said to be multiplicative if

$$r(\overset{\sim}{\varphi}(\overline{v}_1),\ldots,\overset{\sim}{\varphi}(\overline{v}_n)) = \varphi r(\overline{v}_1,\ldots,\overline{v}_n), \quad \forall \ \overline{v}_i \in V/Z_{\varphi}(V), \ (1 \le i \le n).$$

Lemma 5 Let (V, φ) be an n-Hom-Lie algebra and r be a factor set on (V, φ) . Define

$$R = (Z_{\varphi}(V), \frac{V}{Z_{\varphi}(V)}, r) = \left\{ (a, \overline{v}) : a \in Z_{\varphi}(V), \overline{v} \in \frac{V}{Z_{\varphi}(V)} \right\}.$$

Then

(i) (R, ψ) is an n-Hom-Lie algebra with an n-linear map defined by $[(a_1, \overline{v}_1), \dots, (a_n, \overline{v}_n)] := (r(\overline{v}_1, \dots, \overline{v}_n), [\overline{v}_1, \dots, \overline{v}_n]), \quad (1)$ for all $(a_1, \overline{v}_1), \dots, (a_n, \overline{v}_n) \in R$ and the linear operator $\psi : R \longrightarrow R$ is given by

$$\psi((a,\overline{v})) := (\varphi(a), \overset{\sim}{\varphi}(\overline{v})), \quad \forall (a,\overline{v}) \in R.$$
 (2)

(ii)
$$Z_R := \{(a,0) \in R : a \in Z_{\varphi}(V)\} \cong Z_{\varphi}(V).$$

Proof (i) We need to check only the properties of being n-Hom-Lie algebra. Clearly, the first identity holds. To check the Hom-Jacobi identity, we have

$$\begin{split} &\left[[(a_1,\overline{v}_1),\ldots,(a_n,\overline{v}_n)],\psi(b_2,\overline{w}_2),\ldots,\psi(b_n,\overline{w}_n)\right] \overset{(1),(2)}{=} \\ &\left[(r(\overline{v}_1,\ldots,\overline{v}_n),[\overline{v}_1,\ldots,\overline{v}_n]),(\varphi(b_2),\overset{\sim}{\varphi}(\overline{w}_2)),\ldots,(\varphi(b_n),\overset{\sim}{\varphi}(\overline{w}_n))\right] \overset{(1)}{=} \\ &\left(r([\overline{v}_1,\ldots,\overline{v}_n],\overset{\sim}{\varphi}(\overline{w}_2),\ldots,\overset{\sim}{\varphi}(\overline{w}_n)),[[\overline{v}_1,\ldots,\overline{v}_n],\overset{\sim}{\varphi}(\overline{w}_2),\ldots,\overset{\sim}{\varphi}(\overline{w}_n)]\right) = \\ &\left(\sum_{i=1}^n r(\overset{\sim}{\varphi}(\overline{v}_1),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_i,\overline{w}_2,\ldots,\overline{w}_n],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_n)), \\ &\sum_{i=1}^n [\overset{\sim}{\varphi}(\overline{v}_1),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_i,\overline{w}_2,\ldots,\overline{w}_n],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_n)]\right) = \\ &\sum_{i=1}^n \left(r(\overset{\sim}{\varphi}(\overline{v}_1),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_i,\overline{w}_2,\ldots,\overline{w}_n],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_n))\right) \overset{(1)}{=} \\ &\sum_{i=1}^n \left[(\varphi(a_1),\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_i,\overline{w}_2,\ldots,\overline{w}_n],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_n)]\right) \overset{(1)}{=} \\ &\sum_{i=1}^n \left[(\varphi(a_1),\overset{\sim}{\varphi}(\overline{v}_{i-1})),\ldots,(\varphi(a_{i-1}),\overset{\sim}{\varphi}(\overline{v}_{i-1})),[(a_i,\overline{v}_i),(b_2,\overline{w}_2),\ldots,(b_n,\overline{w}_n)], \\ &\ldots,(\varphi(a_{i+1}),\overset{\sim}{\varphi}(\overline{v}_{i+1})),\ldots,(\varphi(a_n),\overset{\sim}{\varphi}(\overline{v}_n))\right] \overset{(2)}{=} \\ &\sum_{i=1}^n \left[\psi(a_1,\overline{v}_1),\ldots,\psi(a_{i-1},\overline{v}_{i-1}),[(a_i,\overline{v}_i),(b_2,\overline{w}_2),\ldots,(b_n,\overline{w}_n)], \\ &\ldots,\psi(a_{i+1},\overline{v}_{i+1}),\ldots,\psi(a_n,\overline{v}_n)\right], \end{split}$$

for all $(a_i, \overline{v}_i), (b_i, \overline{w}_i) \in R$. Thus (R, ψ) is an *n*-Hom-Lie algebra. The proof of (ii) is obvious.

Definition 8 A linear operator $\varphi: V \longrightarrow V$ on a vector space V is *semisimple* if every φ -invarient subspace has a complementary φ -invarient subspace.

From now, we suppose that each n-Hom-Lie algebra is equipped with a semisimple linear operator. In special case there exists a complement ideal for the ideal $Z_{\omega}(V)$.

The following lemma proves the existence of the factor set for a given n-Hom-Lie algebra and gives the connection between them.

Lemma 6 For an n-Hom-Lie algebra (V, φ) , there exists a factor set r such that

$$V \cong (Z_{\varphi}(V), \frac{V}{Z_{\varphi}(V)}, r).$$

Proof Let K be a complement of $Z_{\varphi}(V)$ in V, i.e. $V = K \oplus Z_{\varphi}(V)$. Now, we define the map $\theta: V/Z_{\varphi}(V) \longrightarrow V$ such that

$$\theta(\overline{v}) = \theta(v + Z_{\varphi}(V)) = \theta(k + a + Z_{\varphi}(V)) = k,$$

when $v \in V, a \in Z_{\varphi}(V), k \in K$. Clearly, $\overline{\theta(\overline{v})} = \overline{v}$ and so

$$[\theta(\overline{v}_1), \dots, \theta(\overline{v}_n)] - \theta[\overline{v}_1, \dots, \overline{v}_n] \in Z_{\varphi}(V), \tag{1}$$

for all $\overline{v}_1, \ldots, \overline{v}_n \in V/Z_{\varphi}(V)$. Now, define

$$r: \frac{V}{Z_{\varphi}(V)} \oplus \cdots \oplus \frac{V}{Z_{\varphi}(V)} \longrightarrow Z_{\varphi}(V)$$

given by

$$r(\overline{v}_1, \dots, \overline{v}_n) := [\theta(\overline{v}_1), \dots, \theta(\overline{v}_n)] - \theta[\overline{v}_1, \dots, \overline{v}_n].$$

First, we have $\theta \stackrel{\sim}{\varphi} = \varphi \theta$, because

$$\theta\stackrel{\sim}{\varphi}(\overline{v})=\theta\stackrel{\sim}{\varphi}(k+a+Z_{\varphi}(V))=\theta(\varphi(k)+\varphi(a)+Z_{\varphi}(V))=\theta(\varphi(k)+Z_{\varphi}(V))=\varphi(k),$$

and

$$\varphi\theta(\overline{v}) = \varphi(\theta(k+a+Z_{\varphi}(V))) = \varphi(k),$$

for all $\overline{v} = \overline{k+a} \in V/Z_{\varphi}(V)$, where $k \in K, a \in Z_{\varphi}(V)$.

To show that r is a factor set, we only need to check the second condition in definition 7. Suppose that $\overline{v}_i, \overline{w}_j \in V/Z_{\varphi}(V), 1 \leq i \leq n$ and $2 \leq j \leq n$. By (1), the elemnet $z \in Z_{\varphi}(V)$ exists such that

$$\theta[\overline{v}_1,\ldots,\overline{v}_n] = [\theta(\overline{v}_1),\ldots,\theta(\overline{v}_n)] + z,$$

and one can write

$$\begin{split} &r([\overline{v}_{1},\ldots,\overline{v}_{n}],\overset{\sim}{\varphi}(\overline{w}_{2}),\ldots,\overset{\sim}{\varphi}(\overline{w}_{n})) = \\ &[\theta[\overline{v}_{1},\ldots,\overline{v}_{n}],\theta(\overset{\sim}{\varphi}(\overline{w}_{2})),\ldots,\theta(\overset{\sim}{\varphi}(\overline{w}_{n}))] - \theta[[\overline{v}_{1},\ldots,\overline{v}_{n}],\overset{\sim}{\varphi}(\overline{w}_{2}),\ldots,\overset{\sim}{\varphi}(\overline{w}_{n})] = \\ &[[\theta(\overline{v}_{1}),\ldots,\theta(\overline{v}_{n})] + z,\varphi\theta(\overline{w}_{2}),\ldots,\varphi\theta(\overline{w}_{n})] - \theta[[\overline{v}_{1},\ldots,\overline{v}_{n}],\overset{\sim}{\varphi}(\overline{w}_{2}),\ldots,\overset{\sim}{\varphi}(\overline{w}_{n})] \\ &= \sum_{i=1}^{n} [\varphi\theta(\overline{v}_{1}),\ldots,\varphi\theta(\overline{v}_{i-1}),[\theta(\overline{v}_{i}),\theta(\overline{w}_{2}),\ldots,\theta(\overline{w}_{n})],\varphi\theta(\overline{v}_{i+1}),\ldots,\varphi\theta(\overline{v}_{n})] \\ &- \theta(\sum_{i=1}^{n} [\overset{\sim}{\varphi}(\overline{v}_{1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{n})]) = \\ &\sum_{i=1}^{n} \left([\theta\overset{\sim}{\varphi}(\overline{v}_{1}),\ldots,\theta\overset{\sim}{\varphi}(\overline{v}_{i-1}),\theta([\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{n})]) - \theta([\overset{\sim}{\varphi}(\overline{v}_{1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{n})]) \right) = \\ &\sum_{i=1}^{n} r(\overset{\sim}{\varphi}(\overline{v}_{1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{n})]) \right) = \\ &\sum_{i=1}^{n} r(\overset{\sim}{\varphi}(\overline{v}_{1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{i-1}),[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\overset{\sim}{\varphi}(\overline{v}_{i+1}),\ldots,\overset{\sim}{\varphi}(\overline{v}_{n})). \end{split}$$

Now, we define $T:(Z_{\varphi}(V),V/Z_{\varphi}(V),r)\longrightarrow V$ such that $T(a,\overline{v})=a+\theta(\overline{v}),$ for all $a\in Z_{\varphi}(V),\overline{v}=v+Z_{\varphi}(V)\in V/Z_{\varphi}(V), k\in K.$ T is well-defined and it is injective, because if $T(a_1,\overline{v}_1)=T(a_2,\overline{v}_2),$ in which $\theta(v_1)=k_1$ and $\theta(v_2)=k_2,$ then $a_1+k_1=a_2+k_2$ and $a_1-a_2=k_2-k_1\in Z_{\varphi}(V)\cap K=0$ implies $(a_1,\overline{v}_1)=(a_2,\overline{v}_2).$ Also, T is n-Hom-Lie algebra morphism as

$$T[(a_1, \overline{v}_1), \dots, (a_n, \overline{v}_n)] = T(r(\overline{v}_1, \dots, \overline{v}_n), [\overline{v}_1, \dots, \overline{v}_n])$$

$$= r(\overline{v}_1, \dots, \overline{v}_n) + \theta([\overline{v}_1, \dots, \overline{v}_n])$$

$$= [\theta(\overline{v}_1), \dots, \theta(\overline{v}_1)]$$

$$= [a_1 + \theta(\overline{v}_1), \dots, a_n + \theta(\overline{v}_n)]$$

$$= [T(a_1, \overline{v}_1), \dots, T(a_n, \overline{v}_n)],$$

for $(a_i, \overline{v}_i) \in R$, $(1 \le i \le n)$. Also, the following diagram commutes

$$Z_{\varphi}(V) \oplus V/Z_{\varphi}(V) \xrightarrow{T} V$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

$$Z_{\varphi}(V) \oplus V/Z_{\varphi}(V) \xrightarrow{T} V$$

since

$$\varphi T(a, \overline{v}) = \varphi(a + \theta(\overline{v})) = \varphi(a + k),$$

$$T\psi(a, \overline{v}) = T(\varphi(a), \overset{\sim}{\varphi}(\overline{v})) = \varphi(a) + \theta(\varphi(v) + Z_{\varphi}(V))$$

$$= \varphi(a) + \varphi(k) = \varphi(a + k),$$

for all
$$a \in Z_{\varphi}(V), \overline{v} = v + Z_{\varphi}(V) \in V/Z_{\varphi}(V), k \in K$$
.

The next lemma gives the connection between two isoclinic Hom-stem n-Hom-Lie algebras.

Lemma 7 Let (V, φ_1) be a Hom-stem n-Hom-Lie algebra in an isoclinism family of n-Hom-Lie algebras \mathfrak{C} . Then for any Hom-stem n-Hom-Lie algebra (W, φ_2) of \mathfrak{C} , there exists a factor set r over (V, φ_1) such that

$$W \cong (Z_{\varphi_1}(V), V/Z_{\varphi_1}(V), r).$$

Proof Let (α, β) be an isoclinism pair of n-Hom-Lie algebras (V, φ) and (W, ψ) . Proposition 1 states $\beta(Z_{\varphi_1}(V)) = Z_{\varphi_2}(W)$. By Lemma 6, there exists a factor set s such that $W \cong (Z_{\varphi_2}(W), W/Z_{\varphi_2}(W), s)$. Now, we define the following factor set

$$r: V/Z_{\varphi_1}(V) \oplus \cdots \oplus V/Z_{\varphi_1}(V) \longrightarrow Z_{\varphi_1}(V)$$
$$(\overline{v}_1, \dots, \overline{v}_n) \longmapsto \beta^{-1}(s(\alpha(\overline{v}_1), \dots, \alpha(\overline{v}_n))),$$

for all $\overline{v}_i \in V/Z_{\varphi_1}(V), 1 \leq i \leq n$.

Now, by noting that $\alpha \stackrel{\sim}{\varphi}_1 = \stackrel{\sim}{\varphi}_2 \alpha$, we show that r is a factor set by the following way

$$r\left([\overline{v}_{1},\ldots,\overline{v}_{n}],\widetilde{\varphi}_{1}(\overline{w}_{2}),\ldots,\widetilde{\varphi}_{1}(\overline{w}_{n})\right)$$

$$=\beta^{-1}\left(s\left(\alpha[\overline{v}_{1},\ldots,\overline{v}_{n}],\alpha(\widetilde{\varphi}_{1}(\overline{w}_{2})),\ldots,\alpha(\widetilde{\varphi}_{1}(\overline{w}_{n}))\right)\right)$$

$$=\beta^{-1}\left(s\left([\alpha(\overline{v}_{1}),\ldots,\alpha(\overline{v}_{n})],\widetilde{\varphi}_{2}\alpha(\overline{w}_{2}),\ldots,\widetilde{\varphi}_{2}\alpha(\overline{w}_{n})\right)\right)$$

$$=\beta^{-1}\left(\sum_{i=1}^{n}s(\widetilde{\varphi}_{2}\alpha(\overline{v}_{1}),\ldots,\widetilde{\varphi}_{2}\alpha(\overline{v}_{i-1}),[\alpha(\overline{v}_{i}),\alpha(\overline{w}_{2}),\ldots,\alpha(\overline{w}_{n})],$$

$$\widetilde{\varphi}_{2}\alpha(\overline{v}_{i+1}),\ldots,\widetilde{\varphi}_{2}\alpha(\overline{v}_{n})\right)\right)$$

$$=\sum_{i=1}^{n}\beta^{-1}s(\alpha\widetilde{\varphi}_{1}(\overline{v}_{1}),\ldots,\alpha\widetilde{\varphi}_{1}(\overline{v}_{i-1}),\alpha[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\alpha\widetilde{\varphi}_{1}(\overline{v}_{i+1}),\ldots,\alpha\widetilde{\varphi}_{1}(\overline{v}_{n}))$$

$$=\sum_{i=1}^{n}r(\widetilde{\varphi}_{1}(\overline{v}_{1}),\ldots,\widetilde{\varphi}_{1}(\overline{v}_{i-1}),[\overline{v}_{i},\overline{w}_{2},\ldots,\overline{w}_{n}],\widetilde{\varphi}_{1}(\overline{v}_{i+1}),\ldots,\widetilde{\varphi}_{1}(\overline{v}_{n})),$$

for all $\overline{v}_i, \overline{w}_j \in V/Z_{\varphi}(V), 1 \leq i \leq n$ and $2 \leq j \leq n$. Put

$$R = (Z_{\varphi_1}(V), V/Z_{\varphi_1}(V), r),$$

and

$$S = (Z_{\varphi_2}(W), W/Z_{\varphi_2}(W), s).$$

By Lemma 5, (R, ψ_1) and (S, ψ_2) are n-Hom-Lie algebras. We define $\eta: R \longrightarrow S$ given by $\eta(a, \overline{v}) = (\beta(a), \alpha(\overline{v}))$. Clearly, η is a well-defined bijection and also,

$$\begin{split} \eta[(a_1,\overline{v}_1),\ldots,(a_n,\overline{v}_n)] &= \eta(r(\overline{v}_1,\ldots,\overline{v}_n),[\overline{v}_1,\ldots,\overline{v}_n]) \\ &= \Big(\beta(r(\overline{v}_1,\ldots,\overline{v}_n)),\alpha([\overline{v}_1,\ldots,\overline{v}_n])\Big) \\ &= \Big(s(\alpha(\overline{v}_1),\ldots,\alpha(\overline{v}_n)),[\alpha(\overline{v}_1),\ldots,\alpha(\overline{v}_n)]\Big) \\ &= [(\beta(a_1),\alpha(\overline{v}_1)),\ldots,(\beta(a_n),\alpha(\overline{v}_n))] \\ &= [\eta(a_1,\overline{v}_1),\ldots,\eta(a_n,\overline{v}_n)], \end{split}$$

for all $a \in Z_{\varphi}(V), \overline{v} \in V/Z_{\varphi}(V)$. Also, the following diagram is commutative

$$R \xrightarrow{\eta} S$$

$$\psi_1 \downarrow \qquad \qquad \downarrow \psi_2$$

$$R \xrightarrow{\eta} S$$

because $\beta\varphi_1=\varphi_2\beta$ and $\alpha\stackrel{\sim}{\varphi}_1=\stackrel{\sim}{\varphi}_2\alpha$ implies

$$\eta \psi_1(a, \overline{v}) = \eta(\varphi_1(a),
\widetilde{\varphi}_1(\overline{v})) = (\beta \varphi_1(a), \alpha \widetilde{\varphi}_1(\overline{v})),
\psi_2 \eta(a, \overline{v}) = \psi_2(\beta(a), \alpha(\overline{v})) = (\varphi_2 \beta(a), \widetilde{\varphi}_2(\alpha(\overline{v})),$$

for all $a \in Z_{\varphi}(V)$, $\overline{v} \in V/Z_{\varphi}(V)$. So η is our desired isomorphism and $R \cong S$.

Lemma 8 Let (V, φ) be an n-Hom-Lie algebra, r and s be two multiplicative factor sets over (V, φ) . Assume that

$$R = (Z_{\varphi}(V), \frac{V}{Z_{\varphi}(V)}, r), \quad Z_R = \{(a, 0) \in R : a \in Z_{\varphi}(V)\}$$

and

$$S = (Z_{\varphi}(V), \frac{V}{Z_{\varphi}(V)}, s), \quad Z_S = \{(a, 0) \in S : a \in Z_{\varphi}(V)\}.$$

If η is an isomorphism from R to S satisfying $\eta(Z_R) = Z_S$, then the restrictions of η on $V/Z_{\varphi}(V)$ and $Z_{\varphi}(V)$ define the automorphisms $\mu \in Aut(V/Z_{\varphi}(V))$ and $\nu \in Aut(Z_{\varphi}(V))$, respectively.

Proof By Lemma 5, (R, ψ) and (S, ψ) are n-Hom-Lie algebras, so we have n-Hom-Lie algebras R/Z_R and S/Z_S and since η is isomorphism and $\eta(Z_R) = Z_S$, thus η induces $\overline{\eta}: (R/Z_R, \psi_1) \longrightarrow (S/Z_S, \psi_2)$ by $(a, \overline{v}) + Z_R \longmapsto \eta(a, \overline{v}) + Z_S$ is an isomorphism in which $\psi_1: R/Z_R \longrightarrow R/Z_R$ and $\psi_2: S/Z_S \longrightarrow S/Z_S$ are linear maps defined by $\psi_1((a, \overline{v}) + Z_R) = \psi(a, \overline{v}) + Z_R$ and $\psi_2((a, \overline{v}) + Z_S) = \psi(a, \overline{v}) + Z_S$, for $(a, \overline{v}) \in R/Z_R$, respectively. Consider σ_1 and σ_2 as two projection maps in the following diagram given by $\sigma_1(\overline{v}) = (0, \overline{v}) + Z_R$ and $\sigma_2(\overline{v}) = (0, \overline{v}) + Z_S$, for $\overline{v} \in V/Z_{\varphi}(V)$. Now, we define μ such that the following diagram commutes.

$$V/Z_{\varphi}(V) \xrightarrow{\mu} V/Z_{\varphi}(V)$$

$$\sigma_{1} \downarrow \qquad \qquad \downarrow \sigma_{2}$$

$$R/Z(R) \xrightarrow{\bar{\eta}} S/Z(S)$$

where $\eta(0,\overline{v}) + Z_S = (0,\mu(\overline{v})) + Z_S$, for all $\overline{v} \in V/Z_{\varphi}(V)$. We prove $\mu \stackrel{\sim}{\varphi} = \stackrel{\sim}{\varphi} \mu$; For each $v \in V$, $\overline{v} \in V/Z_{\varphi}(V)$, one can write

$$(0, \mu \overset{\sim}{\varphi}(\overline{v})) + Z_S = \eta(0, \overset{\sim}{\varphi}(\overline{v})) + Z_S = \eta \psi(0, \overline{v}) + Z_S.$$

On the other hand, if $\eta(0, \overline{v}) - (0, \mu(\overline{v})) = t$, for some $t \in Z_S$, then $\psi(t) \in Z_S$ and so

$$(0, \overset{\sim}{\varphi} \mu(\overline{v})) + Z_S = \psi(0, \mu(\overline{v})) + Z_S = \psi(\eta(0, \overline{v}) + t) + Z_S$$
$$= \psi\eta(0, \overline{v}) + \psi(v) + Z_S = \psi\eta(0, \overline{v}) + Z_S,$$

Since $\eta \psi = \psi \eta$, we have $(0, \mu \overset{\sim}{\varphi}(\overline{v})) + Z_S = (0, \overset{\sim}{\varphi} \mu(\overline{v})) + Z_S$. By the definition, $\sigma_2(\mu \overset{\sim}{\varphi}(\overline{v})) = \sigma_2(\overset{\sim}{\varphi} \mu(\overline{v}))$, and surjectivity of σ_2 implies $\mu \overset{\sim}{\varphi}(\overline{v}) = \overset{\sim}{\varphi} \mu(\overline{v})$. Also,

$$\begin{split} (0,\mu([\overline{v}_{1},\ldots,\overline{v}_{n}])) + Z_{S} &= \eta(0,[\overline{v}_{1},\ldots,\overline{v}_{n}]) + Z_{S} \\ &= \eta([(0,\overline{v}_{1}),\ldots,(0,\overline{v}_{n})]) + Z_{S} \\ &= [\eta(0,\overline{v}_{1}),\ldots,\eta(0,\overline{v}_{n})] + Z_{S} \\ &= [\eta(0,\overline{v}_{1}) + Z_{S},\ldots,\eta(0,\overline{v}_{n}) + Z_{S}] \\ &= [(0,\mu(\overline{v}_{1})) + Z_{S},\ldots,(0,\mu(\overline{v}_{n})) + Z_{S}] \\ &= [(0,\mu(\overline{v}_{1})),\ldots,(0,\mu(\overline{v}_{n}))] + Z_{S} \\ &= (0,[\mu(\overline{v}_{1}),\ldots,\mu(\overline{v}_{n})]), \end{split}$$

for $\overline{v}_i \in V/Z_{\varphi}(V), 1 \leq i \leq n$. Hence $\mu([\overline{v}_1, \dots, \overline{v}_n]) = [\mu(\overline{v}_1), \dots, \mu(\overline{v}_n)]$ and μ is an automorphism i.e. $\mu \in Aut(V/Z_{\varphi}(V))$. Now define ν such that the following diagram is commutative

$$Z_{\varphi}(V) \xrightarrow{\nu} Z_{\varphi}(V)$$

$$\bar{\sigma}_{1} \downarrow \qquad \qquad \downarrow \bar{\sigma}_{2}$$

$$Z_{R} \xrightarrow{\tilde{\mu}} Z_{S}$$

where $\overline{\sigma_1}$ and $\overline{\sigma_2}$ are projection maps and $\eta(a,0) = (\nu(a),0)$, for all $a \in Z_{\varphi}(V)$. Similarly, one can easily check that ν is automorphism.

Lemma 9 Let (V, φ) be an n-Hom-Lie algebra and $(R, \psi), (S, \psi), Z_R$ and Z_S be as in Lemma 8.

(i) Consider $\eta: R \longrightarrow S$ is a Hom-Lie algebra isomorphism such that $\eta(Z_R) = Z_S$. Let $\mu \in Aut(V/Z_{\varphi}(V))$ and $\nu \in Aut(Z_{\varphi}(V))$ be the automorphisms induced by η . Then there exists a linear map $\gamma: V/Z_{\varphi}(V) \longrightarrow Z_{\varphi}(V)$ such that

$$\nu(r(\overline{v}_1,\ldots,\overline{v}_n)) + \gamma[\overline{v}_1,\ldots,\overline{v}_n] = s(\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)).$$

(ii) If $\mu \in Aut(V/Z_{\varphi}(V))$ and $\nu \in Aut(Z_{\varphi}(V))$ and $\delta : V/Z_{\varphi}(V) \longrightarrow Z_{\varphi}(V)$ is a linear map such that

$$\nu(r(\overline{v}_1,\ldots,\overline{v}_n)) + \delta[\overline{v}_1,\ldots,\overline{v}_n] = s(\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)), \quad \delta \stackrel{\sim}{\varphi} = \varphi \delta,$$

then there exists an isomorphism $\eta: R \longrightarrow S$ which is induced by μ and ν satisfying $\eta(Z_R) = Z_S$.

Proof (i) For all $a \in Z_{\varphi}(V)$ and $\overline{v} \in V/Z_{\varphi}(V)$ we have $\eta(a,0) = (\nu(a),0)$ and $\eta(0,\overline{v}) + Z_S = (0,\mu(\overline{v})) + Z_S$. Hence

$$\eta(0,\overline{v}) - (0,\mu(\overline{v})) \in Z_S \Rightarrow \eta(0,\overline{v}) - (0,\mu(\overline{v})) = (a_{\overline{v}},0),$$

for some $a_{\overline{v}} \in Z_{\varphi}(V)$. Now, define the map $\gamma : V/Z_{\varphi}(V) \longrightarrow Z_{\varphi}(V)$ such that $\gamma(\overline{v}) = a_{\overline{v}}$, for all $\overline{v} = v + Z_{\varphi}(V) \in V/Z_{\varphi}(V)$. It is a well-defined linear map and we have

$$\begin{split} \eta(a,\overline{v}) &= \eta(a,0) + \eta(0,\overline{v}) \\ &= (\nu(a),0) + (0,\mu(\overline{v})) + (\gamma(\overline{v}),0) \\ &= (\nu(a) + \gamma(\overline{v}),\mu(\overline{v})). \end{split}$$

Hence,

$$\eta[(0,\overline{v}_1),\ldots,(0,\overline{v}_n)] = [\eta(0,\overline{v}_1),\ldots,\eta(0,\overline{v}_n)]$$

$$= [(\gamma(\overline{v}_1),\mu(\overline{v}_1)),\ldots,(\gamma(\overline{v}_n),\mu(\overline{v}_n))]$$

$$= (s(\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)),[\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)]).$$

On the other hand

$$\eta[(0,\overline{v}_1),\ldots,(0,\overline{v}_n)] = \eta(r(\overline{v}_1,\ldots,\overline{v}_n),[\overline{v}_1,\ldots,\overline{v}_n])$$
$$= \nu(r(\overline{v}_1,\ldots,\overline{v}_n)) + \gamma[\overline{v}_1,\ldots,\overline{v}_n],$$

so

$$\nu(r(\overline{v}_1,\ldots,\overline{v}_n)) + \gamma[\overline{v}_1,\ldots,\overline{v}_n] = s(\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)).$$

(ii) We only check that the following diagram commutes, in which $\eta: R \longrightarrow S$ is defined by $\eta(a, \overline{v}) = (\nu(a) + \delta(\overline{v}), \mu(\overline{v}))$,

$$\begin{array}{ccc} R & \stackrel{\eta}{\longrightarrow} & S \\ \downarrow \psi & & \downarrow \psi \\ R & \stackrel{\eta}{\longrightarrow} & S \end{array}$$

$$\begin{split} \eta \psi(a, \overline{v}) &= \eta(\varphi(a), \overset{\sim}{\varphi}(\overline{v})) = (\nu \varphi(a) + \delta \overset{\sim}{\varphi}(\overline{v}), \mu \overset{\sim}{\varphi}(\overline{v})), \\ \psi \eta(a, \overline{v}) &= \psi(\nu(a) + \gamma(\overline{v}), \mu(\overline{v})) = (\varphi \nu(a) + \varphi \delta(\overline{v}), \overset{\sim}{\varphi} \mu(\overline{v})). \end{split}$$

Since μ and ν are isomorphisms such that $\delta \stackrel{\sim}{\varphi} = \varphi \delta$, $\varphi \nu = \nu \varphi$ and $\mu \stackrel{\sim}{\varphi} = \stackrel{\sim}{\varphi} \mu$, one concludes $\eta \psi = \psi \eta$.

The following theorem plays a major role which leads us to deduce the main theorems of this section.

Theorem 1 Let (V, φ_1) and (W, φ_2) be two finite-dimensional Hom-stem n-Hom-Lie algebras and φ_1 be onto. Then $V \sim W$ if and only if $V \cong W$.

Proof Suppose that $V \sim W$. By Lemmas 6 and 7,

$$V \cong (Z_{\varphi_1}(V), V/Z_{\varphi_1}(V), r) = R,$$

and also

$$W \cong (Z_{\varphi_2}(W), W/Z_{\varphi_2}(W), s) = S.$$

Now, let (α, β) be isoclinism pair between the *n*-Hom-Lie algebras (R, ψ_1) and (S, ψ_2) . Certainly $Z_R = Z(R)$ and $Z_S = Z(S)$. Let the map $\mu \in Aut(V/Z_{\varphi_1}(V))$ is defined by

$$\alpha((0,\overline{v}) + Z_R) = (0,\mu(\overline{v})) + Z_S,$$

for all $\overline{v} \in V/Z_{\varphi_1}(V)$.

Also, $\nu \in Aut(Z_{\varphi_1}(V))$ is the map defined by $\beta(a,0) = (\nu(a),0)$, for all $a \in Z_{\varphi_1}(V)$. Let us consider the following commutative diagram

$$V/Z_{\varphi_1}(V) \times \cdots \times V/Z_{\varphi_1}(V) \xrightarrow{\rho} R/Z_R \times \cdots \times R/Z_R \xrightarrow{\theta} R^2$$

$$\downarrow^{\alpha^n} \qquad \qquad \downarrow^{\beta}$$

$$\rho(\overline{v}_{1}, \dots, \overline{v}_{n}) = ((0, \overline{v}_{1}) + Z_{R}, \dots, (0, \overline{v}_{n}) + Z_{R})),
\sigma(\overline{v}_{1}, \dots, \overline{v}_{n}) = ((0, \overline{v}_{1}) + Z_{S}, \dots, (0, \overline{v}_{n}) + Z_{S})),
\xi((a_{1}, \overline{v}_{1}) + Z_{S}, \dots, (a_{n}, \overline{v}_{n}) + Z_{S}) = [(a_{1}, \overline{v}_{1}), \dots, (a_{n+1}, \overline{v}_{n})]
= (s(\overline{v}_{1}, \dots, \overline{v}_{n}), [\overline{v}_{1}, \dots, \overline{v}_{n}]),
\theta((a_{1}, \overline{v}_{1}) + Z_{R}, \dots, (a_{n}, \overline{v}_{n}) + Z_{R}) = [(a_{1}, \overline{v}_{1}), \dots, (a_{n}, \overline{v}_{n})]
= (r(\overline{v}_{1}, \dots, \overline{v}_{n}), [\overline{v}_{1}, \dots, \overline{v}_{n}]).$$

We have

$$\beta\theta((0,\overline{v}_1)+Z_R,\ldots,(0,\overline{v}_n)+Z_R)) = \beta(r(\overline{v}_1,\ldots,\overline{v}_n),[\overline{v}_1,\ldots,\overline{v}_n])$$
$$= \beta[(0,\overline{v}_1),\ldots,(0,\overline{v}_n)],$$

and further

$$\xi \alpha^{n}((0, \overline{v}_{1}) + Z_{R}, \dots, (0, \overline{v}_{n}) + Z_{R})) = \xi((0, \mu(\overline{v}_{1})) + Z_{S}, \dots, (0, \mu(\overline{v}_{n})) + Z_{S}))$$

$$= [(0, \mu(\overline{v}_{1})), \dots, (0, \mu(\overline{v}_{n}))]$$

$$= (s(\mu(\overline{v}_{1})), \dots, \mu(\overline{v}_{n})), [\mu(\overline{v}_{1})), \dots, \mu(\overline{v}_{n}]).$$

Hence we have $\beta[(0, \overline{v}_1), \dots, (0, \overline{v}_n)] = (s(\mu(\overline{v}_1)), \dots, \mu(\overline{v}_n)), [\mu(\overline{v}_1)), \dots, \mu(\overline{v}_n]).$ The map $\delta: (V/Z_{\varphi_1}(V))^2 \longrightarrow Z_{\varphi_1}(V)$ such that

$$\beta(0, [\overline{v}_1, \dots, \overline{v}_n]) = (\delta([\overline{v}_1, \dots, \overline{v}_n]), t),$$

where $t \in V/Z_{\varphi_1}(V)$ is considered. Thus we get

$$\nu(r(\overline{v}_1,\ldots,\overline{v}_n)) + \delta[\overline{v}_1,\ldots,\overline{v}_n] = s(\mu(\overline{v}_1),\ldots,\mu(\overline{v}_n)).$$

To apply Lemma 9, we may extend δ to $V/Z_{\varphi_1}(V)$ by assuming that it vanishes on the complement of $(V/Z_{\varphi_1}(V))^2$ in $V/Z_{\varphi_1}(V)$. Now, we need only to show $\delta \widetilde{\varphi}_1 = \varphi_1 \delta$. For all $\overline{v}_1, \ldots, \overline{v}_n, t \in V/Z_{\varphi_1}(V)$

$$\delta(\widetilde{\varphi_1} \ [\overline{v_1}, \dots, \overline{v_n}], t) = \beta(0, \widetilde{\varphi_1} \ ([\overline{v_1}, \dots, \overline{v_n}]) = \beta\psi_1(0, [\overline{v_1}, \dots, \overline{v_n}]).$$

Further $\widetilde{\varphi_1}$ is onto, i.e. $\widetilde{\varphi_1}$ (t')=t for some $t'\in V/Z_{\varphi_1}(V).$ So

$$(\varphi_1 \delta[\overline{v}_1, \dots, \overline{v}_n], t) = (\varphi_1 \delta[\overline{v}_1, \dots, \overline{v}_n], \widetilde{\varphi}_1(t'))$$

$$= \psi_1(\delta[\overline{v}_1, \dots, \overline{v}_n], t')$$

$$= \psi_1 \beta(0, [\overline{v}_1, \dots, \overline{v}_n]).$$

Hence $\varphi_1\delta(\overline{v})=\delta \ \widetilde{\varphi_1} \ (\overline{v})$, for all $\overline{v}\in V^2$. Consider $V=V^2\oplus U$ and define δ to be zero in U. Then $\varphi_1\delta(\overline{u})=0$, for all $u\in U$. Since φ_1 is semisimple, $\varphi_1(u)\in U$, thus

$$\delta \widetilde{\varphi_1} (\overline{u}) = \delta(\varphi_1(u) + Z_{\varphi_1}(V)) = 0.$$

Consequently, $\varphi_1 \delta = \delta \ \widetilde{\varphi_1}$ and now we can use Lemma 9 to obtain the result.

Theorem 2 Let $\mathfrak C$ be an isoclinism family of finite-dimensional regular n-Hom-Lie algebras. Then any $V \in \mathfrak C$ can be expressed as $V = T \oplus A$, where T is a Hom-stem n-Hom-Lie algebra and A is some finite-dimensional abelian n-Hom-Lie algebra.

Theorem 3 Let (V, φ_1) and (W, φ_2) be two n-Hom-Lie algebras with same dimension. Then $V \sim W$ if and only if $V \cong W$.

The following example shows that the above theorem does not valid for two different dimension n-Hom-Lie algebras.

Example 2 Let (V, φ) be an (n+1)-dimensional n-Hom-Lie algebra over a field F defined by

$$[e_2, \dots, e_{n+1}] = e_1, \quad [e_1, e_3, \dots, e_{n+1}] = e_2,$$

where $\{e_1, \ldots, e_{n+1}\}$ is a basis for V and all other commutator relations are zero. The linear map φ is defined as follows

$$\varphi(e_1) = e_1, \quad \varphi(e_{2i}) = e_{2i+1}, \quad \varphi(e_{2i+1}) = e_{2i}, \quad 1 \le i \le n.$$

Then $V^2 = \langle e_1, e_2 \rangle$ and $Z_{\varphi}(V) = 0$ and hence $V/Z_{\varphi}(V) \cong V$. Now, let (W, ψ) be an (n+2)-dimensional n-Hom-Lie algebra with the basis $\{e_1, \ldots, e_{n+2}\}$ and the commutator relations are defined by

$$[e_2, \dots, e_{n+1}] = e_1, [e_1, e_3, \dots, e_{n+1}] = e_2,$$

and all other commutator relations are zero. Also, the linear map is given by

$$\psi(e_1) = e_1, \quad \psi(e_{n+2}) = e_{n+2}, \quad \psi(e_{2i}) = e_{2i+1}, \quad \psi(e_{2i+1}) = e_{2i},$$

for $1 \le i \le n/2$. Then $W^2 = \langle e_1, e_2 \rangle$ and $Z_{\psi}(W) = \langle e_{n+2} \rangle$ and so

$$W/Z_{\psi}(W) = \langle \overline{e}_1, \dots, \overline{e}_{n+1} \rangle,$$

where $\overline{e}_i = e_i + Z_{\psi}(W)$. We conclude that $V^2 \cong W^2$ and $V/Z_{\varphi}(V) \cong W/Z_{\psi}(W)$ and hence $V \sim W$ while $dim(V) \neq dim(W)$.

References

- F. Ammar, Z. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21, 813–836 (2011).
- J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of n-Lie algebras and n-ary Hom-Nambu-Lie Algebras, J. Math. Phys., 52, 123502 (2011).
- 3. H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of *n*-ary nambu algebras and beyond, J. Math. Phys., 50(1), (2009).
- P. Batten, E. Stitzinger, On covers of Lie algebras, Comm. Algebra, 24, 4301–4317 (1996).
- J. M. Casas, X. Garcia-Martinez, Abelian extensions and crossed modules of Hom-Lie algebra, J. Pure Appl. Algebra, 224, 987–1008 (2020).
- J. M. Casas, M.A.Insua, N. Pacheco, On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat., 44, 277–288 (2015).
- J. M. Casas, E. Khmaladze, N. P. Rego, A non-abelian tensor product of Hom-Lie algebras, Bulletin of the Malaysian mathematical science society, 40, 1035–1054 (2016).
- 8. Y. Cheng, Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (Engl. Ser.), 27, 813–830 (2011).
- G. J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. Journal, 33, 101–120 (1991).
- 10. K. Erdmann, M. J. Wildon, Intrduction to Lie algebras, (2006).
- M. Eshrati , M. R. R. Moghaddam , F. Saeedi, Some properties on Isoclinism in n-Lie algebras, Communications in Algebra, 44, 3005–3019 (2016).
- 12. V. T. Filippov, n-Lie algebras, Sib. Mat. Zh., 26, 126–140 (1987).
- 13. P. Hall, The classification of prime-power groups, J. Reine Angew. Math, 182, 130–141 (1940).
- 14. J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ -derivation, Journal of Algebra, 695, 314–361 (2002).
- Q. Jin, X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319, 1398–1408 (2008).
- 16. K. Moneyhun, Isoclinisms in Lie algebras, Algebras, Groups and Geometries, 11, 9-22 (1994).
- 17. P. Niroomand, A Note on the Schur multiplier of a nilpotent Lie algebra, Communications in Algebra, 39, 1293–1297 (2011).
- 18. P. Niroomand, On the tensor square of non-abelian nilpotent finite dimensional Lie algebras, Linear and Multilinear Algebra, 831–836 (2011).
- F. Parvaneh, M. R. R. Moghaddam, Some properties of n-isoclinism in Lie algebras, Italian J. Pure Appl. Math., 28, 165–176 (2011).
- A. Salemkar, F. Mirzaei, Characterizing n-isoclinism classes of Lie algebras, Communications in Algebra, 38, 3396–3403 (2010).
- Y. Sheng, Representations of Hom-Lie algebras, Algebra Represent. Theory, 15, 1081– 1098 (2012).
- 22. L. Song, R. Tang, Cohomologies, deformations and extensions of *n*-Hom-Lie algebras, Journal of Geometry and Physics, 141, 65–78 (2019).
- 23. D. Yau, Hom-algebras and homology, J. Lie Theorey, 19, 409–421 (2009).
- D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras and quasi-triangular bialgebras, J. Phys. A, 42, 165202 (12pp) (2009).