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Abstract Nilpotent Lie algebras have played an important role in mathe-
matics in the classification theory of Lie algebras. Let (N,L) be a pair of
finite dimensional Lie algebras. Let K be an ideal of L such that L = N ⊕K
and N be a filiform ideal of L. Also, let dim N = n and dimK = m. Then
s′(N,L) =

1

2
(n− 1)(n− 2) + 1 + (n− 1)m− dimM(N,L). In this paper, we

characterize the pair (N,L) for s′(N,L) = 0, 1, 2, . . . , 15.
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1 Introduction

Let (N,L) be a pair of Lie algebras, in which N is an ideal in L. If N admits
a complement in L, then the Schur multiplier of the pair (N,L), M(N,L)
is defined to be the factor Lie algebra (R ∩ [S, F ])/[R,F ], in which S is an
ideal in F such that N ∼= S/R (see [2], fore more information). In particular,
if N = L, then M(L,L) = M(L) is the Schur multiplier of L (see [3,6,
9]). Moneyhun [9] proved that if L is a Lie algebra of dimension n, then
dimM(L) =

1

2
n(n−1)− t(L), where t(L) is a non-negative integer. In [3,5,6],

all nilpotent Lie algebras are characterized, when t(L) = 0, 1, . . . , 8. Let (N,L)
be a pair of finite dimensional nilpotent Lie algebras. Saeedi et al. [13] proved
that if N admits a complement K say, in L with dim N = n and dim K = m,
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then
dimM(N,L) =

1

2
n(n+ 2m− 1)− t(N,L), (1)

where t(N,L) ≥ 0. This gives us the Moneyhun’s result, if m = 0. The author
and colleagues [2] characterized the pair (N,L), for which t(N,L) = 0, 1, 2, 3, 4.
Moreover, they determined pairs (N,L) for t(N,L) = 0, 1, . . . , 10, when L is a
filiform Lie algebra. Also, Niroomand and Russo [11] proved that

dimM(L) ≤ 1

2
(n+m− 2)(n−m− 1) + 1, (2)

where L is a non-abelian nilpotent Lie algebra with dim L = n and dim L2 =

m. The above upper bound implies that dim M(L) =
1

2
(n−1)(n−2)+1−s(L),

where s(L) ≥ 0. Niroomand et al. in [10–12] classified the structure of L, when
s(L) = 0, 1, 2, 3. Moreover, it is proved under some conditions that

dimM(N,L) =
1

2
(n− 1)(n− 2) + 1 + (n− 1)m− s′(N,L), (3)

where s′(N,L) ≥ 0, dimN = n and dimK = m.
In the present paper, we characterize all pairs (N,L) when N is a filiform

Lie algebra and s′(N,L) = 0, 1, 2, . . . , 15. Note that in the proof of main
theorem, the upper bound (2) enables us to provide a new technique in our
classification which makes our upper bound smaller than the one in (1).

2 Main Results

In this section, first we discuss some results which will be used in the main
theorem. A Lie algebra L is filiform if L has maximal nilpotency class(see [2] for
more information). We recall that a Lie algebra L is called a Heisenberg algebra
provided that L2 = Z(L) and dimL2 = 1. A Heisenberg Lie algebra has odd
dimension with a basis e, e1, . . . , e2m subject to the relations [e2i−1, e2i] = e
for i = 1, . . . ,m. The Heisenberg Lie algebra of dimension 2m + 1 is denoted
by H(m). A Lie algebra L is abelian, if [x, y] = 0, for all x, y ∈ L and A(n)
will denote the abelian Lie algebra of dimension n. In Theorem 1, we extend
Theorem 5 of [1]. These results are similar to the work of B. Mashayekhy etal.
in the case of groups (2013). See [[8], Theorems 2.1 and 2.2].

The following lemma plays an essential role in our investigations.

Lemma 1 ([14], Theorem 2.3) Let L be a non-abelian n-dimensional nilpotent
Lie algebra of maximal class and n ≥ 4. Then 0 ≤ s(L) ≤ 15 if and only if
L is isomorphic to one of the Lie algebras L4,3, L5,6 L5,7, L6,15, L6,16, L6,17,
L6,18, L1, L2, L3, L4, L5, L6, L7, or L8.

Theorem 1 Let (N,L) be a pair of finite dimensional Lie algebras such that
L is a nilpotent Lie algebra, N is a non-abelian n-dimensional nilpotent Lie
algebra of maximal class and n ≥ 4. Also, let K be an ideal of L such that
L = N ⊕K, dimN = n, dimK = m and
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s′ = s′(N,L) =
1

2
(n− 1)(n− 2) + 1 + (n− 1)m− dimM(N,L).

Then
1. In the cases s′ = 0, 1 there are no pairs.
2. s′ = 2 if and only if (N,L) ∼= (L4,3, L4,3).
3. s′ = 3 if and only if (N,L) ∼= (L4,3, L4,3 ⊕A(1)).
4. s′ = 4 if and only if (N,L) is isomorphic to one of the following pairs:

(L5,6, L5,6), (L5,7, L5,7) or (L4,3, L4,3 ⊕A(2)).

5. s′ = 5 if and only if (N,L) ∼= (L4,3, L4,3 ⊕A(3)).
6. s′ = 6 if and only if (N,L) is isomorphic to one of the following pairs:

(L4,3, L4,3 ⊕A(4)), (L5,6, L5,6 ⊕A(1)), or (L5,7, L5,7 ⊕A(1)).

7. s′ = 7 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕A(5)) or (L4,3, L4,3 ⊕H(1)).

8. s′ = 8 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕A(6)), (L4,3, L4,3 ⊕H(1)⊕A(1)),
(L5,6, L5,6 ⊕A(2)), (L5,7, L5,7 ⊕A(2)),
(L6,15, L6,15), (L6,17, L6,17),
(L6,18, L6,18).

9. s′ = 9 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕A(7)), (L4,3, L4,3 ⊕H(1)⊕A(2)),
(L4,3, L4,3 ⊕H(2)), (L6,14, L6,14),
(L6,16, L6,16).

10. s′ = 10 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕H(1)⊕A(3)), (L4,3, L4,3 ⊕H(2)⊕A(1)),
(L4,3, L4,3 ⊕A(8)), (L5,6, L5,6 ⊕A(3)),
(L5,7, L5,7 ⊕A(3)).

11. s′ = 11 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕H(1)⊕A(4)), (L4,3, L4,3 ⊕H(2)⊕A(2)),
(L4,3, L4,3 ⊕A(9)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)), (L6,15, L6,15 ⊕A(1)),
(L6,17, L6,17 ⊕A(1)), (L6,18, L6,18 ⊕A(1)).

12. s′ = 12 if and only if (N,L) is isomorphic to one of the following pairs:
(L4,3, L4,3 ⊕H(1)⊕A(5)), (L4,3, L4,3 ⊕H(2)⊕A(3)),
(L4,3, L4,3 ⊕A(10)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(1)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(1)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)), (L5,6, L5,6 ⊕H(1)),
(L5,6, L5,6 ⊕A(4)), (L5,7, L5,7 ⊕H(1)),
(L5,7, L5,7 ⊕A(4)), (L6,14, L6,14 ⊕A(1)),
(L6,16, L6,16 ⊕A(1)), (L1, L1),
(L8, L8) for λ = 3, (L2, L2),
(L4, L4), (L5, L5).



164 Homayoon Arabyani

13. s′ = 13 if and only if (N,L) is isomorphic to one of the following pairs:

(L4,3, L4,3 ⊕H(1)⊕A(6)), (L4,3, L4,3 ⊕H(2)⊕A(4)),
(L4,3, L4,3 ⊕A(11)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)),
(L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(1)), (L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(1)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(1)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(1)),
(L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(2)), (L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 5, 2, 7)), (L4,3, L4,3 ⊕ L(7, 5, 1, 7)),
(L3, L3), (L6, L6),
(L7, L7), (L8, L8) for λ ̸= 3.

14. s′ = 14 if and only if (N,L) is isomorphic to one of the following pairs:

(L4,3, L4,3 ⊕A(12)), (L4,3, L4,3 ⊕H(1)⊕A(7)),
(L4,3, L4,3 ⊕H(2)⊕A(5)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(3)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(3)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(2)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(2)), (L4,3, L4,3 ⊕ L(7, 5, 2, 7)⊕A(1)),
(L4,3, L4,3 ⊕ L(7, 5, 1, 7)⊕A(1)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)⊕A(1)),
(L5,6, L5,6 ⊕H(1)⊕A(1)), (L5,6, L5,6 ⊕A(5)),
(L5,7, L5,7 ⊕H(1)⊕A(1)), (L5,7, L5,7 ⊕A(5)),
(L6,15, L6,15 ⊕A(2)), (L6,17, L6,17 ⊕A(2)),
(L6,18, L6,18 ⊕A(2)).

15. s′ = 15 if and only if (N,L) is isomorphic to one of the following pairs:

(L4,3, L4,3 ⊕A(13)), (L4,3, L4,3 ⊕H(1)⊕A(8)),
(L4,3, L4,3 ⊕H(2)⊕A(6)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(4)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(4)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(3)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(3)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(3)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(3)), (L4,3, L4,3 ⊕ L(7, 5, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 5, 1, 7)⊕A(2)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)⊕A(2)),
(L6,14, L6,14 ⊕A(2)), (L6,16, L6,16 ⊕A(2)).

Proof The necessity of theorem follows from L = N ⊕ K and Lemma 1.4 of
[7]. For sufficiency, put s = s(N) =

1

2
(n − 1)(n − 2) + 1 − dimM(N). Thus,

by Lemma 1.4 of [7], we have

mn−m = (s′ − s) + (dimN/N2)(dimK/K2). (4)

Hence, s ≤ s′. Now, suppose that s′ = 0, then s = 0. So, there are no pairs by
Lemma 1. If s′ = 1, then s = 0, 1 and so, there are no pairs by Lemma 1.
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Assume that s′ = 2. If s = 2, then by Lemma 1, N ∼= L4,3. Hence, by (4)
we have m = 0, which implies that (N,L) ∼= (L4,3, L4,3).

case s′ = 3. If s = 2, then by Lemma 1, N ∼= L4,3 and m = 1. This implies
that K ∼= A(1) and so, (N,L) ∼= (L4,3, L4,3 ⊕A(1)).

case s′ = 4. If s = 2, then N ∼= L4,3. Thus, by Lemma 1, m = 2 and
so, (N,L) ∼= (L4,3, L4,3 ⊕ A(2)). If s = 4, then by (4), N ∼= L5,6 or L5,7. If
N ∼= L5,6, then by (4), m = 0 and so, (N,L) ∼= (L5,6, L5,6). Assume that
N ∼= L5,7, then m = 0 and hence, (N,L) ∼= (L5,7, L5,7).

case s′ = 5. If s = 2, then m = 3 and dimK2 = 0. Thus, (N,L) ∼=
(L4,3, L4,3 ⊕A(3)). If s = 4, then, N ∼= L5,6 or L5,7. Hence, there are no pairs
by (4).

case s′ = 6. If s = 2, then N ∼= L4,3 and so, by (4) we have (N,L) ∼=
(L4,3, L4,3 ⊕A(4)). If s = 4, then N ∼= L5,6 or L5,7. and so, by (4) we have

(N,L) ∼= (L5,6, L5,6 ⊕A(1)) or (L5,7, L5,7 ⊕A(1)).

case s′ = 7. If s = 2, then by Lemma (1) N ∼= L4,3. Thus, by (4) we obtain

(N,L) ∼= (L4,3, L4,3 ⊕A(5)) or (L4,3, L4,3 ⊕H(1)).

If s = 4, then there are no pairs by Lemma 1 and (4).

case s′ = 8. If s = 2, then, by Lemma 1 and (4),

(N,L) ∼= (L4,3, L4,3 ⊕A(6)) or (L4,3, L4,3 ⊕H(1)⊕A(1)).

If s = 4, then

(N,L) ∼= (L5,6, L5,6 ⊕A(2)) or (L5,7, L5,7 ⊕A(2)).

Assume that s = 8, then by Lemma 1, N ∼= L6,15, L6,17 or L6,18. Hence by (4)
we have

(N,L) ∼= (L6,15, L6,15), (L6,17, L6,17), or (L6,18, L6,18).

case s′ = 9. If s = 2, then by Lemma 1, N ∼= L4,3 and so, by (4) we have

(N,L) ∼= (L4,3, L4,3 ⊕A(7)), (L4,3, L4,3 ⊕H(1)⊕A(2)) or (L4,3, L4,3 ⊕H(2)).

If s = 4, then by Lemma 1, we have N ∼= L5,6 or L5,7 and so, there are no
pairs by (4). If s = 8, then there are no pairs by Lemma 1 and (4). If s = 9,
then by Lemma 1 and (4) we have

(N,L) ∼= (L6,14, L6,14) or (L6,16, L6,16).
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case s′ = 10. If s = 2, then N ∼= L4,3 and so, by (4) we have

(N,L) ∼= (L4,3, L4,3⊕H(1)⊕A(3)), (L4,3, L4,3⊕A(8)) or (L4,3, L4,3⊕H(2)⊕A(1)).

If s = 4, then by Lemma 1 and (4) we have

(N,L) ∼= (L5,6, L5,6 ⊕A(3)) or (L5,7, L5,7 ⊕A(3)).

If s = 8, then there are no pairs by Lemma 1 and (4). If s = 9, similarly there
are no pairs.

case s′ = 11. If s = 2, then by Lemma 1 and (4), we have

(N,L) ∼= (L4,3, L4,3⊕H(1)⊕A(4)), (L4,3, L4,3⊕H(2)⊕A(2)) or (L4,3, L4,3⊕A(9)).

If s = 4, then there are no pairs by Lemma 1 and (4). Assume that s = 8.
Then by Lemma 1 and (4) we have

(N,L) ∼= (L6,15, L6,15 ⊕A(1)), (L6,17, L6,17 ⊕A(1),
(L6,18, L6,18 ⊕A(1)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)).

If s = 9, then by Lemma 1 and (4), there are no pairs.
case s′ = 12. If s = 2, then by Lemma 1 and (4) we have

(N,L) ∼= (L4,3, L4,3⊕H(1)⊕A(5)), (L4,3, L4,3⊕H(2)⊕A(3)) or (L4,3, L4,3⊕A(10)).

If s = 4, then by Lemma 1 and (4) we have

(N,L) ∼= (L5,6, L5,6⊕H(1)), (L5,6, L5,6⊕A(4)), (L5,7, L5,7⊕H(1)) or (L5,7, L5,7⊕A(4)).

If s = 8, then by Lemma 1 and (4), there are no pairs. If s = 9, then by Lemma
1 and (4) we have

(N,L) ∼= (L6,14, L6,14 ⊕A(1)), (L6,16, L6,16 ⊕A(1)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(1)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)).

If s = 12, then by Lemma 1 and (4), we have

(N,L) ∼= (L1, L1), (L2, L2), (L4, L4), (L5, L5) or (L8, L8) for λ = 3.

case s′ = 13. If s = 2, then by Lemma 1 and (4) we have

(N,L) ∼= (L4,3, L4,3 ⊕H(1)⊕A(6)), (L4,3, L4,3 ⊕H(2)⊕A(4)),
(L4,3, L4,3 ⊕A(11)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)),
(L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(1)), (L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(1)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(1)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(1)),
(L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(2)), (L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 5, 2, 7)), (L4,3, L4,3 ⊕ L(7, 5, 1, 7)),
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If s = 4, 8, 9, 12, then there are no pairs by (4) and Lemma 1. If s = 13, then
we can see that

(N,L) ∼= (L3, L3), (L6, L6), (L7, L7) or (L8, L8) for λ ̸= 3.

case s′ = 14. Similar to the previous cases we have:

(N,L) ∼= (L4,3, L4,3 ⊕A(12)), (L4,3, L4,3 ⊕H(1)⊕A(7)),
(L4,3, L4,3 ⊕H(2)⊕A(5)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(3)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(3)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(2)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(2)), (L4,3, L4,3 ⊕ L(7, 5, 2, 7)⊕A(1)),
(L4,3, L4,3 ⊕ L(7, 5, 1, 7)⊕A(1)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)⊕A(1)),
(L5,6, L5,6 ⊕H(1)⊕A(1)), (L5,6, L5,6 ⊕A(5)),
(L5,7, L5,7 ⊕H(1)⊕A(1)), (L5,7, L5,7 ⊕A(5)),
(L6,15, L6,15 ⊕A(2)), (L6,17, L6,17 ⊕A(2)),
(L6,18, L6,18 ⊕A(2)).

case s′ = 15. Similar to the previous cases we have:

(N,L) ∼= (L4,3, L4,3 ⊕A(13)), (L4,3, L4,3 ⊕H(1)⊕A(8)),
(L4,3, L4,3 ⊕H(2)⊕A(6)), (L4,3, L4,3 ⊕ L(4, 5, 2, 4)⊕A(4)),
(L4,3, L4,3 ⊕ L(4, 5, 1, 6)⊕A(4)), (L4,3, L4,3 ⊕ L(5, 6, 2, 7)⊕A(3)),
(L4,3, L4,3 ⊕ L′(5, 6, 2, 7)⊕A(3)), (L4,3, L4,3 ⊕ L(7, 6, 2, 7)⊕A(3)),
(L4,3, L4,3 ⊕ L(7, 6, 2, 7, β1, β2)⊕A(3)), (L4,3, L4,3 ⊕ L(7, 5, 2, 7)⊕A(2)),
(L4,3, L4,3 ⊕ L(7, 5, 1, 7)⊕A(2)), (L4,3, L4,3 ⊕ L′(7, 5, 1, 7)⊕A(2)),
(L6,14, L6,14 ⊕A(2)), (L6,16, L6,16 ⊕A(2)).

Here H(m) denotes the Hiesenberg Lie algebra of dimension 2m+ 1, A(m) is
an m-dimensional abelian Lie algebra and L(a, b, c, d) denotes the Lie algebra
discovered for the case t(L) = a, where b = dimL, c = dimZ(L) and d = t(L).
(See [3,5,6] for more information).
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Table 1
dimL Non Zero Multiplication Nilpotent Lie algebra

3 [x1, x2] = x3 H(1)
4 [x1, x2] = x3 H(1)⊕A(1)
5 [x1, x2] = x3 H(1)⊕A(2)
4 [x1, x2] = x3, [x1, x3] = x4 L(3, 4, 1, 4) = L4,3

5 [x1, x2] = x3, [x1, x4] = x5 L(4, 5, 2, 4)
6 [x1, x2] = x3 H(1)⊕A(3)
5 [x1, x2] = x5, [x3, x4] = x5 H(2)
7 [x1, x2] = x3 H(1)⊕A(4)
5 [x1, x2] = x3, [x1, x3] = x5 L(3, 4, 1, 4)⊕A(1)
5 [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5 L(4, 5, 1, 6)
6 [x1, x2] = x5, [x1, x3] = x5, [x3, x4] = x5 H(2)⊕A(1)
6 [x1, x2] = x3, [x1, x4] = x6 L(4, 5, 2, 4)⊕A(1)
8 [x1, x2] = x3 H(1)⊕A(5)
5 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5 L(7, 5, 2, 7)
5 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5 L(7, 5, 1, 7)
5 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5 L′(7, 5, 1, 7)
6 [x1, x2] = x3, [x1, x4] = x6, [x2, x5] = x6 L(5, 6, 2, 7)
6 [x1, x2] = x3, [x4, x5] = x6 L′(5, 6, 2, 7)
6 [x1, x2] = x5, [x3, x4] = x6 L(7, 6, 2, 7)
6 [x1, x2] = x5 + β1x6, [x3, x4] = x5, [x1, x4] = x6, [x3, x2] = β2x6 L(7, 6, 2, 7, β1, β2)
7 [x1, x2] = x5, [x3, x4] = x5 H(2)⊕A(2)
7 [x1, x2] = x7, [x3, x4] = x7, [x5, x6] = x7 H(3)
6 [x1, x2] = x3, [x1, x3] = x6 L(3, 4, 1, 4)⊕A(2)
6 [x1, x2] = x3, [x1, x3] = x6, [x2, x4] = x6 L(4, 5, 1, 6)⊕A(1)
7 [x1, x2] = x3, [x1, x4] = x7 L(4, 5, 2, 4)⊕A(2)
8 [x1, x2] = x5, [x3, x4] = x5 H(2)⊕A(3)
8 [x1, x2] = x7, [x3, x4] = x7, [x5, x6] = x7 H(3)⊕A(1)
10 [x1, x2] = x3 H(1)⊕A(7)

Table 2 Seven-dimensional nilpotent Lie algebras of maximal class

Name Nonzero multiplication dimM(L)
L1 = (123457A) [x1, xi] = xi+1, 2 ≤ i ≤ 6 4
L1 = (123457B) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x2, x3] = x7 4
L3 = (123457C) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x2, x5] = x7, [x3, x4] = −x7 3
L4 = (123457D) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x2, x4] = x7, [x2, x3] = x6 4
L5 = (123457E) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x2, x4] = x7, [x2, x3] = x6 + x7 4
L6 = (123457F ) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x3, x4] = −x7, [x2, x3] = x6

[x2, x4] = [x2, x5] = x7 3
L7 = (123457H) [x1, xi] = xi+1, 2 ≤ i ≤ 6

[x2, x4] = x6, [x2, x5] = x7 3
[x2, x3] = x5 + x7

L8 = (123457I) [x1, xi] = xi+1, 2 ≤ i ≤ 6
[x2, x5] = λx7, [x3, x4] = (1− λ)x7

[x2, x3] = x5, [x2, x4] = x6 4 for λ = 3, and 3 otherwise
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