
Global Analysis and Discrete Mathematics
Volume 7, Issue 1, pp. 109–115
ISSN: 2476-5341 Research Article

Nonsplit Domination Vertex Critical Graph

Girish V Rajashekharaiah · Usha P
Murthy

Received: 16 March 2022 / Accepted: 22 May 2022

Abstract A dominating set D of a graph G = (V,E) is a nonsplit dominating
set if the induced graph ⟨V −D⟩ is connected. The nonsplit domination number
γns(G) is the minimum cardinality of a nonsplit domination set. The purpose
of this paper is to initiate the investigation of those graphs which are critical in
the following sense: A graph G is called vertex domination critical if γ(G−v) <
γ(G) for every vertex v in G. A graph G is called vertex nonsplit critical if
γns(G − v) < γns(G) for every vertex v in G. Initially we test whether some
particular classes of graph are γns-critical or not and then we have shown that
there is no existence of 2-γns-critical graph. Then 3-γns-critical graphs are
characterized.
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1 Introduction

Throughout this paper all our graphs will be finite, undirected, connected and
without loops or multiple edges such that G− v, v ∈ V (G) is not a null graph.
Terminology not defined here will conform to that in [2].

A end vertex in a graph G is a vertex of degree one and support vertex is
a vertex which is adjacent to an end vertex. The diameter of the graph G is
denoted by dia(G).
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A set of vertices S is said to dominate the graph G if for each v /∈ S, there
is a vertex u ∈ S such that v is adjacent to u. The minimum cardinality of
any dominating set is called the domination number of G and is denoted by
γ(G).

The concept of nonsplit domination number was introduced by V.R. Kulli
and B. Janakiram[3]. A dominating set D of a graph G = (V,E) is a nonsplit
dominating set if the induced graph ⟨V −D⟩ is connected. The nonsplit dom-
ination number γns(G) is the minimum cardinality of a nonsplit domination
set. The concept of γ-critical graphs has been studied by Sumner and Blitch
[1] and Sumner [6]. Furthermore the concept of various parameter of critical
domination has been studied by [4,7].

In this paper, we study the nonsplit domination critical graphs. A graph
G is called vertex nonsplit critical if γns(G − v) < γns(G) for every vertex
v in G. Thus, G is k-γns-critical if γns(G) = k, for each vertex v ∈ V (G),
γns(G− v) < k.

First we discuss whether some particular classes of graphs are γns-critical
or not and then we have shown that there is no existence of 2-γns-critical
graph. Then 3-γns-critical graphs are characterized.

2 We require the following theorems to prove our later results

In [3] they had proved the following theorems.

Theorem 1 For any cycle Cn, γns(Cn) = n− 2, n ≥ 3.

Theorem 2 For any path Pn, γns(Pn) = n − 2, n > 3, otherwise γns(Pn) =
n− 1, n ≤ 3.

Theorem 3 For any complete graph Kn, γns(Kn) = 1, n ≥ 2.

Theorem 4 For any bipartite graph Km,n, γns(Km,n) = 2 for 2 ≤ m ≤ n.

Theorem 5 For any star graph K1,n−1, γns(K1,n−1) = n− 1 for n ≥ 1.

3 Main results

Theorem 6 Let G be a connected graph. For any vertex v ∈ V (G),

γns(G)− 1 ≤ γns(G− v) ≤ γns(G) + n− 3, n ≥ 3.

Proof Let G be a connected graph and v ∈ V (G). Let D be a γns-set of G.
Since removal of a vertex can increase the domination number by more than
one and decrease by at most one, γns(G) − 1 ≤ γns(G − v). For the upper
bound, let us assume that γns(G − v) > γns(G) + n − 3. We consider the
following two cases.
Case 1. If γns(G) = 1, then there exists a vertex say, v1 = v ∈ D∩V (G) such
that v1 ∈ N(V (G)− v1) and since ⟨G− v1⟩ has to be connected, therefore the
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graph G− v1 = Kn and by Theorem 3, γns(G− v1) = 1 ≤ γns(G) + n− 3, a
contradiction. Hence γns(G− v) ≤ γns(G) + n− 3.
Case 2. If γns(G) ≥ 2.
Now, suppose γns(G − v) > γns(G) + n − 3 > 2 + n − 3 = n − 1 and since
γns(G) ≤ n− 1, which is a contradiction. Hence γns(G− v) ≤ γns(G) + n− 3.

Theorem 7 The graph G = Cn is γns-critical for n ≥ 5 and not γns-critical
for n < 5.

Proof Case 1. For n = 3.
By Theorem 1, γns(G) = 1 and G− v will be K2 for any vertex v ∈ V (G) and
by Theorem 3, γns(K2) = 1. Thus γns(G) = γns(G− v). Hence γns(G) is not
critical for n = 3.
Case 2. For n = 4.
By Theorem 1, γns(G) = 2 and G − v will be K1,2 for any vertex v ∈ V (G)
and by Theorem 5, γns(K1,2) = 2. Thus γns(G) = γns(G − v). Hence γns(G)
is not critical for n = 4.
Case 3. For n ≥ 5.
By Theorem 1, γns(G) = n− 2 and G− v will be path with n− 1 vertices and
by Theorem 2, γns(Pn−1) = n− 3. Since n− 3 < n− 2, γns(G− v) < γns(G).
Hence γns(G) is critical for n ≥ 5.
The result follows from the cases above.

Theorem 8 The graph Pn is not γns-critical for 4 ≤ n < 8 and γns-critical
for n ≥ 8.

Proof We consider the following three cases.
Case 1. For n = 4.
By Theorem 2, γns(Pn)=2. If v is an end vertex, then Pn − v will be path P3

and by Theorem 2, γns(P3) = 2, Hence γns(Pn − v) = γns(Pn). Otherwise if v
is a support vertex then, Pn−v will be disconnected into two components G1 =
vk, d(vk) = 0 and G2 = P2. Let G1 and G2 are the graphs with V (G1) = n1

and V (G2) = n2 with n1+n2+1 = n. Thus γns(Pn−v) = γns(G1)+γns(G2) =
(n1 + n2 − 1) = 1 + 2− 1 = 2. Hence Pn is not γns-critical for n = 3.
Case 2. For n > 4 and n < 8.
By Theorem 2, γns(Pn) = n − 2. If v is an end vertex, then Pn − v will
be a path with n − 1 vertices and by Theorem 2. γns(Pn−1) = n − 3. Since
n − 2 < n − 3, thus γns(Pn − v) < γns(Pn). Otherwise if v is an not an end
vertex, then the graph Pn−v is disconnected into components say G1 and G2.
Let V1 and V2 be the vertex set of G1 and G2 with |V (G1)| ≤ |V (G2)| and
n1 + n2 +1 = n. If G1 and G2 both contains the number of vertices ≤ 3, then
γns(Pn − v) = n1 + n2 − 1 = n− 2. Hence, γns(Pn − v) = γns(Pn). Otherwise
there exists atleast one of G1 or G2 contain the number of vertices > 3, then
γns(Pn − v) = n1 + n2 − 2 = n− 3. Thus γns(Pn − v) < γns(Pn). Hence Pn is
not γns-critical for n < 8 and n > 4.
Case 3. For n ≥ 8.
By Theorem 2, γns(Pn) = n − 2. If v is an end vertex, then Pn − v will be
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a path with n − 1 vertices and by Theorem 2. γns(Pn − v) = n − 3. Hence
γns(Pn − v) < γns(Pn). Otherwise if v is an not an end vertex, then the graph
Pn − v is disconnected into two components say G1 and G2. Let V1 and V2 be
the vertex set of G1 and G2 with |V (G1)| ≤ |V (G2)| and n1+n2+1 = n with
either one |V (G1)| or |V (G2)| ≥ 4. Hence γns(Pn − v) = n1 + n2 − 2 = n− 3.
Thus γns(Pn − v) < γns(Pn). Hence Pn is γns-critical for n ≥ 8.
This completes the proof.

Lemma 1 Kn is not γns critical for n ≥ 2.

Lemma 2 Km,n is not γns critical for m,n ≥ 1.

Lemma 3 Wn is not γns critical for n ≥ 4.

Theorem 9 If T is a tree which in not a path, then T is not γns-vertex critical.

Proof Let us consider the tree T which is not a path. Let A be the vertex set
of a tree T . Let B = {vi ∈ V (G)/deg(vi) = 1} ⊆ A and C = A − B. We
consider the following two cases.
Case 1. If vi ∈ B. Then γns(T − vi) = γns(T )− |vi|. Hence,

γns(T − vi) < γns(T ).

Case 2. If vi is a non-end vertex ∈ C, then T − vi is disconnected into
components say T11, T12, T13, T14, . . . , T1n. Let D1, D2, D3, . . . , Dn be a γns-
set of T11, T12, T13, T14, . . . , T1n and let n1, n2, n3, . . . , nn be the number of
vertices in T11, T12, T13, T14, . . . , T1n such that n1+n2+n3+ · · ·+nn+1 = n.
Let T11 be the subtree corresponding to max of (ni − Di), i = 1, 2, 3, . . . , n.
Then,

γns(T − vi) = γns(T11) + n1 + n2 + · · ·+ nn

= |D11|+ n1 + n2 + · · ·+ nn

≥ γns(T11) + γns(T12) + γns(T13) + · · ·+ γns(T1n)

≥ γns(T ).

Hence, T which in not a path is not γns-vertex critical.
This completes the proof.

Corollary 1 If in a graph G, every vertex in adjacent to an end vertex, then
the graph G is not γns-critical.

Theorem 10 There exists no 2-γns-critical graph with respect to vertex non-
split domination.

Proof For the existence of 2-γns−critical graph with n vertices, we need at
most n − 1 vertices of degree n − 2 and removal of any vertex should make
the degree of each vertex of equal to n − 2 which is impossible. Therefore,
there is no existence of 2-γns−critical graph with respect to vertex nonsplit
domination.
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Fig. 1 Example for no existence of nonsplit domiantion vertex critical graph

Theorem 11 If a graph is 3-γns-critical, then dia(G) < 3.

Proof Let G be a connected 3-γns-critical graph and suppose that G has a
dia(G) = 3. Assume that v1, v2, . . . , vd be the longest diametrical path with
the distance equal to the diameter of G. Since G is 3-γns-critical graph, then
γns(G− v) = 2 for any vertex v ∈ G. Let D be a γns set of G and D1 be a γns
set of G− v. Since |D1| = 2 and if suppose v1, vd ∈ D1, then removal of v1, vd
from G−v will make the graph G−v disconnected, which is a contradiction to
the definition of the nonsplit domination of the graph. Otherwise there exists
at least one vertex vk in the graph G − v which is not dominated by any of
the vertices of D1 which is a contradiction. Hence the proof.

Theorem 12 If G ̸= Pn is γns-critical, then there is no support vertex v ∈ G.

Proof Suppose v is a support vertex which is adjacent to an end vertex, say
x of a graph G ̸= Pn. Let D be a γns-set of G and D1 be a γns-set of G− v.
Since x is vertex of degree one, then x ∈ D in G and in G− v, x is an isolated
vertex and thus x ∈ D.
Case 1. d(v) = 2.
If v ∈ D and A = {vk/vk ∈ N(v)−{x}} and vk ∈ D, then there exists at least
one vertex vj ∈ V (G)−D, vj /∈ D, vj ̸= x, then we can remove vl, vl ∈ N(vj)∩
D, removal of vl from D, there exists at least one vertex which is not covered
by any vertex of D− vl or G− vl is disconnected. Thus γns(G− v) = γns(G).
Otherwise if at least one vertex of vk /∈ D, then vk is not covered by any vertex
of D−{v}. Hence γns(G− v) = |D| − |v|+ |vk| = |D| = γns(G). Otherwise, If
v /∈ D, then G− v will be disconnected into two components G1 and G2 and
γns(G1)+γns(G2) = γns(G). Hence γns(G−v) = γns(G1)+γns(G2) = γns(G).
Hence it is not γns-critical.
Case 2. d(v) ̸= 2.
If v ∈ D and A = {vk/vk ∈ N(v) − {x}} and vk ∈ D, then there exists
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at least one vertex vj ∈ (V (G) − D), vj /∈ D, vj ̸= x, then we can remove
vl, vl ∈ N(vj)∩D, removal of vl from D, there exists at least one vertex which
is not covered by any vertex of D − vl or G− vl is disconnected. Thus,

γns(G− v) = γns(G).

Otherwise, if at least one vertex say vr ∈ A, vr /∈ D, then vr is not covered by
any vertex of D − {v}. Hence,

γns(G− v) ≥ |D| − |v|+ |vr| = |D| = γns(G).

Otherwise, If v /∈ D, then G − v will be disconnected into components say
G1, G2, . . . , Gn and γns(G1) + γns(G2) + · · ·+ γns(Gn) ≥ γns(G). Hence,

γns(G− v) ≥ γns(G1) + γns(G2) + · · ·+ γns(Gn) = γns(G).

Hence it is not γns-critical.
The results follows from cases above.

Corollary 2 If G ̸= Pn is γns-critical, then no two support vertices are adja-
cent.

Theorem 13 For any graph G ̸= Pn and does not contain support vertex, if
κ(G) = 1, then the graph is not γns- vertex critical.

Proof Let G ̸= Pn has the vertex connectivity one and let D be a γns-set of
G. Let v be the cut-vertex which disconnects G into two components G1 and
G2 and let D1 and D2 are γns-set of G1 and G2. Let n1 and n2 be the number
of vertices in G1 and G2. In the graph G, v is a cut-vertex v /∈ D. Then,

γns(G− v) = min{|D1|+ n2, |D2|+ n1} ≥ |D1|+ |D2|.

Since, |D1|+ |D2| ≥ |D|., hence, the graph G is not γns-critical.
This completes the proof.

4 Application

Let us consider the two Military groups say A and B which are interconnected
with each other with group members as the vertices and the edges as the com-
munication with them. Among these two groups, there are minimum number
of people who had the communication with all the members of the two group
which are called domination members, among them few are having communi-
cation between two groups also. Since the two military groups are connected
with each other, they will form a strong military base.

Suppose if the terrorist people thinks to make the military base to become
inactive, they may think to destroy the domination members in such a way
that the two groups gets separated so that there is no communication between
the groups and the also between the members of the groups. In such a case,
military people can take a precautionary measure in such a way that even if



Nonsplit Domination Vertex Critical Graph 115

they destroy the domination members, still they can have a communication
with the groups and also within the group. This is the purpose for studying
the nonsplit domination.

Now, if we can build the network in such way that if it is critical ie., any
one of the members in a network is not available in a group for some reasons,
then the domination members can be reduce by atleast one.
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