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Abstract For the feasibility of using analytical and numerical studies and
findings on fractional integral equations for integro-differential of the fractional
order, in this work, the equivalence of a fractional Volterra integro-differential
equation of the Hammerstein type with a fractional integral equation is inves-
tigated in the Banach space. For this purpose, we use the mutual properties
of the fractional order derivative and integral on each other.
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1 Introduction

Fractional calculus is an extension of the classical calculus and has recently
found many applications in various fields of science and engineering [4–6,13,
15,17]. For example, studies in [8] cover the latest developments in the field
of fractional dynamics, and [11] concerns fractional calculus’s applications in
viscoelasticity dynamics. Also, there are several papers about the applications
of fractional calculus in complex dynamics in biological tissues, signal process-
ing, viscoelastic materials, temperature estimation, and financial mathematics
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(for example, see [2,3,9,10,12,14,16]).
In this paper, we study the following nonlinear fractional Volterra integro-
differential equation of the Hammerstein type(

CDαy
)
(x) = g(x) +

∫ x

0

k(x, t) G
(
CDβy(t)

)
dt, x ∈ [0, a], (1)

subject to the initial conditions

y(i)(0) = yi, i = 0, 1, ...,m− 1, (2)

where a is a positive finite constant, for m,n ∈ N, m−1 < α < m, n−1 < β <
n, β < α, and the fractional derivatives are considered in the Caputo sense.
We show in Section 3 that the problem (1)-(2) is equivalent to an integral
equation of fractional order. Therefore, with some considerations, it is possi-
ble that theorems and results obtained for each of the equations can also be
generalized for other equations.

2 Preliminaries

In this section we give the preliminary concepts [7,15], that are used in Section
3. The following lemma is a result of Lemma 1.3 in [7] which characterizes the
space Cn[0, a].

Lemma 1 Let n ∈ N0. The space Cn[0, a] consists of those and only those
functions f which are represented in the form

f(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1φ(t)dt+

n−1∑
i=0

cix
i,

where φ(t) ∈ C[0, a] and ci (i = 0, 1, ..., n − 1) are appropriate constants,
moreover,

φ(t) = f (n)(t), ci =
f (i)(0)

i!
(i = 0, 1, ..., n− 1).

Definition 1 The Riemann-Liouville fractional integral of order α > 0 of a
function y(x), is defined as

(Iαy) (x) =
1

Γ (α)

∫ x

0

(x− τ)
α−1

y(τ)dτ, x > 0, (3)

where Γ is the Gamma function.

For y(x) = sin(2x), Figures 1 and 2 show the Riemann-Liouville fractional
integral of orders α = 0.25, 0.5, 0.75, 0.95 and α = 1.25, 1.5, 1.75, 1.95, respec-
tively.
The Riemann-Liouville fractional integral has the following properties:(

IαIβy
)
(x) =

(
Iα+βy

)
(x), (4)
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Fig. 1 Function y(x) = sin(2x) and its Riemann-Liouville fractional integrals with α =
0.25, 0.5, 0.75, 0.95.
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Fig. 2 The Riemann-Liouville fractional integrals of sin2x with α = 1.25, 1.5, 1.75, 1.95.

(
Iα (t− a)

β−1
)
(x) =

Γ (β)

Γ (β + α)
(x− a)

β+α−1
, (5)

where β > 0.
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Definition 2 The Caputo derivative of fractional order α ≥ 0 on [0, a] for a
function y(x) is defined by

(
CDαy

)
(x) =

1

Γ (r − α)

∫ x

0

(x− τ)
r−α−1

y(r)(τ)dτ,

where
r = [α] + 1 for α /∈ N0; r = α for α ∈ N0, (6)

which [α] means the integer part of the real number α.

The behavior of the Caputo derivatives of function y(x) = sin(2x) for frac-
tional orders α = 0.25, 0.5, 0.75, 0.95 and α = 1.25, 1.5, 1.75, 1.95, are shown
in Figures 3 and 4, respectively. The Caputo derivative has the following
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Fig. 3 Function y(x) = sin(2x) and its Caputo derivatives with α = 0.25, 0.5, 0.75, 0.95.

properties:(
CDα (t− a)

β−1
)
(x) =

Γ (β)

Γ (β − α)
(x− a)

β−α−1
, β > r, (7)

(
CDα (t− a)

i
)
(x) = 0, i = 0, 1, ..., r − 1, (8)

where α, β > 0 and r is given by relation (6).

Proposition 1 Let α > 0 and r is given by relation (6). If y(x) ∈ Cr[0, a],
then

(i)
(
Iα CDαy

)
(x) = y(x)−

∑r−1
i=0

y(i)(0)

i!
xi,

(ii)
(
CDα Iαy

)
(x) = y(x).
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Fig. 4 The Caputo derivatives of sin2x with α = 1.25, 1.5, 1.75, 1.95.

Lemma 2 ([1]). Let m−1 < α < m, n−1 < β < n and β < α. For x ∈ [0, a],
(i) if y(x) ∈ C [0, a], then(

CDβIαy
)
(x) =

(
Iα−βy

)
(x),

(ii) if y ∈ Cm−1 [0, a] and
(
CDαy

)
(x) ∈ C [0, a], then

(
CDβy

)
(x) ∈ C [0, a].

3 Equivalence of equations

In the following theorem, we show that problem (1) - (2) is equivalent to a
fractional integral equation.
Theorem 1 Let g, k and G be continuous functions and m − 1 < α < m,
n− 1 < β < n and β < α. Then a function y ∈ Cm−1 [0, a] with

(
CDαy

)
(x) ∈

C [0, a] is a solution of fractional integro-differential equation (1) if and only
if

y(x) =

n−1∑
i=0

yi
i!
xi +

1

Γ (β)

∫ x

0

u(s)

(x− s)1−β
ds, (9)

where for n ≤ m, u ∈ C [0, a] satisfies the integral equation

u(x) =

m−1∑
i=n

yi
Γ (i− β + 1)

xi−β + Iα−βg(x) + Iα−β

∫ x

0

k(x, t) G(u(t))dt. (10)

Proof Let y ∈ Cm−1 [0, a] be a solution of (1) which
(
CDαy

)
(x) ∈ C [0, a]. Us-

ing Lemma 2, we conclude
(
CDβy

)
(x) ∈ C [0, a]. Since g, k, G and

(
CDβy

)
(x)

are continuous, we can apply the operator Iα to both sides of Eq. (1). Thus
using Proposition 1, we obtain

y(x) =

m−1∑
i=0

y(i)(0)

i!
xi + Iαg(x) + Iα

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)
. (11)
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Putting
(
CDβy

)
(x) := u(x), so u ∈ C [0, a], and we can apply the operator Iβ

to both sides of this relation and using Proposition 1, we get

y(x) =

n−1∑
i=0

yi
i!
xi +

1

Γ (β)

∫ x

0

u(s)

(x− s)
1−β

ds.

From (11) and Lemma 2, we have

CDβy(x) = CDβ

(
m−1∑
i=0

yi
i!
xi

)
+Iα−βg(x)+Iα−β

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)
.

(12)
Using relations (7) and (8), we get

u(x) =

m−1∑
i=n

yi
Γ (i− β + 1)

xi−β + Iα−βg(x) + Iα−β

∫ x

0

k(x, t) G(u(t))dt,

for n = m, the first term of the right hand of above relation is equal to
zero.Conversely, assume that u ∈ C [0, a] is a solution of Eq. (10), we show that
the function y(x), defined by relation (9), satisfies in Eq. (1). Since u ∈ C [0, a],
we can apply the operator CDβ on both sides of Eq. (9), then from Proposition
1 and Eq. (8), we obtain (

CDβy
)
(x) = u(x),

and hence
(
CDβy

)
(x) ∈ C [0, a]. Applying Iβ on both sides of Eq. (10) and

using Eqs. (4), (5) and Proposition 1, we get

y(x) =

m−1∑
i=0

yi
i!
xi + Iαg(x) + Iα

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)
. (13)

Also, from the continuity of
(
CDβy

)
(x), g, k and G, Eq. (8) and applying the

operator CDα on both sides of Eq. (13), we have

(
CDαy

)
(x) = g(x) +

∫ x

0

k(x, t) G
(
CDβy(t)

)
dt,

and consequently
(
CDαy

)
(x) ∈ C [0, a].

Now we show that y(i)(0) = yi (i = 0, 1, ...,m− 1). First using the property of
the fractional calculus, we obtain

| (Iαy)(i) (x) | = |
(
DiIαy

)
(x) | = |

(
Iα−iy

)
(x) |

=

∣∣∣∣ 1

Γ (α− i)

∫ x

0

(x− s)α−i−1y(s)ds

∣∣∣∣
≤ ∥y∥C

Γ (α− i+ 1)
xα−i,
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for i = 0, 1, ...,m− 1, thus

(Iαy)
(i)

(0) = 0, i = 0, 1, ...,m− 1. (14)

Later on, for m = 1 according to Eq. (13), we have

y(x) = y0 + Iαg(x) + Iα
(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)
.

Using the continuity of the operator Iα on C[0, a] and Eq. (14), we find y(x) ∈
C[0, a] and y(0) = y0 (y(0)(x) = y(x)).
Now, for m ≥ 2, by Eqs. (4) and (13), we have

y(x) =

m−2∑
i=0

yi
i!
xi + Im−1

[
ym−1 + Iα−m+1g(x)

+ Iα−m+1

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)]
.

Thus from Lemma 1, we have y(x) ∈ Cm−1[0, a], y(i)(0) = yi for i = 0, 1, ...,m−
2 and

y(m−1)(x) = ym−1 + Iα−m+1g(x) + Iα−m+1

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)
.

In the same way of Eq. (14), we can show that[
Iα−m+1

(∫ x

0

k(x, t) G
(
CDβy(t)

)
dt

)]
(0) = 0, Iα−m+1g(0) = 0.

Therefore, y(m−1)(0) = ym−1 and the proof is complete.

4 Conclusion

This paper proved that the nonlinear fractional Volterra integro-differential
equation of the Hammerstein type is equivalent to an integral equation. For
this purpose, we used the relations governing the Caputo fractional derivatives
and the Riemann-Liouville fractional integral. Therefore, in future works, it
is possible to analyze the integro-differential equations, such as the existence
and uniqueness of the solution, using its corresponding integral equation.
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