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Abstract A proper coloring of a graph G is called a dominated coloring when-
ever each color class is dominated by at least one vertex. The minimum number
of colors among all dominated colorings of G is called its dominated chromatic
number, denoted by χdom(G). We define a parameter related to dominated
coloring, namely dominated chromatic covering. For a minimum dominated
coloring of G, a set of vertices S is called a dominated chromatic covering if
each color class is dominated by a vertex of S. The minimum cardinality of a
dominated chromatic covering of G is called its dominated chromatic covering
number, denoted by θχdom(G). It is clear that θχdom

(G) ≤ χdom(G). In this
paper, we obtain the dominated chromatic number and θχdom(G) when G is
middle and total graph of paths and cycles.

Keywords Dominated coloring · Dominated chromatic covering · Dominated
chromatic covering number
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1 Introduction

Let G = (V,E) be a graph of order n with vertex set V = V (G) and edge set
E = E(G). The complement of a graph G denoted by G is a graph with the
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vertex set V (G) = V (G) and edge set E(G) = {uv | u, v ∈ V (G) and uv /∈
E(G)}. The clique number ω(G) of a graph G is the maximum order of a
complete subgraph in G (See [11]).

A subset S ⊆ V is called a dominating set of G if every vertex in V − S
is adjacent to some vertex in S. The domination number γ(G) of G is the
minimum cardinality among all dominating sets of G. A set S ⊆ V is called
a total dominating set of G if every vertex of V is adjacent to some vertex in
S. The total domination number of a graph G is the cardinality of a smallest
total dominating set, denoted by γt(G), We refer to such a set as a γt(G)-set.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G) = {e1, e2, . . . , em}. We introduce three well-known familiar graphs ob-
tained from the given graph G.

1. The graph S(G) is a graph obtained from G by subdividing each edge
exactly once. In other words, S(G) is a subdivision of graph G with vertex
set {v1, v2, . . . , vn, u1, u2, . . . , um} where ui is a vertex that subdivides the
edge ei and e ∈ E(S(G)) if and only if e = vlur where vl is a vertex of er
in G.

2. The middle graph M(G) of a graph G is defined as a graph with ver-
tex set V ∪ E and two vertices x and y of M(G) are adjacent in M(G)
if either x and y are adjacent edges in G or x is a vertex in G, y is
an edge of G and x is incident to y in G. In the other words, M(G) is
a graph with V (M(G)) = V (S(G)) and E(M(G)) = E(S(G)) ∪ {e =
eiej | ei and ej have a common vertex in G}.

3. The total graph T (G) of a graph G is a graph with the vertex set V ∪E in
which two vertices x and y of T (G) are adjacent in T (G) if either they are
adjacent vertices or adjacent edges in G or x is a vertex in G, y is an edge
of G and x is incident on y in G. In other words, V (T (G)) = V (M(G))
and E(T (G)) = E(M(G)) ∪ E(G).

Without loss of generality, we can assume the set of vertices of middle and total
graphs as a sequence of vertices in the form of v1, v2, . . . , vn, u1, u2, . . . , um

where ui is a representative of edge ei.
The k-th power of G, Gk, is a graph whose vertex set is V (G) and two

vertices in Gk are adjacent if their distance in G is at most k. The graph G2

is also referred to as the square of G.
A proper coloring of a graph G is an assignment of colors to the vertices of

G such that two adjacent vertices receive different colors. A proper coloring of
G with k colors is also called a k-proper coloring of G. The minimum number
of colors required for a proper coloring of G is said to be the chromatic number
χ(G) of G. In [6], Merouane et al. defined the dominated coloring of a graph
as follows. A k-dominated coloring of G is a proper k-coloring of G with color
classes C1, C2, . . . , Ck such that for each i (1 ≤ i ≤ k), there exists a vertex
u ∈ V such that Ci ⊆ N(u) (i.e. vertices in Ci are dominated by vertex u);
such vertex u is called a dominating vertex. The minimum number of colors
among all dominated colorings of G is called its dominated chromatic number,
denoted by χdom(G). Obviously, a graph has a dominated coloring if it has no
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isolated vertices. Hereafter, all graphs in this paper are assumed to have no
isolated vertex. The k-dominated coloring has also been studied in [2].

Now, we introduce a parameter related to dominated coloring, namely dom-
inated chromatic covering that is defined as follows.

Definition 1 Let C1, C2, . . . , Cχdom
be the color classes of a minimum domi-

nated coloring of G. A set S ⊆ V is called a dominated chromatic covering of
graph G if every Ci is dominated by a vertex in S. The minimum cardinality
of such set S is called dominated chromatic covering number of G, denoted by
θχdom(G), and the set S is called a θχdom

(G)-set.

2 Dominated chromatic number and dominated chromatic covering
number of M(G)

In this section, we study the dominated chromatic number and dominated
chromatic covering number of graphs M(Pn) and M(Cn) of the n-path Pn

and the n-cycle Cn.

Theorem 1 For all n ≥ 2, we have χdom(M(Pn)) = n and

θχdom
(M(Pn)) =


2n
3 , n ≡ 0 (mod 3),

⌈ 2n
3 ⌉, n ≡ 1 (mod 3),

⌊ 2n
3 ⌋, n ≡ 2 (mod 3).

Proof By the structure of M(Pn), it can be seen that no three non-adjacent
vertices have a common neighbor and therefore, no three vertices receive the
same color and each color class has at most two vertices. See Figure 1 for n = 8.
Since M(Pn) contains 2n−1 vertices, χdom(M(Pn)) ≥ ⌈(2n−1)/2⌉ = n. Now,
we need to reveal that χdom(M(Pn)) ≤ n. Regard the following two cases:
Case 1. n ≡ 0, 1 (mod 3). In this case, we define a coloring function CM(Pn)

as C(M(Pn))(vi) = i for all 1 ≤ i ≤ n and

CM(Pn)(ei) =

{
i+ 2, i ≡ 1 (mod 3) & 1 ≤ i ≤ n− 1,

i− 1, i ≡ 0, 2 (mod 3) & 1 ≤ i ≤ n− 1.

Therefore, M(Pn) is n-dominated colorable and so χdom(M(Pn)) ≤ n. Hence
χdom(M(Pn)) = n.
Case 2. n ≡ 2 (mod 3). In this case, we designate a coloring function CM(Pn)

as

CM(Pn)(vi) =

{
i, 1 ≤ i < n,

n− 1, i = n,

and

CM(Pn)(ei) =


i− 1, i ≡ 0, 2 (mod 3) & 1 ≤ i < n− 1,

i+ 2, i ≡ 1 (mod 3) & 1 ≤ i < n− 1,

n, i = n− 1.
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Hence, χdomM(Pn) ≤ n. So we have χdom(M(Pn)) = n. Now we compute
θχdom

(M(Pn)). For the coloring of M(Pn) which was mentioned above, the set
B1 = {e1, e2, . . . , e3i+1, e3i+2, . . . , en−1} can be contemplated as a dominated
chromatic covering where n ≡ 0, 2 (mod 3).
So, in this case θχdom

M(Pn) ≤ |B1| ≤ ⌊ 2n
3 ⌋. Also

B2 = {e1, e2, . . . , e3i+1, e3i+2, . . . , en−2, vn},

is a dominated chromatic covering of M(Pn) if n ≡ 1 (mod 3). So in this case
θχdom

M(Pn) ≤ |B2| ≤ ⌈ 2n
3 ⌉.

1 3 2 1 3 2 4 6 5 4 6 5 7 8 7

Fig. 1 Dominated coloring of M(P8). (The vertices corresponding to V (G) and E(G) are
shown by • and ◦, respectively.)

We demonstrate that for n ≥ 2, if n ≡ 0, 2 (mod 3), θχdom
(M(Pn)) ≥ ⌊ 2n

3 ⌋ and
if n ≡ 1 (mod 3), then θχdom

(M(Pn)) ≥ ⌈ 2n
3 ⌉. As we alluded to previously,

there isn’t any color class of size 3 or more in the n-dominated coloring of
M(Pn). Now, we contrarily suppose that there are a ≥ 2 color classes of size
one. Hereon, χdom(M(Pn)) ≥ ⌈ 2n−a−1

2 ⌉ + a ≥ n + 1, a contradiction. Hence
we have at most one color class of size one, and since the number of vertices of
M(Pn) is 2n− 1 vertices, we have exactly one color class of size one. One can
conclude that no vertex covers three color classes unless the vertex belongs
to a color class with only one vertex. Therefore, at least two vertices need for
covering three color classes of size greater than one. We claim that any vertex
v belongs to a color class of size one covers at most two color classes. If v is a
vertex of degree 1 or 2, the claim is clear. If it has degree 3, since there is only
one color class of size one, then this vertex dominates at most 2 color classes.
Now we assume that the vertex v has degree 4. In fact, v is a corresponding
vertex to an edge ei for 2 ≤ i ≤ n − 2 in path Pn. Whereby, if vertices
vi, vi+1, or ui−1, ui+1 don’t belong to the same color class, then obviously v
dominates less than three color classes. Now we contrary assume that vertices
vi, vi+1, and also ui−1, ui+1 are in the same color class, hence the set of vertices
{v1, e1, v2, e2, . . . , ei−2, vi−1} with odd size, are partitioned into a number of
color classes such that one of the color classes (except the color class v) has
size one and this is a contradiction. Thus the claim is proved. According to this
claim, we conclude that every three color classes are dominated by at least two
vertices. Notice that if n = 3k, then at least 2k vertices, and if n ̸= 3k, then
at least 2k+1 vertices are needed for covering all the color classes. Therefore,
if n = 3k, the dominated chromatic covering of the graph has at least 2n/3
members, if n = 3k + 1, it has at least ⌈2n/3⌉ members, and if n = 3k + 2, it
has at least ⌊2n/3⌋ members and the proof is complete.
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The following Proposition has been proved in [6].

Proposition 1 χdom(G) ≥ γt(G). Also, if G is a triangle-free graph, then
χdom(G) = γt(G).

Now, we have the following Theorem.

Theorem 2 For n ≥ 3, χdom(M(Cn)) = n and

⌊2n/3⌋ ≤ θχdom
(M(Cn)) ≤ ⌈3n/4⌉.

Proof By definition, M(Cn) is obtained from adding and joining one vertex
to the vertices of every edge of Cn. The graph in Figure 2 shows M(Cn) for
n = 10. Conforming to the structure of M(Cn), γ(M(Cn)) ≥ n. Because there
must be at least one vertex of any triangle in the minimum dominating set.
According to proposition 1, n ≤ γ(M(Cn)) ≤ γt(M(Cn)) ≤ χdom(M(Cn)).
Now, let k be a natural number and regard the following four cases:
Case 1. n = 4k for some natural number k. In this case, let each of the sets

{v1, v2}, {v3, v4}, . . . , {vn−1, vn},
{u1, u3}, {u2, u4}, . . . , {un−3, un−1}, {un−2, un},

be a color class and it forms a dominated coloring of M(Cn). Also,

B0 = {u1, u2, u3, u5, u6, u7, . . . , u4i+1, u4i+2, u4i+3, . . . , un−1},

is a dominated chromatic covering of the graph. So χdom(M(Cn)) = n and
since |B0| = 3k = 3n/4, therefore θχdom

(M(Cn)) ≤ 3n/4.
Case 2. n = 4k + 1 for some natural number k. In this case, let each of the
sets

{v1, v2}, {v3, v4}, . . . , {vn−2, vn−1},
{vn, u1}, {{u2, u4}, {u3, u5}, . . . , {un−2, un},

be a color class and it forms a dominated coloring of M(Cn). Also,

B1 = {u1, u3, u4, u5, u7, u8, u9, . . . , u4i, u4i+1, u4i+3, . . . , un},

is a dominated chromatic covering related to M(Cn). Hence χdom(M(Cn)) = n
and since |B1| = 3k + 1 = ⌈3n/4⌉, we have θχdom

(M(Cn)) ≤ ⌈3n/4⌉.
Case 3. n = 4k + 2 for some natural number k. Consider the sets

{e2, v4}, {v2, v3}, {v5, v6}, . . . , {vn−1, vn},
{v1, en−1}, {e1, e3}, {e4, e6}, {e5, e7}, . . . , {en−2, en},

as classes of a smallest dominated coloring of M(Cn) and so χdom(M(Cn)) = n.
Also,

B2 = {e2, e3, e5, e6, e7, e9, . . . , e4i+1, e4i+2, e4i+3, . . . , en},
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is a dominated chromatic covering and since |B2| = 3k+ 1 = ⌊3n/4⌋, we have
θχdom

(M(Cn)) ≤ ⌊3n/4⌋.
Case 4. n = 4k + 3 for some natural number k. The sets

{v2, v3}, {v4, v5}, . . . , {vn−1, vn},
{en−1, v1}, {e1, e3}, {e2, e4}, . . . , {en−2, en},

form classes of a smallest dominated coloring of M(Cn) and so χdom(M(Cn)) =
n. Also,

B3 = {e2, e3, e4, e6, e7, e8, . . . , e4i, e4i+2, e4i+3, . . . , en},

is a dominated chromatic covering and since |B3| = 3k+2 = ⌊3n/4⌋, therefore
θχdom

(M(Cn)) ≤ ⌊3n/4⌋.
We have proved in general that θχdom

(M(Cn)) ≤ ⌈3n/4⌉. Now we have to
prove θχdom

(M(Cn)) ≥ ⌊2n/3⌋. As mentioned before about M(Pn), in the n-
dominated coloring of M(Cn), there is no color class of size 3, and since there
are 2n vertices and n color classes, each color class will be of size 2. Also, same
as proof for M(Pn), in such coloring, every three color classes are covered by
at least two vertices and therefore θχdom

(M(Cn)) ≥ ⌊2n/3⌋.
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Fig. 2 Dominated coloring of M(C10). (The vertices corresponding to V (G) and E(G) are
shown by • and ◦, respectively.)

3 Dominated chromatic number and dominated chromatic covering
number T (G)

In this section, we study the dominated chromatic number and dominated
chromatic covering number of the T (Pn) and T (Cn).
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Theorem 3 [3] The total graph T (G) is isomorphic to the square of the sub-
division graph S(G).

Lemma 1 [2] Let n and i be positive integers such that n ≡ l (mod 2i) and
⌊ n
2i⌋ = r. Then we have

χdom(P i−1
n ) = χdom(Ci−1

n ) =

{
ri+ l, if 0 ≤ l ≤ i,

i(r + 1), if i < l < 2i.

Using Theorem 3, we have χdom(T (Pn)) = χdom(S2(Pn)) = χdom(P 2
2n−1) and

χdom(T (Cn)) = χdom(S2(Cn)) = χdom(C2
2n). Now, using Lemma 1, we have

Theorem 4 Let Pn and Cn be paths and cycles with n vertices, respectively.
Then for all n ≥ 2,

χdom(T (Pn)) =

{
n, n ≡ 0, 1 (mod 3),

n+ 1, n ≡ 2 (mod 3),

and for all n ≥ 3,

χdom(T (Cn)) =

{
n, n ≡ 0 (mod 3),

n+ 1, n ≡ 1, 2 (mod 3).

Now we calculate the dominated chromatic covering number of T (Pn) and
T (Cn).

Theorem 5 For all n ≥ 2,

θχdom
(T (Pn)) =


2n
3 − 1, n ≡ 0 (mod 3),

⌊ 2n
3 ⌋, n ≡ 1 (mod 3),

⌊ 2n
3 ⌋ − 2, n ≡ 2 (mod 3).

Proof By the structure of T (Pn), there are no three non-adjacent vertices with
a common neighbor. So there is no color class of size 3. On the other hand, in a
χdom-dominated coloring of T (Pn), there are at most three color classes of size
one. Otherwise, we have a ≥ 4 color classes of size one, hence χdom(T (Pn)) =
2n−a−1

2 + a > n + 1, a contradiction. We know that |V (T (Pn))| = 2n − 1.
So we have one or three color classes of size 1. If n ≡ 0 (mod 3), there is
an integer i ≥ 1 such that n = 3i. Therefore, if there are 3 color classes of
size one, then we have χdom(T (Pn)) = 2n−1−3

2 + 3 = 3i + 1 = n + 1 > n
that is a contradiction. Hence we have one color class of size one. Likewise,
we can illustrate if n ≡ 1 (mod 3), there is one color class of size one and
if n ≡ 2 (mod 3), there are three color classes of size one. If T (Pn) is χdom-
dominated colored, no vertex dominates three color classes unless at least one
of class is of size one. Now notice the following three cases:
Case 1. n ≡ 0 (mod 3). In this case, we have one color class of size one. The
other two classes are of size 2. The three classes are dominated by at least one
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vertex and in other n− 3 color classes every three classes are dominated by at
least two vertices. So θχdom

(T (Pn)) ≥ 2(n−3)
3 + 1 ≥ 2n

3 − 1.
Case 2. n ≡ 1 (mod 3). Using a similar method to Case 1, we have

θχdom
(T (Pn)) ≥

2(n− 3)

3
+ 1 ≥ ⌊2n

3
⌋.

Case 3. n ≡ 2 (mod 3). In this situation, there are 3 color classes of size
1. It is clear that θχdom

(T (P2)) = 1 and we find with a simple review that
θχdom

(T (P5)) = 2. Now we assume n ≥ 8 and indeed χdom(T (Pn)) ≥ 9. We
claim that in any χdom-coloring of T (Pn), if three vertices that each of them is
in a color class of size one aren’t adjacent, then the corresponding dominated
chromatic covering has minimum cardinality between all possible covering sets
of dominated colorings of T (Pn). To prove this claim, we consider three con-
ditions:
1) All three vertices mentioned above are adjacent to each other. We de-
note the dominated chromatic covering number in this case by θ̇χdom

. These
three color classes can be dominated by one vertex and we need at least
⌊ 2(n+1−3)

3 + 1⌋ = ⌊ 2n−1
3 ⌋ vertices for dominated chromatic covering of T (Pn).

Therefore θ̇χdom
≥ ⌊ 2n−1

3 ⌋.
2) Two of them are adjacent. We denote dominated chromatic covering num-
ber in this case by θ̈χdom

. Here, six classes can be dominated by two vertices
and in other n − 5 vertices, each of the three classes can be dominated by
two vertices. Then we need at least ⌊ 2(n+1−6)

3 + 2⌋ = ⌊ 2n−4
3 ⌋ vertices for the

dominated chromatic covering of T (Pn). Then θ̈χdom
≥ ⌊ 2n−4

3 ⌋.
3) The three vertices are independent. We denote dominated chromatic cov-
ering number in this case by θχdom

. Here, we need at least ⌊ 2(n+1−9)
3 + 3⌋ =

⌊ 2n
3 ⌋ − 2 vertices for the dominated chromatic covering of T (Pn). So θχdom

≥
⌊ 2n

3 ⌋ − 2.
Since θ̇χdom

(T (Pn)) ≥ θ̈χdom
(T (Pn)) ≥ θχdom

(T (Pn)), according to the
above claim θχdom

(T (Pn)) ≥ ⌊ 2n
3 ⌋ − 2. On the other hand, we define CT (Pn)

as a coloring function as follows:
If n ≡ 0 (mod 3) and n > 3, then CT (Pn)(vi) = i for 1 ≤ i ≤ n and

CT (Pn)(ei) =

{
i+ 2, i ≡ 1 (mod 3) & 1 ≤ i ≤ n− 1,

i− 1, i ≡ 0, 2 (mod 3) & 1 ≤ i ≤ n− 1.

In this situation, B1 = {e2, v2, e5, v5, . . . , e3i+2, v3i+2, . . . , vn−4, en−4, vn−1} is
a dominated chromatic covering related to this coloring. Now it’s clear that
θχdom

(T (P3)) = 1 and so θχdom
(T (Pn)) ≤ 2n

3 − 1.
If n ≡ 1 (mod 3), then CT (Pn)(vi) = i for 1 ≤ i ≤ n and

CT (Pn)(ei) =



3, i = 1,

1, i = 2,

2, i = 3,

i− 1, i ≡ 0 (mod 3) & 4 ≤ i ≤ n− 1,

i+ 2, i ≡ 1, 2 (mod 3) & 4 ≤ i ≤ n− 1.
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Hence, B2 = {v2, v3, e5, e6, e8, e9, . . . , e3i−1, e3i, . . . , en−1} is a dominated chro-
matic covering for this coloring. So θχdom

(T (Pn)) ≤ ⌊ 2n
3 ⌋.

If n ≡ 2 (mod 3), then CT (Pn)(vi) = i for 1 ≤ i ≤ n and

CT (Pn)(ei) =


i+ 2, i ≡ 0 (mod 3), i ≡ 2 (mod 3) & 8 < i ≤ n− 1,

i− 1, i ≡ 1 (mod 3)&i ̸= 1, 4, i ≡ 2 (mod 3) & i ≤ 8,

3, i = 1,

n+ 1, i = 4.

Hence, for n ≤ 11, the set B3 = {v2, e4, v7, v8, . . . , v3i+1, v3i+2, . . . , vn−1} is
a dominated chromatic covering according to above coloring and for n ≥ 14,
the set B́3 = B3 ∪ {e12, e13, . . . , e3i, e3i+1, . . . , en−1} is a dominated chromatic
covering. Therefore θχdom

(T (Pn)) ≤ ⌊ 2n
3 ⌋ − 2 and the proof is complete.

1 3 2 1 3 5 4 9 5 4 6 8 7 6 8

Fig. 3 Dominated coloring of T (P8). (The vertices corresponding to V (G) and E(G) are
denoted by • and ◦, respectively.)

Theorem 6 For all n ≥ 3,

θχdom
(T (Cn)) =


2n
3 , n ≡ 0 (mod 3),

⌈ 2n
3 ⌉, n ≡ 1 (mod 3),

⌊ 2n
3 ⌋ − 1, n ≡ 2 (mod 3).

Proof As mentioned in Theorem 5, it is proved that each color class is of size at
most 2 and also each member of the dominated chromatic covering dominates
at most three color classes and if the covering vertex belongs to a color class
of size 2, it dominates at most two classes. Now, let k be a natural number
and consider the following three cases:
Case 1. n = 3k for some positive integer k. The graph T (Cn) has 2n vertices
and n color classes. So all color classes are of size 2 and then at least 2n

3 vertices
are needed for covering all color classes. So θχdom

(T (Cn)) ≥ 2n
3 . On the other

hand, considering the coloring function CT (Cn) as CT (Cn)(vi) = i for 1 ≤ i ≤ n
and

CT (Cn)(ei) =

{
i+ 2, i ≡ 1 (mod 3),

i− 1, i ≡ 0, 2 (mod 3),

and the dominated chromatic covering B1 = {v2, v3, . . . , v3i−1, v3i, . . . , vn}
corresponding to this coloring, we have θχdom

(T (Cn)) ≤ 2n
3 . So,

θχdom
(T (Cn)) =

2n

3
.
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Case 2. n = 3k + 1 for some positive integer k. In this case, there are 2n
vertices and n+1 color classes. Then there are n−1 color classes of size 2 and
two classes of size 1. First, we claim the vertices of color classes of size one
are adjacent. Suppose to the contrary they are not adjacent. Then there are 5
vertices in T (Cn) which can be colored with 3 colors. Since, every color class
contains at most 2 vertices and every three successive vertices are adjacent,
we can say every successive three color classes contain at most 6 vertices. Also
|V (T (Cn))| = 6k+2, so χdom(T (Cn)) ≥ 3⌈ 6k+2−5

6 ⌉+3 = 3k+3 = n+2, that
is a contradiction. Therefore the claim holds. Next, we claim that the vertices
of color classes of size one don’t dominate any color class of size 2. Assume
the contrary, color class ci contains only vertex v and dominates class ci+1 of
size 2. Since, the vertex v is adjacent to another vertex of a color class of size
1, four vertices of T (Cn) receive three colors. Since |V (T (Cn)| = 2n = 6k+ 2,
hence 6k−2 remaining vertices receives 3⌈ 6k−2

6 ⌉ = 3k. In general, the graph is
colored in 3k+3 colors which is a contradiction. Therefore the claim is proved.
According to Claim 2, two color classes of size 1 are dominated by one ver-
tex. Since every 3 color classes of size 2 are covered by two vertices, we have
θχdom

(T (Cn)) ≥ ⌈ 2n
3 ⌉. On the other hand, a coloring function CT (Cn) with

CT (Cn)(vi) = i for 1 ≤ i ≤ n and

CT (Cn)(ei) =


i+ 2, i ≡ 1 (mod 3) & i < n,

i− 1, i ≡ 0, 2 (mod 3) & 1 ≤ i ≤ n,

n+ 1, i = n,

and dominated chromatic covering B2 = {v2, v3, . . . , v3i−1, v3i, . . . , vn−1, vn}
related to this coloring we have θχdom

(T (Cn)) ≤ ⌈ 2n
3 ⌉ and hence we have

θχdom
(T (Cn)) = ⌈ 2n

3 ⌉.
Case 3. n = 3k+2 for some positive integer k. Since there are 2n vertices and
n+ 1 color classes, we have n− 1 color classes of size 2 and two color classes
of size one. Each vertex of a color class of size 1 dominates at most 3 color
classes and in the other color classes, every three color classes are dominated
by 2 vertices. therefore, we have θχdom

(T (Cn)) ≥ ⌈ 2
3 (n+1−6)+2⌉ = ⌊ 2n

3 ⌋−1.
On the other hand, we have a coloring function CT (Cn) with CT (Cn)(vi) = i
for 1 ≤ i ≤ n and

CT (Cn)(ei) =



i+ 2, i ≡ 0, 1 (mod 3) or & 8 < i < n,

i− 1, i ≡ 1 (mod 3) & i ̸= 1, 4,

i− 1, i ≡ 2 (mod 3) & 1 ≤ i ≤ 8,

3, i = 1,

n+ 1, i = 4,

2, i = n,

and if n ≤ 11, then B3 = {e1, v2, e4, v7, v8, . . . , v3i+1, v3i+2, . . . , vn−1} is a
dominated chromatic covering related to this coloring and also if n ≥ 14,
then B́3 = B3 ∪ {e12, e13, . . . , e3i, e3i+1, . . . , en−1} is a dominated chromatic
covering. Hence θχdom

(T (Cn)) ≤ ⌊ 2n
3 ⌋ − 1.The proof is now complete.
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