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Abstract In this paper, we study the notion of c-isoclinism for the pairs of
Filippov algebras. Also, we give an equivalent condition for pairs of Filippov
algebras to be c-isoclinic. In particular, it is shown that two Filippov algebras
are c-isoclinic if and only if then each of them can be constructed from an-
other by using the operations of forming direct sums, taking subalgebras, and
factoring Filippov algebras. Moreover, we introduce the concept of c-perfect
pair of Filippov algebras and obtain some relations between c-isoclinic and
c-perfect pairs of Filippov algebras.
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1 Introduction

In 1940, Hall [5] introduced an equivalence relation on the class of all groups,
called isoclinism, which is weaker than isomorphism. It was generalized to n-
isoclinism and isologism with respect to a given variety of groups by several
authors (See [2,8,9,11,12] for more information).

In [22], the concept of isoclinism has been extended to pairs of groups.
Later, many authors studied the concepts of n-isoclinism and isologism for
pairs of groups in [7,6,10].

In 1994, Moneyhun [15] gave a Lie algebra analogue of isoclinism. The
concepts of isoclinism and n-isoclinism for Lie algebras was studied in [19–21].
In 2009, Moghaddam and parvaneh [13] extended the notion of isoclinism to
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the pairs of Lie algebras and gave some structural properties of the notion.
This concept was extended by Moghaddam et al. [14] in 2014. They studied the
notion of relative n-isoclinism between two pairs of Lie algebras and gave some
properties of this notion. Also, the second author and Safa [1] investigated this
notion for the pairs (Kerσ1,M1) and (Kerσ2,M2), where

σi : Mi → L, (i = 1, 2),

are two c-covers of a pair (N,L) of Lie algebras.
Saeedi and Veisi [18] generalized the notion of isoclinism to n-Lie algebras

and Eshrati et al. [3] proved that the notion of isoclinism and isomorphism are
equivalent for any two n-Lie algebras of the same dimensions. Also, the first
author and saeedi [17] studied special drivations of isoclinic n-Lie algebras.
The concept of isoclinism is generalized by Mousavi and Moghaddam [16]
for the pairs of n-Lie algebras. They proved that each equivalence class of
isoclinic pairs of n-Lie algebras contains a stem pair of n-Lie algebras, which
has minimal dimension amongst the finite dimensional pairs of n-Lie algebras.

In this paper, we introduce the concept of c-isoclinism for the class of all
pairs of n-Lie (Filippov) algebras (M,L), where M is an ideal of L. The struc-
ture of the paper is as follows. In section 2, we present fundumental notions
which are required in this paper. In section 3, the concept of c-isoclinism for
pairs of Filippov algebras are studied and we give an equivalent condition for
pairs of Filippov algebras to be c-isoclinic. It is shown that if two Filippov al-
gebras L1 and L2 are c-isoclinic then L1 can be constructed from L2 using the
operations of forming direct sums, taking subalgebras, and factoring Filippov
algebras. In section 4, we introduce the concept of c-perfect pairs of Filippov
algebars. Also, we obtain some relations between c-isoclinic and c-perfect pairs
of Filippov algebras.

2 Fundamental notions

In 1985, Filippov [4] introduced the concept of Filippov algebras and classified
the (n+ 1)-dimensional Filippov algebras over an algebraically closed field of
characteristic zero.

All Filippov algebras are considered over a fixed field F and [−, . . . ,−]
denotes the n-Lie bracket. A Filippov algebra is a vector space L over field
F on which an n-ary multilinear and skew-symmetric operation [x1, . . . , xn] is
defined satisfying the generalized Jacobi identity

[[x1, . . . , xn], y2, . . . , yn] =

n∑
i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn].

Clearly, such an algebra becomes an ordinary Lie algebra when n = 2.
A subspace A of a Filippov algebra L satisfying [x1, . . . , xn] ∈ A for any

x1, . . . , xn ∈ A is called a subalgebra of L. Let A1, . . . , An be subalgebras of a
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Filippov algebra L. Denote by [A1, . . . , An] the subspace of L generated by all
[x1, . . . , xn], where xi ∈ Ai for i = 1, 2, . . . , n. The subalgebra

L2 = [L,L, . . . , L︸ ︷︷ ︸
n−times

],

is called the derived algebra of L. An ideal I of a Filippov algebra L is a
subspace of L such that [I, L, . . . , L)︸ ︷︷ ︸

(n−1)−times

] ⊆ I. The ideal

Z(L) = {x ∈ L | [x, y1, . . . , yn−1] = 0, ∀y1, . . . , yn−1 ∈ L},

is called the center of L. Also, Li is defined inductively by [18],

L1 = L, and Li+1 = [Li, L, . . . , L︸ ︷︷ ︸
(n−1)−times

].

If L1 and L2 are Filippov algebras, then the vector space

L = {(l1, l2)|l1 ∈ L1, l2 ∈ L2},

with n-Lie bracket

[(l11, l21), . . . , (l1n, l2n)] = ([l11, . . . , l1n], [l21, . . . , l2n]),

is a Filippov algebra, called the direct sum of L1 and L2 and denoted by
L1 ⊕ L2. The following definitions are vital in our investigations.

Definition 1 Let M be an ideal of a Filippov algebra L. Then (M,L) is
considered to be a pair of Filippov algebras and one may define the commutator
and the center of the pair (M,L) as follws:

[M, L, . . . , L︸ ︷︷ ︸
(n−1)−times

] = ⟨[m, l1, . . . , ln−1] | m ∈ M, li ∈ L⟩,

and
Z(M,L) = {m ∈ M | [m, l1, . . . , ln−1] = 0 ∀li ∈ L}.

Note that if M = L, then [M, L, . . . , L︸ ︷︷ ︸
(n−1)−times

] and Z(M,L) are derived subalgebra

and the center of L, respectively (see [18] for more information).
The lower central series for the pair (M,L) is defined as follows. First

define γ1(M,L) = M . Assume that γc(M,L) is defined inductively for c ⩾ 1
by γc+1(M,L) = [γc(M,L), L, . . . , L︸ ︷︷ ︸

(n−1)−times

]. Therefore, we have the series

M = γ1(M,L) ⊇ γ2(M,L) ⊇ . . . .

The upper central series for the pair (M,L) is the series

0 = Z0(M,L) ⊆ Z1(M,L) = Z(M,L) ⊆ Z2(M,L) ⊆ . . . ,
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in which each term defined by

Zc+1(M,L)

Zc(M,L)
= Z(

M

Zc(M,L)
,

L

Zc(M,L)
).

In the case M = L, we have the lower and upper central series of the Filippov
algebra L (see [18]). One can see that

Zc(M,L) ⊆ Zc(L), and γc+1(M,L) ⊆ Lc+1.

Definition 2 Let (M,L) be a pair of Filippov algebras. We say that (K,H)
is a subpair of (M,L), if K ⊆ M and H ⊆ L. Also, we say that the pair (P,Q)
is a quotient pair of (M,L) if P and Q are quotient Filippov algebras of M
and L, respectively.

3 c-isoclinism between pairs of Filippov algebras

In this section, we introduce the notion of c-isoclinism for the pairs of Filippov
algebras and give some equivalent conditions for pairs of Filippov algebras to
be c-isoclinic.

We recall that a linear map φ from a Filippov algebra L to a Filippov alge-
bra M is called a homomorphism if φ([x1, . . . , xn]) = [φ(x1), . . . , φ(xn)] for any
x1, . . . , xn ∈ L. For a pair of Filippov algebras (M,L), put L = L/Zc(M,L)
and M = M/Zc(M,L).

Definition 3 Let (M1, L1) and (M2, L2) be two pairs of Filippov algebras and
c be a non-negative integer. A c-isoclinism between (M1, L1) and (M2, L2) is
a pair of isomorphisms (α, β) with α : L1 → L2 and

β : γc+1(M1, L1) → γc+1(M2, L2),

such that α(M1) = M2 and the following diagram is commutative:

M1 ⊕ L1 ⊕ . . .⊕ L1︸ ︷︷ ︸
c(n−1)−times

//

αc(n−1)+1

��

γc+1(M1, L1)

β

��
M2 ⊕ L2 ⊕ . . .⊕ L2︸ ︷︷ ︸

c(n−1)−times

// γc+1(M2, L2)

In this case, we write (M1, L1) ∼c (M2, L2). We show that the map from
Mi ⊕ Li ⊕ . . .⊕ Li︸ ︷︷ ︸

c(n−1)−times

(i = 1, 2) to γc+1(Mi, Li) by γ(c, n,Mi, Li)(i = 1, 2). It is

easy to see that m ∈ M,m ∈ Zc(M,L) if and only if

[. . . [[m, l11, . . . , l1(n−1)], l21, . . . , l2(n−1)], . . .], lc1, . . . , lc(n−1)] = 0,
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for any lij ∈ L (1 ⩽ i ⩽ c, 1 ⩽ j ⩽ n − 1). Therefore, if c ⩾ 1, then the map
γ(n, c,M,L) :

M

Zc(M,L)
⊕ L

Zc(M,L)
⊕ . . .⊕ L

Zc(M,L)︸ ︷︷ ︸
c(n−1)−times

→ γc+1(M,L) given

by

γ(n, c,M,L)(m+ Zc(M,L), l11 + Zc(M,L), . . . , l1(n−1) + Zc(M,L),

. . . , lc1 + Zc(M,L), . . . , lc(n−1) + Zc(M,L))

= [. . . [[m, l11, . . . , l1(n−1)], . . .], lc1, . . . , lc(n−1)]

is a well-defined homomorphism.

Clearly, c-isoclinism is an equivalence relation among all pairs of Filippov
algebras. If M1 = L1, M2 = L2 and c = 1, then a c-isoclinism between two
pairs of Filippov algebras is an isoclinism between L1 and L2 (see [3,18] for
more information).

The following results are useful in our investigations.

Lemma 1 Let (M,L) be a pair of Filippov algebras and N be an ideal of L with
N ⊆ M . If N ∩ γc+1(M,L) = 0, then N ⊆ Zc(M,L) and Zc(M/N,L/N) =
Zc(M,L)/N .

Proof It is easy to see that for all i ⩾ 1,

(Zi(M,L) +N)/N ⊆ Zi(M/N,L/N).

Since N ∩ γc+1(M,L) = 0, we have

γc+1(N,L) ⊆ N ∩ γc+1(M,L) = 0.

Therefore, N ⊆ Zc(M,L) and hence Zc(M,L)/N ⊆ Zc(M/N,L/N). Con-
versely, let m+N ∈ Zc(M/N,L/N), then for all lij ∈ L(1 ⩽ i ⩽ c, 1 ⩽ j ⩽ c)
we have

[. . . [[m, l11, . . . , l1(n−1)], . . .], lc1, . . . , lc(n−1)] ∈ N ∩ γc+1(M,L) = 0.

Thus, m ∈ Zc(M,L) and m+N ∈ Zc(M,N)/N . This completes the proof of
the lemma.

Lemma 2 Let (M,L) be a pair of Filippov algebras. Let N be an ideal of L
with N ⊆ M and H be a subalgebra of L. Then

(i) (H ∩M,H) ∼c ((H ∩M)+Zc(M,L),H +Zc(M,L)). In particular, if L =
H+Zc(M,L), then (H∩M,H) ∼c (M,L). Conversely, if H/Zc(H∩M,H)
satisfies the descending chain condition for its ideals and (H ∩M,H) ∼c

(M,L), then L = H + Zc(M,L).
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(ii) (M/N,L/N) ∼c (M/(N ∩ γc+1(M,L)), L/(N ∩ γc+1(M,L))). In partic-
ular, if N ∩ γc+1(M,L) = 0, then (M,L) ∼c (M/N,L/N). Conversely,
if γc+1(M,L) satisfies the ascending chain condition for its ideals and
(M,L) ∼c (M/N,L/N), then N ∩ γc+1(M,L) = 0.

Proof The proof is essentially the same as in [16, Theorem 2.2] and it is omit-
ted.

Now, by Lemma 2, we obtain the following proposition.

Proposition 1 Let (M,L) be a pair of Filippov algebras and H be a subalgebra
of L. If β is an epimorphism from L onto H such that Kerβ ⊆ M , then β
induces a c-isoclinism between (M,L) and (β(M),H) if and only if (Kerβ) ∩
γc+1(M,L) = 0.

Proof Lemma 2 (ii) gives the if part. Now, assume that β induces a c-isoclinism
between (M,L) and (β(M),H), then

β|γc+1(M,L) : γc+1(M,L) → γc+1(β(M),H),

is an isomorphism. Hence, Kerβ ∩ γc+1(M,L) = 0.

Let (M1, L1) and (M2, L2) be two pairs of Filippov algebras. A homomorphism
from (M1, L1) to (M2, L2) is a homomorphism φ : L1 → L2 such that φ(M1) ⊆
M2. We say that (M1, L1) and (M2, L2) are isomorphic and write (M1, L1) ∼=
(M2, L2), if φ is an isomorphism and φ(M1) = M2.

Now, we are able to state and prove the main results of this section.

Theorem 1 Let (M1, L1) and (M2, L2) be two pairs of Filippov algebras and
(α, β) be a c-isoclinism between them. Then there exists a pair (K,H) of
Filippov algebras with subpairs (K1,H1) and (K2,H2) such that
(i)

(M1/S, L1/S) ∼= (K1,H1),

and

(M2/β(S ∩ γc+1(M1, L1)), L2/β(S ∩ γc+1(M1, L1)) ∼= (K2,H2),

where S = [Zc(M1, L1), L1, . . . , L1︸ ︷︷ ︸
(n−1)−times

].

(ii) (K1,H1) ∼c (K,H) ∼c (K2,H2).

Proof Put X = {(l1, l2) ∈ L1 ⊕L2|α(l1 +Zc(M1, L1)) = l2 +Zc(M2, L2)} and
Y = X ∩ (M1⊕M2). Using the definition of isoclinism, we conclude that every
generator of the subalgebra γc+1(Y,X) is of the form (x, β(x)), where

x = [. . . [[m1, l11, . . . , l1(n−1)], . . .], lc1, . . . , lc(n−1)],

and m1 ∈ M1, lij ∈ L1 (1 ⩽ i ⩽ c, 1 ⩽ j ⩽ n− 1). In fact we have

γc+1(Y,X) = ⟨(x, β(x))|x ∈ γc+1(M1, L1)⟩.
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Now set
N1 = {(0, n2) ∈ L1 ⊕ L2|n2 ∈ Zc(M2, L2)},

and
N2 = {(n1, 0) ∈ L1 ⊕ L2|n1 ∈ Zc(M1, L1)}.

Then Ni is an ideal of X, Ni ⊆ Y (i = 1, 2).
If (0, n2) = (x, y) ∈ γc+1(Y,X), then x = 0, y = β(x) = 0. Thus,

γc+1(Y,X) ∩N1 = 0.

Also, if (n1, 0) = (x, y) ∈ γc+1(Y,X), then y = β(x) = 0 and since β is an
isomorphism, we have x = 0. Therefore, γc+1(Y,X) ∩N2 = 0. Put

L =
X

N1
⊕ X

γc+1(Y,X)
, M =

Y

N1
⊕ Y

γc+1(Y,X)
.

It is easy to see that (M,L) ∼c (M1, L1) ∼c (Y,X). Az N1 ∩ γc+1(Y,X) = 0,
X can be embedded in L by a monomorphism i : X → L defined by

i(x) = (x+N1, x+ γc+1(Y,X)).

Let
N = i(N2) + [i(N2), L, . . . , L︸ ︷︷ ︸

(n−1)−times

].

Then N is an ideal of L. We define two homomorphism φ1 : L1 → L/N and
φ2 : L2 → L/N as follows:
Let l1 ∈ L1 and l2 ∈ L2 such that (l1, l2) ∈ X. Define φ1 by

φ1(l1) = ((l1, l2) +N1, γc+1(Y,X)) +N.

Similarly, let l2 ∈ L2 and l1 ∈ L such that (l1, l2) ∈ X. Define φ2 by

φ2(l2) = ((l1, l2) +N1, (l1, l2) + γc+1(Y,X)) +N.

We claim that

φ1(L1) + Zc(M/N,L/N) = L/N = φ2(L2) + Zc(M/N,L/N). (1)

One can prove that for all i ⩾ 1,

Zi(M1 ⊕M2, L1 ⊕ L2) = Zi(M1, L1)⊕ Zi(M2, L2).

Now, lemma 1 shows that Zc(M,L) =
Zc(Y,X)

N1
⊕ X

γc+1(Y,X)
. Also, we have

(Zc(M,L) +N)/N ⊆ Zc(M/N,L/N). So, for every (l1, l2) and (l′1, l
′
2) in X,

((l1, l2) +N1, (l
′
1, l

′
2) + γc+1(Y,X)) +N

= (((l1, l2) +N1, γc+1(Y,X)) +N)

+ ((N1, (l
′
1, l

′
2) + γc+1(Y,X)) +N)

∈ φ1(L1) + Zc(M/N,L/N)
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and

((l1, l2) +N1, (l
′
1, l

′
2) + γc+1(Y,X)) +N

= (((l1, l2) +N1, (l1, l2) + γc+1(Y,X)) +N)

+ ((N1, (l
′
1 − l1, l

′
2 − l2) + γc+1(Y,X)) +N)

∈ φ2(L2) + Zc(M/N,L/N).

Therefore, (1) is hold. Now we show that
(a) Kerφ1 = [Zc(M1, L1), L1, . . . , L1︸ ︷︷ ︸

(n−1)−times

].

(b) Kerφ2 = β(γc+1(M1, L1) ∩ [Zc(M1, L1), L1, . . . , L1︸ ︷︷ ︸
(n−1)−times

]).

(a) Let l1 ∈ S = [Zc(M1, L1), L1, . . . , L1︸ ︷︷ ︸
(n−1)−times

], then (l1, 0) ∈ N2. Hence,

φ1(l1) = ((l1, 0) +N1, γc+1(Y,X)) +N

= (((l1, 0) +N1, (l1, 0) + γc+1(Y,X)) +N)

+ ((N1, (−l1, 0) + γc+1(Y,X)) +N)

= N,

which implies that l1 ∈ Kerφ1. Conversely, let l1 ∈ Kerφ1 and choose l2 ∈ L2

such that (l1, l2) ∈ X. It is clear that ((l1, l2) + N1, γc+1(Y,X)) ∈ N and for
some n1 ∈ Zc(M1, L1), c1 ∈ S, we have

((l1, l2) +N1, γc+1(Y,X)) =

((n1, 0) +N1, (n1, 0) + γc+1(Y,X)) + (N1, (c1, 0) + γc+1(Y,X)).

Hence, l1 = n1 and (n1 + c1, 0) ∈ γc+1(Y,X). Therefore, n1 = −c1 ∈ S and
l1 ∈ S.
(b) Suppose l2 ∈ Kerφ2. Choose l1 ∈ L1 such that (l1, l2) ∈ X, thus

((l1, l2) +N1, (l1, l2) + γc+1(Y,X)) ∈ N,

and for some n1 ∈ Zc(M1, L1), c1 ∈ S,

((l1, l2) +N1, (l1, l2) + γc+1(Y,X))

= ((n1, 0) +N1, (n1 + c1, 0) + γc+1(Y,X)).

Hence, l1 = n1 and (l1 − c1 − n1, l2) ∈ γc+1(Y,X), which implies that

l2 = β(l1 − c1 − n1) ∈ β(γc+1(M1, L1)).

But as c1 ∈ S, we have

l1 − c1 − n1 = n1 − c1 − n1 ∈ S.
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Therefore, l2 ∈ β(γc+1(M1, L1)∩S). Conversely, let l2 ∈ β(γc+1(M1, L1)∩S),
then there exsits l1 ∈ γc+1(M1, L1)∩S such that l2 = β(l1). Therefore, similar
to [16, Lemma 1.1 (i)] we have

α(l1 + Zc(M1, L1)) = β(l1) + Zc(M2, L2) = l2 + Zc(M2, L2),

and so, (l1, l2) ∈ X. We know that (l1, l2) ∈ γc+1(Y,X) and

((l1, l2) +N1, (l1, l2) + γc+1(Y,X)) = ((l1, 0) +N1, (l1, 0) + γc+1(Y,X))

+ ((0, l2) +N1, (0, l2) + γc+1(Y,X))

= ((l1, 0) +N1, (l1, 0) + γc+1(Y,X))

+ (N1, (−l1, 0) + γc+1(Y,X))

∈ N

So, φ2(l2) = 0.
Now, set (K,H) = (M/N,L/N) and (Ki,Hi) = (φi(Mi), φi(Li)), (i = 1, 2).
Then

(M1/S, L1/S) ∼= (K1,H1),

(M2/β(S ∩ γc+1(M1, L1)), L2/β(S ∩ γc+1(M1, L1)) ∼= (K2,H2),

and
(K1,H1) ∼c (K,H) ∼c (K2,H2).

In the following theorem, we show that two pairs (M1, L1) and (M2, L2) of
Filippov algebras are c-isoclinic if and only if there exists a pair (M,L) of
Filippov algebras such that (M1, L1) and (M2, L2) occur as quotient pairs of
(M,L), also (M,L), (M1, L1) and (M2, L2) are c-isoclinic to each other.

Theorem 2 Let (M1, L1) and (M2, L2) be two pairs of Filippov algebras. Then
(M1, L1) ∼c (M2, L2) if and only if there exists a pair of Filippov algebras
(M,L) and there exist ideals N1 and N2 of L with N1 ⊆ M,N2 ⊆ M such that

(M1, L1) ∼= (M/N1, L/N1), (M/N2, L/N2) ∼= (M2, L2),

and
(M1, L1) ∼c (M,L) ∼c (M2, L2).

Proof Clearly, the necessity of the conditions hold. Conversely, suppose that
(M1, L1) ∼c (M2, L2) and (α, β) be an isoclinism between them. Let L be a
subalgebra of L1 ⊕ L2 given by

L = {(l1, l2) ∈ L1 ⊕ L2|α(l1 + Zc(M,L)) = l2 + Zc(M,L)},

and M = L ∩ (M1 ⊕M2). Assume N1 = {(0, n2) ∈ L1 ⊕ L2|n2 ∈ Zc(M2, L2)}
and N2 = {(n1, 0) ∈ L1⊕L2)|n1 ∈ Zc(M1, L1)}. Then N1 and N2 are ideals of
L such that Ni ⊆ M and (Mi, Li) ∼= (M/Ni, L/Ni), (i = 1, 2). Also, we have

γc+1(M,L) = ⟨(x, β(x))|x ∈ γc+1(M1, L1)⟩.
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Similar to the proof of Theorem 1,

γc+1(M,L) ∩N1 = 0, and γc+1(M,L) ∩N2 = 0.

Now, by Lemma 2 (ii)

(M/N1, L/N1) ∼c (M,L) ∼c (M/N2, L/N2), as required.

Let (M1, L1) and (M2, L2) be two pairs of Filippov algebras. If M1 = L1 and
M2 = L2, then a c-isoclinism between them is a c-isoclinism between L1 and
L2. Now, by the definition of c-isoclinism for Filippov algebras we have the
following results.

Lemma 3 Let L be a Filippov algebras. Then L ∼c L ⊕ A for each Filippov
algebra A with Ac+1 = 0.

Proof Clearly, for all i ⩾ 1, (L⊕A)i = Li ⊕Ai. Therefore, we have

(L⊕A)c+1 = Lc+1, and Zc(L⊕A) = Zc(L)⊕A.

Now, define α : L/Zc(L) → (L⊕A)/Zc(L⊕A) by α(x+Zc(L)) = x+Zc(L)⊕A.
Let β be a identity map on Lc+1. It is easy to see that (α, β) is a c-isoclinism
from L to L⊕A.

Proposition 2 Let L1 and L2 be two Filippov algebras. Then L1 ∼c L2 if and
only if there exists a Filippov algebra L and there exist ideals N1 and N2 of L
such that

L

N1
∼c

L

N1
⊕ L

Lc+1
∼c H1,

L

N2
∼c

L

N2
⊕ L

Lc+1
∼c H2,

and H1
∼= L ∼= H2, for some subalgebra H1 of L

N1
⊕ L

Lc+1
and some subalgebra

H2 of L

N2
⊕ L

Lc+1
, where L,N1 and N2 are defined in the proof of Theorem 2.

Proof We have M = L, γc+1(M,L) = Lc+1 and Zc(M,L) = Zc(L). Put

H1 = {(l +N1, l + Lc+1)|l ∈ L}.

Clearly, H1 is a subalgebra of L

N1
⊕ L

Lc+1
and the map δ : L → H1 given by

δ(l) = (l +N1, l + Lc+1) is an isomorphism. Now, we show that

L

N1
⊕ L

Lc+1
∼c H1.

By Lemma 2(i), it is enough to prove that

L

N1
⊕ L

Lc+1
= H1 + Zc(

L

N1
⊕ L

Lc+1
).



Some Remarks on c-Isoclinic Pairs of Filippov Algebras 85

Suppose (l1 +N1, l2 + Lc+1) ∈ L

N1
⊕ L

Lc+1
. It is obvious that

(l1 +N1, l2 + Lc+1) = (l1 +N1, l1 + Lc+1)

+ (N1, (l2 − l1) + Lc+1)

∈ H1 + Zc(
L

N1
⊕ L

Lc+1
).

The reverse containment is clear and the result obtains. By a similar argument,

L ∼= H2 ∼c
L

N2
⊕ L

Lc+1
,

in which
H2 = {(l +N2, l + Lc+1)|l ∈ L},

and H2 is a subalgebra of L

N2
⊕ L

Lc+1
.

In the next proposition, we show that any two isoclinic Filippov algebras L1

and L2 can be realized as subalebras of the Filippov algebras L̂, where L̂, L1

and L2 are isoclinic to each other.

Proposition 3 Let L1 and L2 be two pairs of Filippov algebras. Then L1 ∼c

L2 if and only if there exists a Filippov alfebra L̂ containing subalgebra Ĥ1, Ĥ2

such that the following statements hold:

(i) L1
∼= Ĥ1 ∼c L̂ ∼c Ĥ2

∼= L2.

(ii) L

N1
∼c

L

N1
⊕ L

Lc+1
∼c L̂ ∼c Ĥ2, where L,N1 are defined in the proof of

Theorem 2.

Proof Set V =
L

N1
⊕ L

Lc+1
and

W = {((l, 0) +N1, (l, 0) + Lc+1|l ∈ Zc(L1) ∩ Lc
1}.

It is easy to see that W is an ideal of V such that W ∩ V c+1 = 0.
Let l1 ∈ L1 and choose l2 ∈ L2 such that (l1, l2) ∈ L and define δ1 : L1 → V/W
by

δ1(l1) = ((l1, l2) +N1, L
c+1) +W.

Similarly, let l2 ∈ L2 and choose l1 ∈ L1 such that (l1, l2) ∈ L, define

δ2 : L2 → V/W,

by
δ2(l2) = ((l1, l2) +N1, (l1, l2) + Lc+1) +W.

We claim that δ1 and δ2 are monomorphism and

δ1(L1) + Zc(V/W ) = V/W = δ2(L2) + Zc(V/W ).
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To prove these claims, take l1 ∈ L1 with δ1(l1) = 0. Then for some

l′ ∈ Zc(L1) ∩ Lc
1, and l2 ∈ α(l1 + Zc(L)),

(l1− l′, l2) ∈ N1, where (l′, 0) ∈ Lc+1. Therefore, l1 = l′ = 0. Thus, Kerδ1 = 0.
By a similar argument, we obtain Kerδ2 = 0. Also, for each (l1, l2), (l

′
1, l

′
2) ∈ L,

we have

((l1, l2) +N1, (l
′
1, l

′
2) + Lc+1) +W

= (((l1, l2) +N1, L
c+1) +W )

+ ((N1, (l
′
1, l

′
2) + Lc+1) +W )

∈ δ1(L1) + Zc(V/W ),

and

((l1, l2) +N1, (l
′
1, l

′
2) + Lc+1) +W

= (((l1, l2) +N1, (l1, l2) + Lc+1) +W )

+ ((N1, (l1 − l′1, l2 − l′2) + Lc+1) +W )

∈ δ2(L2) + Zc(V/W ).

Now, putting L̂ = V/W, δ1(L1) = Ĥ1, and δ2(L2) = Ĥ2, the results follow.

The following corollary is an immediate consequence of the above results.

Corollary 1 Let L1 and L2 be two Filippov algebras. Then the following
statements are equivalent:
(i) L1 and L2 are c-isoclinic.

(i) There exists a Filippov algebra A, a subalgebra P of L1 ⊕ A with P +
Zc(L1 ⊕ A) = L1 ⊕ A and an ideal Z of P with Z ∩ P c+1 = 0 such that
P/Z ∼= L2.

(ii) There exists a Filippov algebra B, an ideal Z of L1 ⊕ B with Z ∩ (L1 ⊕

B)c+1 = 0, and a subalgebra P of L1 ⊕B

Z
with

P + Zc(
L1 ⊕B

Z
) =

L1 ⊕B

Z
,

such that P is isomorphic to L2.

Proof Suppose that L1 ∼c L2, then (i) follows by taking

A = L/Lc+1, P = H1,

and Z = N2 in Proposition 2. We obtain part (ii) by taking

B = L/Lc+1, Z = W,

and P = Ĥ2 in Proposition 3.
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4 c-perfect pairs of Filippov algebras

This section is devoted to study c-perfect pairs of Filippov algebras.
Definition 4 A pair (M,L) of Filippov algebras is said to be c-perfect if
γc+1(M,L) = M .
Clearly, a Filippov algebra L is a c-perfect Filippov algebra, if Lc+1 = L.

The following theorems give the connections between c-perfect and c-isoclinic
pairs of Filippov algebras.
Theorem 3 Let L be a finite dimensional c-perfect Filippov algebra with
Zc(L) = 0. Then any c-isoclinic Filippov algebra H to L is isomorphic to
the direct sum of L by Zc(H).

Proof By the assumption,

H ∼c L = L/Zc(L) ∼= H/Zc(H) and H ∼c L = Lc+1 ∼= Hc+1.

By Lemma 2, Zc(H) ∩Hc+1 = 0 and H = Hc+1 + Zc(H). Therefore,

H = γc+1(H)⊕ Zc(H).

Theorem 4 Let (M,L) be a pair of finite dimensional Filippov algebras. If
(H ∩M,H) is a c-perfect pair of Filippov algebras such that H is a subalgebra
of L and (M,L) ∼c (H ∩M,H), then

L = γc+1(M,L) + Zc(M,L) +K,

for some subalgebra K of H. In particular, if H ⊆ M , then

L = γc+1(M,L) + Zc(M,L).

Proof By Lemma 2, we have L = H + Zc(M,L) and by the assumption
γc+1(H ∩M,H) = H ∩M . Let K be a subalgebra of H such that

K +H ∩M = H,

then L = γc+1(M,L) + Zc(M,L) +K.

Theorem 5 Let (M,L) be a pair of finite dimensional Filippov algebras and
(N,H) be a pair of finite dimensional Filippov algebras such that

(N,H) ∼c (M,L),

and dimM = dimN . If (M,L) is c-perfect or Zc(M,L) = 0, then M ∼= N .

Proof By the definition of isoclinism, we have the following isomorphisms

α : L/Zc(M,L) → H/Zc(N,H), α(M/Zc(M,L)) = N/Zc(N,H),

β : γc+1(M,L) → γc+1(N,H).

Now, clearly if γc+1(M,L) = M , then dimM = dim γc+1(N,H).
Since, dimM = dimN , we have γc+1(N,H) = N and hence N ∼= M . If
Zc(M,L) = 0, then the result follows immediately.
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Theorem 6 Let (M,L) be a c-perfect pair of finite dimensional Filippov alge-
bras, then L contains no proper subalgebra H such that (H∩M,H) ∼c (M,L).

Proof Assume that (M,L) is a c-perfect pair with a subalgebra H of L such
that (H ∩ M,H) ∼c (M,L), then by Lemma 2, L = H + Zc(M,L). Also,
γc+1(H∩M,H) ∼= γc+1(M,L) = M and hence, γc+1(H∩M,H) = M ⊆ H∩M .
It implies that M ⊆ H. Let K be a complement of M in H as vector spaces,
then

L = M ⊕K + Zc(M,L) = M ⊕K = H.
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