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Abstract Let G be a finite group. The notion of n-Engel degree of G, denoted
by dn(G), is the probability of two randomely chosen elements x, y ∈ G satisfy
the n-Engel condition [y,n x] = 1. The case n = 1 is the known commutativity
degree of G. The aim of this paper, is to define and investigate the relative
2-Engel degree of a subgroup H of G as the probability of two randomely
chosen elements x ∈ G and y ∈ H satisfy the 2-Engel condition [y,2 x] = 1.
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1 Introduction

In this article, G will always denote a finite group. Let n be a non-negative
integer, G a group and x, y ∈ G. The n-Engel word [y,n x] is defined recursively
by [y,0 x] = y and [y,n+1 x] = [[y,n x], x]. Recall that an element y in a group
G is said to be right n-Engel if [y,n x] = 1 for all x ∈ G and that the group G
is said to be n-Engel if every element x ∈ G is right n-Engel. A subgroup H
of G is said to be a right n-Engel subgroup if all the elements of H are right
n-Engel elements of G (See [4]).

We extend the notion of the relative commutativity degree of a finite group
G and a subgroup H of G (See [7]) by defining the relative 2-Engel degree of
H in G, which is denoted by d2(H,G). It is the probability of H to be a right
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2-Engel subgroup of G. That is

d2(H,G) =
|{(x, y) ∈ H ×G : [y, x, x] = 1}|

|H||G|
.

Obviously d2(G,G) = d2(G) (See Section 2 below) and d2(H,G) = 1 for every
subgroup H of the center of G. In general, d2(H,G) = 1 if and only if H is
a right n-Engel subgroup of G. In this article, we investigate some properties
and results involving general lower and upper bounds for the relative 2-Engel
degree d2(H,G) for a group G and a subgroup H of G and we improve the
upper bounds for d2(H,G) when G is not a 2-Engel group but belongs to a
special class of groups.

2 Definitions and Known Results

The commutativity degree of a group G, denoted by d(G) is defined as the
probability of two randomly chosen elements of G commute, that is

d(G) =
|{(x, y) ∈ G×G : [y, x] = 1}|

|G|2
.

The commutativity degree of G was first introduced by P. Erdös and P. Turán
(See [5]) and its generalizations are extensively studied in the literature. (See
for example [1,3,7–9]). For every group G, the n-th commutativity degree
pn(G) of G is the probability that the n-th power of a random element of G
commutes with another random element of G. More precisely

pn(G) =
|{(x, y) ∈ G×G : [xn, y] = 1}|

|G|2
.

The n-th commutativity degree of a group has been introduced in [2]. The
importance of pn(G) is due to the fact that p1(G) = d(G) is the commutativity
degree of G. For a given natural number n, we define the n-Engel degree of G,
denoted by dn(G) as the probability that two randomly chosen elements x, y
of G satisfy the n-Engel condition [y,n x] = 1, that is

dn(G) =
|{(x, y) ∈ G×G : [y,n x] = 1}|

|G|2
.

We have the following inequalites for the Engel degrees of a group G,

d1(G) ≤ d2(G) ≤ · · · ≤ dn(G) ≤ · · · .

There are some significant results on dn(G) in [7,9]. The authors investigated
some lower and upper bounds for 2-Engel degree of a group G in [6]. Recall
that for every natural number n, the notations π(G), Ln(G), L(G), Rn(G)
and R(G) denote the set of all prime divisors of the order of a group G, left
n-Engel elements, left Engel elements, right n-Engel elements and right Engel
elements of G, respectivily. Let kG(X) be the number of the conjugacy classes
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of G contained in X for each normal subset X of G. Let χ be the class of all
groups G such that the set EG(x) = {y ∈ G : [y, x, x] = 1} is a subgroup of G
for all x ∈ G. In [6] it is proved that if G ∈ χ is a finite group which is not a
2-Engel group and if p = minπ(G), then

d2(G) ≤ 1

p
+ (1− 1

p
)
|L2(G)|
|G|

,

and if L2(G) ≤ G, then

d2(G) ≤ 2p− 1

p2
.

It is also proved that

d2(G) ≥ d1(G)− (p− 1)
|Z(G)|
|G|

+ (p− 1)
kG(L(G))

|G|
,

Note that, R2(G) is always a subgroup of G (See [10]), while L2(G) is not
necessarily a subgroup of G. For a given group G and an element x ∈ G,
EG(x) is a subgroup of G whenever [EG(x), x, EG(x), x] = 1 or [EG(x), x] is
abelian.

As an example of 2-Engel degree of groups, if G is the dihedral group of
order 2n, then d2(G) = n+1

2n if n is odd, d2(G) = n+2
2n if n = 2m for some odd

number m and d2(G) = n+4
2n if 4|n. As another example, if G is a generalized

quaternion group of order 4n, then d2(G) = n+1
2n if n is odd and d2(G) = n+2

2n
if n is even.

The authors in [7] generalized the notion of the commutativity degree of
groups by defining the relative commutativity degree of G and a subgroup
H of G, denoted by d(H,G), which is the probability that an element of H
commutes with an element of G. Obviously d(H,G) = 1 if and only if H is
contained in the center of G. They proved that the relative commutativity
degree d(H,G) and the commutativity degrees of G and H are compared
through the following inequalities

d(G) ≤ d(H,G) ≤ d(H).

It is also proved in [7] that if p is the smallest prime number dividing |G|, then

|Z(G) ∩H|
|H|

+
p(|H| − |Z(G) ∩H|)

|H||G|
≤ d(H,G) ≤ |Z(G) ∩H|+ |H|

2|H|
.

They also proved that for a nonabelian group G and a subgroup H with
H ⊈ Z(G), if H is abelian, then d(H,G) ≤ 3

4 and if H is not abelian, then
d(H,G) ≤ 5

8 .
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3 Main Results

In this section, we bring our main results.

Theorem 1 If H ≤ G, then d2(G) ≤ d2(H,G). The equality holds if and only
if H = G.

Proof We have

d2(H,G) =
1

|G|
∑
x∈H

|EG(x)|
|H|

≥ 1

|G|
∑
x∈H

|EG(x)|
|G|

≥ 1

|G|
∑
x∈G

|EG(x)|
|G|

= d2(G).

The second part is obvious. The proof is complete.

We need the following lemma to prove the next results:

Lemma 1 If H ≤ G and G ∈ χ, then [H : EH(x)] ≤ [G : EG(x)] for all
x ∈ G.

Proof Since EG(x) ≤ G, we have EH(x) = H ∩ EG(x) ≤ H. Hence

|H||EG(x)|
|EH(x)|

=
|H||EG(x)|
|H ∩ EG(x)|

= |HEG(x)| ≤ |G|.

Thus [H : EH(x)] ≤ [G : EG(x)].

First we compare the relative 2-Engel degree with 2-Engel degree of G:

Theorem 2 If H ≤ G and G ∈ χ, then d2(G) ≤ d2(H,G) ≤ d2(H).

Proof Using Lemma 1 we have

d2(H,G) =
|{(x, y) ∈ H ×G : [y, x, x] = 1}|

|H||G|

=
1

|H||G|
∑
x∈H

|EG(x)|

=
1

|H|
∑
x∈H

|EG(x)|
|G|

≤ 1

|H|
∑
x∈H

|EH(x)|
|H|

= d2(H).
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In the next two theorems, we find upper bounds for the 2-Engel degree of
a pair of groups.

Theorem 3 Let H ≤ G and G ∈ χ. Then

d2(H,G) ≤ 1

2

(
1 +

|L2(H)|
|H|

)
.

Proof

d2(H,G) =
1

|H||G|
∑
x∈H

|EG(x)|

=
1

|H|
∑
x∈H

|EG(x)|
|G|

≤ 1

|H|
∑
x∈H

|EH(x)|
|H|

=
1

|H|

 ∑
x∈L2(H)

|EH(x)|
|H|

+
∑

x/∈L2(H)

|EH(x)|
|H|


≤ 1

|H|

(
|L2(H)|+ 1

2
(|H| − |L2(H)|)

)
=

1

2

(
1 +

|L2(H)|
|H|

)
Theorem 4 Let G be a finite group which is not 2-Engel. If p = minπ(G),
then

d2(H,G) ≤ p([G : H]) +
p− 1

p

(
|L2(G) ∩H|

|H|

)
and if L2(H) ≤ H, then

d2(H,G) ≤ p3 + p− 1

p2
([G : H])

Proof

d2(H,G) =
1

|H||G|
∑
x∈H

|EG(x)|

=
1

|H||G|

 ∑
x∈L2(G)∩H

|EG(x)|+
∑

x∈H−L2(G)

|EG(x)|


≤ 1

|H||G|

(
|L2(G) ∩H||G|+ |G|

p
(|G| − (|L2(G) ∩H|)

)
=

p− 1

p

(
|L2(G) ∩H|

|H|

)
+ p[G : H].

In particular, if L2(H) ≤ H, then |L2(H)| ≤ |G|
p and the results follows.
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Corollary 1 Let G be finite 2-Engel group. If p = minπ(G), then

d2(H,G) ≤ p− 1

p
+ p([G : H]).

Proof We have L2(G) = G and by Theorem 4 the result follows.

Theorem 5 Let G be a nonabelian group and p = minπ(G). Then

|L2(G) ∩H|
|H|

+ p

(
|G| − |L2(G) ∩H|

|H||G|

)
≤ d2(H,G)

≤ 1

2

(
[G : H] +

|L2(G) ∩H|
|H|

)
Proof On one hand

d2(H,G) =
1

|H||G|
∑
x∈H

|EG(x)|

=
1

|H||G|

 ∑
x∈L2(G)∩H

|EG(x)|+
∑

x/∈L2(G)∩H

|EG(x)|


≤ 1

|H||G|
(|L2(G) ∩H||G|) + |G|

2
(|G| − |L2(G) ∩H|))

=
1

2

(
[G : H] +

|L2(G) ∩H|
|H|

)
and on the other hand

d2(H,G) =
1

|H||G|
∑
x∈H

|EG(x)|

=
1

|H||G|

 ∑
x∈L2(G)∩H

|EG(x)|+
∑

x/∈L2(G)∩H

|EG(x)|


≥ 1

|H||G|
(|L2(G) ∩H||G|+ p(|G| − |L2(G) ∩H|))

=
|L2(G) ∩H|

|H|
+ p

(
|G| − |L2(G) ∩H|

|H||G|

)
.
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