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Abstract Connectivity has been used in the past to describe the stability of
graphs. If two graphs, have the same connectivity, then it dose not distinguish
between these graphs. That is, the connectivity is not a good measure of
graph stability. Then we need other graph parameters to describe the stability.
Suppose that two graphs have the same connectivity and the order (the number
of vertices or edges) of the largest components of these graphs are not equal.
Hence, we say that these graphs must be different in respect to stability and so
we can define a new measure which distinguishes these graphs. In this paper,
the Weak-Tenacity of graph G is introduced as a new measure of stability in
this sense and it is defined as

Tw(G) = min
S⊆V (G)

{
|S|+me(G− S)

ω(G− S)
: ω(G− S) > 1

}
,

where me(G − S) denotes the number of, edges of the largest component of
G − S. At last, We give the Weak-Tenacity of graphs obtained via various
operations.
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1 Introduction

The stability of a (computer, or communication, or transportation) network
composed of (processing) nodes and (communication or transportation) links is
of prime importance to network designers. One way of measuring the stability
of a network is through the cost of disrupting the network. In an analysis of the
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stability of a network against disruption, we have two fundamental questions
(there may be others):

(1) What is the size of the largest remaining group within which mutual com-
munication can still occur?

(2) How difficult is it to reconnect the network?

Let S be a set of edge or vertices of a graph G. Question (1) is sometimes
analyzed by considering the number of vertices or the number of edges of the
largest component of G−S. Question (2) is sometimes analyzed by considering
the number of components of G − S [3].The connectivity is the minimum
number of vertices whose removal disconnects the graph and edges connectivity
is the minimum number of edges whose removal disconnects the graph. The
difficulty with these two parameters is that they do not take into account
what remains after the graph has been disconnected. To avoid this difficulty,
other parameters have been proposed, including Integrity, which takes into
account the size of the largest component that remains after disconnection
of the graph, toughness which takes into account the number of components
once the graph has been disconnected, and tenacity which includes both the
size of the largest component and the number of components remaining after
disconnection of the graph [1–3] i.e. the integrity family is a measure which deal
with question (1) and so the integrity, edge integrity and pure edge integrity
were introduced as a measure of stability in this sense. For convenience, we
recall some parameters of [3]. Let G be a finite simple graph with vertex set
V (G) and edge set E(G) Formally, the vertex-tenacity (frequently called just
tenacity) is

T (G) = min
S⊆V (G)

{
|S|+m(G− S)

ω(G− S)
: ω(G− S) > 1

}
,

where ω(G−S) and m(G−S), respectively, denote the number of components
and the order of a largest component of G−S. A set S ⊆ V (G) is a cutSet of
G, if either G− S is disconnected or G− S has only one vertex. We shall use
⌊x⌋ for the largest integer not larger than x. A subset S of V (G) is called an
independent set of G if no two vertices of S are adjacent in G. An independent
set S is a maximum if G has no independent set S′ with |S′| > |S|. The
independence number of G, β(G), is the number of vertices in a maximum
independent set of G. A subset S of V (G) is called a covering of G if every
edge of G has at least one end in S. A covering S is a minimum covering
if G has no covering S′ with |S′| > |S|. The covering number, α(G), is the
number of vertices in a minimum covering of G.We use Bondy and Murty [2]
for terminology and notations not defined here. For comparing, the following
graph parameters are listed. The connectivity is a parameter defined based on
Quantity (1). The connectivity of an incomplete graph G is defined by

κ(G) = min
{
|S| : S ⊂ V (G), ω(G− S) > 1

}
,
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and that of the complete graph Kn is defined as n − 1. The toughness of an
incomplete connected graph G is defined by

t(G) = min

{
|S|

ω(G− S)
: S ⊂ V (G), ω(G− S) > 1

}
.

The integrity is defined based on Quantities (1) and (2). The integrity of a
graph G is defined by

I(G) = min
{
|S|+m(G− S) : S ⊂ V (G)

}
.

The corresponding edge analogues of these concepts are defined similarly.
Among the above parameters, the tenacity is a reasonable parameter can be
used for measuring the vulnerability of networks.
In this paper, we consider the problem of computing the weak-tenacity of
graphs. In Section 2, we give some results on the weak-tenacity some graphs.
After that, in Section 3, we compute the weak-tenacity of some special oper-
ations on some graphs. Finally, the relationships between the weak-tenacity
and some other vulnerability parameters, namely the tenacity, toughness, and
integrity are established in Section 4.

2 Weak-Tenacity of a graph

In this section, we introduce a new stability measure like as Tenacity and deal
with the above questions. The Weak-Tenacity of a graph G is defined as

Tw(G) = min
S⊆V (G)

{
|S|+me(G− S)

ω(G− S)
: ω(G− S) > 1

}
,

where the minimum is taken over all cut-sets S of G and me(G− S) denotes
the number of edges of the largest component of G−S.We see that Tw(Kn) =
n − 1,for every n ≥ 1 . Since by removal any subset S ⊆ V (G) of complete
graph Kn result is a complete graph. Thus, the largest component of Kn − S
must be a complete subgraph of Kn. So,

me(Kn − S) =

(
n− |S|

2

)
.

If set |S| = x, then

Tw(Kn) =

x+

(
n− x
2

)
ω(Kn − S)

= f(x),

but ω(Kn − S) = 1. Thus minimum f(x) by calculus will be n− 1. A set S is
said to be a Tw-set of G if

Tw(G) =
|S|+me(G− S)

ω(G− S)
.
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Also, note that if G is disconnected the set S may be empty. There are many
example of graphs which suggest that Tw is a suitable measure of stability in
that it is able distinguish among graphs.

Next, we will give some basic results about the weak-tenacity.
Proposition 1 If G is spanning subgraph of H then Tw(G) ≤ Tw(H).
Proof Since G is spanning subgraph of H,we have ω(G− S) ≤ ω(H − S) and
me(G− S) ≤ me(H − S) for any subset S ⊆ V (G). Thus we have

Tw(G) ≤ Tw(H).

Proposition 2 For any graph G, Tw(G) ≥ κ(G)
β(G) where β(G) is the indepen-

dent number of G.
Proof For any cut setS of G, we know that |S| ≥ κ(G). Thus we can see that
the number of components of G− S is at most β(G). Therefore

|S|+me(G− S)

ω(G− S)
≥ κ(G)

β(G)
.

Proposition 3 If G is not complete, then

Tw(G) ≤ n− β(G)

β(G)
.

Proof Let X be a largest independent set of vertices in G, define S = V (G)−X.
Then |S| = n−β(G), me(G−S) = 0, and β(G) = ω(G−S). Hence the result
follows.
Proposition 4 If m ≤ n. Then Tw(Km,n ) =

m
n .

Proof If G = Km,n with m ≤ n. Then κ(G) = m and β(G) = n. Combining
propositions 2 and 3. We obtain

κ(G)

β(G)
≤ Tw(G) ≤ m+ n− β(G)

β(G)
.

Hence Tw(Km,n ) =
m
n .

Theorem 1 For any graph G, Tw(G) ≥ t(G), where t(G) is toughness of G.
Proof LetA ⊆ V (G), be a t-set and B ⊆ V (G), be a Tw-set. Then

Tw(G) =
|B|+m(G−B)

ω(G−B)
≥ |B|

ω(G−B)
≥ |A|

ω(G−A)
= t(G).

This result gives us a number of corollaries.
Corollary 1 For any graph G, Tw(G

2) > κ(G).
Proof In [2], Chavatàl obtained the result t(G2) > κ(G).
Corollary 2 Let G be a non-empty graph and let m be largest integer such
that K1,m is an induced sub-graph of G. Then Tw(G) ≥ κ(G)

m .
Proof In [4] Goddard and Swart proved that under these conditions we have
t(G) ≥ κ(G)

m .
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3 Weak-Tenacity and Operation on Graphs

Theorem 2 For any graph G we have

T (G) ≤ Tw(G) + 1
2 .

Proof Let S be a Tw-set G. Since

T (G) ≤ |S|+m(G− S)

ω(G− S)
,

and
m(G− S) ≤ me(G− S) + 1,

for any set S ⊆ V (G). Thus

T (G) ≤ |S|+m(G− S)

ω(G− S)
≤ |S|+me(G− S) + 1

ω(G− S)
.

So, T (G) ≤ Tw(G) + 1
ω(G−S) ≤ Tw(G) + 1

2 .

Theorem 3 If a graph G of order n is isomorphic to a cycle graph or a tree
then, Tw(G) = T (G)− 1.

Proof Let S be a subset of V (G) , such that T (G) = |S|+m(G−S)
ω(G−S) . If we remove

the vertices in S, then each of the components of G − S is a tree or isolated
vertex and m(G− S) = me(G− S) + 1. Hence,

Tw(G) ≤ |S|+me(G− S)

ω(G− S)

=
|S|+m(G− S)− 1

ω(G− S)

= T (G)− 1

ω(G− S)

≤ T (G)− 1

β(G)
. (1)

So, the proof is completed by (1) and Theorem 2.

Proposition 5 Let G be any non trivial, non complete graph with n vertices.
For any vertex v, we have, Tw(G− v) ≥ Tw(G)− 1

2 . Hence,

Tw(G− v) ≥ Tw(G)− 1.

Proof Let G′ = G− v. If G′ = K1,n, then Tw(G
′) = n− 1 and by proposition

2.3 , Tw(G) ≤ n−1
2 Thus, the theorem holds. Hence, assume G′ ̸= Kn−1. Let A′

be a Tw -set for G′ , then Tw(G
′) = |A′|+me(G

′−A′)
ω(G′−A′) . Now define A = A′ ∪ {v},
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clearly A is a cut set for G and so Tw(G) ≤ |A|+me(G−A)
ω(G−A) . But |A| = |A′| + 1

and G−A = G′ −A′, so

Tw(G) ≤ |A′|+me(G
′ −A′) + 1

ω(G′ −A′)

=
|A′|+me(G

′ −A′)

ω(G′ −A′)
+

1

ω(G′ −A′)
≤ Tw(G

′) +
1

2
.

Theorem 4 If G is a bipartite, r-regular and r-connected graph on n vertices,
then Tw(G)=1.

Proof From [4], we know that t(G) ≥ 1, and so by Theorem 2.5 we have
Tw(G) ≥ 1. Let A be one of partite sets. Then, since G is r -regular, |A| = n

2 ,
me(G−A) = 0, and ω(G−A) = n

2 . Therefore,

Tw(G) ≤ |A|+me(G−A)

ω(G−A)
=

n
2 + 0

n
2

= 1.

Hence, Tw(G) = 1.

This result gives several interesting corollaries.

Corollary 3 If G1 is a bipartite, n-regular, n-connected graph and G2 is a
bipartite, m-connected, m-regular graph. Then Tw(G1 ×G2) = 1.

Proof It is well-known that G1 × G2 is bipartite, (m + n)-regular, (m + n)-
connected.

Corollary 4 For any integer n, we have Tw(Qn) = 1.

Corollary 5 For any even integers n and m we have Tw(Cn × Cm) = 1.

Corollary 6 For any even integer n, Tw(Cn ×K2) = 1.

We next obtain some bounds on the Weak-Tenacity of products of graphs.
Note that the first inequality in the Theorem 3.

Theorem 5 If n ≥ m, then

m+ n− 2

2
≤ Tw(Kn ×Km) ≤ 1

2n

⌈ n

m

⌉
(
⌈ n

m

⌉
− 1) + (m− 1).

Proof In [2] Chavatal proved that, if m,n ≥ 2 then, t(Km × Kn) =
m+n−2

2 .
Let V (Kn) = {1, 2, . . . , n} and V (Km) = {1, 2, . . . ,m}. Then

V (Kn ×Km) = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Also, let n = am+ b, for 0 ≤ b ≤ m− 1, so if b = 0, then, a =
⌈
n
m

⌉
= n

m , and
otherwise

⌈
n
m

⌉
= a+ 1.Now, if b = 0, then define the sets Wi as follows.

Wi = {(i, ia), (i, ia+ 1), . . . , (i, ia− a+ 1)},
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for each i, 1 ≤ i ≤ m. Otherwise define the sets Wi as follows.

Wi =


{
(i, ia+ i), (i, ia+ i+ 1), . . . , (i, ia+ i− a)

}
, 1 ≤ i ≤ b,

{
(i, ia+ b), (i, ia+ b+ 1), . . . , (i, ia+ b− a+ 1)

}
, 1 + b ≤ j ≤ m,

and let, W =
m∪
i=1

Wi, define A = V (G)−W and so |A| = mn− n.

It is easy to see that, the Wi, 1 ≤ i ≤ m, are components of G−A and so
me(G−A) = (

⌈
n
m

⌉
− 1)

⌈
n
m

⌉
× 1

2 and ω(G−A) = n, thus,

m+ n− 2

2
≤ Tw(Km ×Kn) ≤

1

2n

⌈ n

m

⌉
(
⌈ n

m

⌉
− 1) + (m− 1).

Thus, the result follows.

Corollary 7 For any integer n, Tw(Kn ×Kn) = n− 1.

Lemma 1 If A is a minimal Tw-set for the graph G. Then for each vertex v
of A, the induced subgraph < V (G) − (A − v) > has fewer components than
dose G−A.

Proof Let A′ = A− v. Thus, |A′| = |A| − 1 and me(G− A) + 1. Now assume
that ω(G−A′) ≥ ω(G−A) + 1. Thus,

|A′|+me(G−A′)

ω(G−A′)
≤ |A|+me(G−A)

ω(G−A)
= Tw(G).

Contrary to our choice of A.

Proposition 6 If G is connected, then Tw(G) ≥ 1
∆(G) .

Proof If A is a cut set of size n, thus ω(G) ≤ n∆(G) and me(G − S) ≥ 0.
Hence,

Tw(G) = min
S⊂V (G)

|S|+me(G− S)

ω(G− S)
≥ n+ 0

n∆(G)
=

1

∆(G)
.

Proposition 7 Let G be a graph with n vertices and G ̸= Kn, then

Tw(G) + Tw(G) ≥ 1

∆(G)
≥ 1

n− 1
.

Proof We observe that at least one of G or G is connected. Suppose G is
not connected. we proved that Tw(G) ≥ 1

∆(G) ≥ 1
n−1 Now, suppose G is

not connected but G is connected. again by previous proposition we have
Tw(G) ≥ 1

n−1 . Therefore in each case we have Tw(G) + Tw(G) ≥ 1
n−1 .
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4 Weak-Tenacity and other vulnerability parameters

In this section, the relationships between the weak-tenacity and some vulnera-
bility parameters, namely the tenacity, toughness and integrity are established.

Theorem 6 Let G be a non-complete connected graph of order n ≥ 2. Then
Tw(G) ≥ δ(G)

n−δ(G) .

Proof Let X be an arbitrary vertex cut of G. Denote the components of G−X

by G1, G2, ..., Gω and set |V (Gi)| = ni (1 ≤ i ≤ ω). Then
ω∑

i=1

ni = n − |X|.

Clearly, we have 2 ≤ ω ≤ n− |X| and me(G−X) ≥ n−|X|
ω − 1. Therefore

|X|+me(G−X)

ω(G−X)
≥

|X|+ n−|X|
ω − 1

ω
=

(|X| − 1)ω + (n− |X|)
ω2

. (2)

Set f(ω) = (|X|−1)ω+(n−|X|)
ω2 .

It is easy to check that f(ω) is a decreasing function when ω ≥ 2. We have
two case
Case I : |X| ≥ δ.
It follows from (2), and the fact that f(ω) is a decreasing function when ω ≥ 2,
that

|X|+me(G−X)

ω(G−X)
≥ f(n− |X|) = |X|

n− |X|
≥ δ

n− δ
. (3)

Case II : |X| ≤ δ− 1. In this case, every component of G−X has at least two
vertex. Otherwise, suppose that there exists a component Gk with nk = 1.
Denote the unique vertex of Gk by u, then deg(u) ≤ |X| < δ, a contraction.
Since, (ni − 1) + |X| ≥ δ, for every 1 ≤ i ≤ ω. We have

ωδ ≤
ω∑

i=1

((ni − 1) + |X|) =
ω∑

i=1

ni + ω(|X| − 1) = (n− |X|) + ω(|X| − 1).

Therefore, 2 ≤ ω ≤ n−|X|
δ−|X|+1 . So, from (2) and the fact that f(ω) is a decreasing

function when ω ≥ 2, we have

|X|+me(G−X)

ω(G−X)
≥ f(

n− |X|
δ − |X|+ 1

) = δ(
n− |X|

δ − |X|+ 1
).

Now, set g(x) = δ( n−|X|
δ−|X|+1 ). It is easy to check that g(x) is a decreasing

function when x ≤ δ − 1. Thus

|X|+me(G−X)

ω(G−X)
≥ g(δ − 1) =

2δ

n− δ + 1
≥ δ

n− δ
. (4)

Hence, by the definition of weak-tenacity and the choice of X, from (3) and (4)
we have Tw(G) ≥ δ(G)

n−δ(G) . Since δ(G) ≥ κ(G) for any graph G, the following
result is immediate.
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Corollary 8 Let G be a non-complete connected graph of order n. Then

Tw(G) ≥ κ(G)

n− κ(G)
.

Theorem 7 Let G be a non-complete connected graph of size q. Then

t(G) ≥ κ(G)(1 + Tw(G))

1 + q
.

Proof Denote κ(G), t(G) and Tw(G) by κ, t and Tw respectively. Let X be an
arbitrary vertex cut of G and denote ω(G −X) by ω. From the definition of
weak-tenacity we have ωTw ≤ |X|+me(G−X). furthermore,

me(G−X) + ω + |X| − 1 ≤ q.

Theorem 8 Let G be a non-complete connected (p, q)-graph. Then Iw(G) ≥
2Tw(G).

Proof Let X be an arbitrary vertex cut of G. As in the proof of theorem 7, we
have 2 ≤ ω(G−X) ≤ 1+q

1+Tw
. Thus,

|X|+me(G−X)

ω(G−X)
≥ (1 + Tw)(|X|+me(G−X))

1 + q
≥ Iw(1 + Tw)

1 + q
.

By the definition of weak-tenacity and the choice of X, we have

Tw(G) ≥ Iw(G)(1 + Tw(G))

1 + q
,

i.e. Iw ≤ 1+q
1+Tw

Tw.

5 Conclusion

If a system such as a communication network is modeled by a graph G, there
are many graph theoretical parameters used to describe the vulnerability of
communication networks including connectivity, integrity, toughness, binding
number, tenacity and rupture degree. Two ways of measuring the vulnerability
of a network is through the ease with which one can disrupt the network, and
the cost of a disruption. Connectivity has the least cost as far as disrupting the
network, but it does not take into account what remains after disruption. One
can associate the cost with the number of the vertices destroyed to get small
components and the reward with the number of the components remaining
after destruction. The tenacity measure is compromise between the cost and
the reward by minimizing the cost: reward ratio. Thus, a network with a large
tenacity performs better under external attack. In this paper, we have obtained
the exact values or bounds for the tenacity of some special graphs.
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