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Abstract In this paper, we propose an improved cuckoo optimization algo-
rithm (ICOA) to determine unknown function u(x) in the Fredholm integral
equations of the second kind. To show utility and capability of the ICOA, we
solve some Fredholm integral equations of the second kind using the ICOA
and Adomian decomposition method (ADM) and compare results each other.
Also, by using the parallelization technique the running time of the algorithm
was reduced significantly.
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1 Introduction

An integral equation is an equation in which the unknown function u(x) ap-
pears under an integral sign. Standard form of an integral equation is some-
thing like:

u(x) = f(x) + λ

∫ h(x)

g(x)

k(x, t) u(t) dt,

where f(x) is a known function of x and k(x, t) is a known function of x, t
and λ is a constant factor and g(x) and h(x) are integral bounds which can
be constant or variable.

If the limits of integration are fixed, then this integral equation is called
the Fredholm integral equation of the second kind (FIESK). Therefore, the
form of this equation is as follows:

u(x) = f(x) + λ

∫ b

a

k(x, t) u(t) dt, (1)

where a and b are constants.
In recent years, many methods have been reported to solve Fredholm in-

tegral equations such as ADM, variational iteration method, direct computa-
tion method, successive approximations method, haar wavelets, hybrid Taylor,
block-pulse function method and etc [1–5]. All these methods try to find un-
known function u(x) which solves relevant integral equation. However these
methods give a solution with high accuracy, investigation of the capability of
evolutionary algorithms to solve integral equations might yield more accurate
solutions with less execution time. In this paper, we propose an Improved
Cuckoo optimization algorithm (COA) to solve FIESKs because of its high
speed, accuracy, and its great ability to find global optima. In our proposed
method, we assume that the function u(x) is a polynomial and use the ICOA
to find the coefficients of this polynomial. In order to increase the precision
of our algorithm, a local search method called ”Simulated Annealing”[7–10]
has been added to the original cuckoo optimization algorithm as a step of its
main loop. To improve the execution time of our method, we use the Horner’s
method to evaluate the polynomials in each step. Since, an evaluation of a def-
inite integral is needed in each step, we use the Simpson’s method to do that.
Finally, to improve the whole execution time of our algorithm, we implement
it in a parallel scheme.

The ADM was introduced by George Adomian [6]. This method has been
applied successfully on wide class of equations and problems. Such as: heat con-
duction equations, wave equations, inverse parabolic problems, inverse hyper-
bolic problems and integral equations [19–21,1,4]. To solve an integral equa-
tion by the ADM, unknown u(x) is considered as a series. The components
of this series is obtained from a recursive substitution and form a polynomial.
Therefore, this method is a good choice for comparison with our proposed
method. Also, many authors have compared the ADM with their methods. In
the [22], the ADM and the Runge�Kutta method have been compared each
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other for solutions of the Stefan problem. Bildik and Inc have done a research
on a comparison between the Adomian decomposition and Tau methods in
the[23]. And the comparison of the ADM and the variational iteration method
in solving the moving boundary problem has been investigated in the [24].

The structure of this paper is organized as follows: In the Section 2, we
explain the ADM. Section 3 is dedicated to explain the original Cuckoo op-
timization algorithm. In the Section 4, we present our improved cuckoo op-
timization algorithm. The Horner’s method is presented in the Section 5. In
the Section 6 we explain how our ICOA solves the Fredholm integral equation
of the second kind. Section 7 discusses about the parallelization of the cost
function of the ICOA. Also, in the Section 8, we discuss about a criterion for
calculating the accuracy of our algorithms. Section 9 presents some numerical
results of the implementation of our algorithm for some examples. Finally, we
have a conclusion in the Section 10.

2 Adomian decomposition method

The ADM is a semi-analytical method to solve wide class of equations. To
solve the second kind of the Fredholm integral equations by using this method,
unknown function u(x) is considered as a infinite series and components of this
series is obtained as follows:

u(x) =

∞∑
n=0

un(x) = u0(x) + u1(x) + · · ·+ un(x) + · · · , (2)

where the components un(x), n ≥ 0 will be determined recurrently. Therefore,
substitution of (2) into equation (1) gives following equation:

∞∑
n=0

un(x) = f(x) + λ

∫ b

a

k(x, t)

( ∞∑
n=0

un(t)

)
dt, (3)

or equivalently

u0(x)+· · ·+un(x)+· · · = f(x)+λ

∫ b

a

k(x, t) u0(t) dt+λ

∫ b

a

k(x, t) u1(t) dt+· · · ,

(4)
therefore, we can obtain an iterative relation to approximate unknown function
u(x) as follows:

u0(x) = f(x),

u1(x) = λ

∫ b

a

k(x, t) u0(t) dt,

u2(x) = λ

∫ b

a

k(x, t) u1(t) dt,

...

uk(x) = λ

∫ b

a

k(x, t) uk−1(t) dt,

(5)
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where, as k approaches infinity,
∞∑

n=0
un(x) approaches u(x).

3 Original Cuckoo Optimization Algorithm

Cuckoo optimization algorithm has introduced by Ramin Rajabioun [11] in
2011. This optimization algorithm is inspired from the life of a bird family
that called cuckoo. Special lifestyle of these birds and their characteristics in
egg laying and breeding has been the basic motivation for development of this
new evolutionary optimization algorithm.

COA starts with an initial population which contains mature cuckoos and
their eggs. Each mature cuckoo has own egg laying radius (ELR) and it only
can lay eggs in its ELR on host bird habitat. Then, some eggs that are less
similar to host bird egg will demise.

Survived cuckoo population will migrate to a better place. To migrate, in
the first cuckoos based on their position in environment are divided into some
clusters and finally all cuckoos will migrate toward the best cuckoo in the best
cluster with a λ percent of way and with an deviation of α radians. When
all of positions of cuckoo became very close, algorithm finishes. Being close
means that this environment has maximum food sources and fewer eggs will
be destroyed.

COA pseudo code:

(0) Start.
(1) Initialize cuckoos.
(2) If cuckoos are not very close to each other.
(3) Calculate cost of each cuckoo.
(4) Assign some eggs between maxnum of eggs and minnum of eggs to each

cuckoo.
(5) Calculate ELR for each cuckoo and determine the position of each egg of

cuckoo according to parent cuckoo.
(6) If number of current cuckoos in population is greater than maxnum of

cuckoos, then demise weaker cuckoos.
(7) Clustering of the cuckoos on k clusters.
(8) Find the best cuckoo in the best cluster.
(9) Migrate cuckoos toward the best cuckoo with some deviation.

(10) Go to step (2).
(11) The best cuckoo is the best solution.
(12) End.

4 Improved Cuckoo Optimization Algorithm

However, the original COA is a capable algorithm to solve a wide range of
problems, by changing some of its operators, according to the problem, we
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can improve its total performance. In this paper, we added a local search al-
gorithm called ”Simulated Annealing” and chanced some operations of the
original COA to improve it. The results showed that the modifications applied
on the original COA, improved the total performance of the algorithm. The
changes are as follows [13–15]:

(1) Adaptive ELR: Since, at the higher iterations, the approximated solutions
must be changed less than the previous iterations, the size of the ELR must
be reduced. This means, the eggs are not laid far away from their parent
at the higher iterations. In this paper, the size of the ELR is reduced when
the number of iterations is increased.

(2) Adaptive number of eggs: In the original COA, the number of eggs of
each cuckoo is determined randomly, between the maximum and minimum
number of eggs. In this scheme, it is possible that a weak cuckoo may lay
more eggs than a strong one. This may reduce the speed of convergence.
In this paper, we set the number of eggs of each cuckoo according to its
cost value as follows:

eggNumi =minEggNum+⌊
(fitnessi − fitnessmin)×

maxEggNum−minEggNum

fitnessmax − fitnessmin

⌋
,

where,

fitnessmin = The minimum fitness in the current population,
fitnessmax = The maximum fitness in the current population,

fitnessi = the fitness value of the current cuckoo.

Results show that, this improvement increases the speed of convergence
at these kind of problems.

(3) Repair the malformed cuckoos: During the steps of the COA, some el-
ements of the habitation vector of each cuckoos may exceed the search
range of the problem. In this case, these elements are returned to the
search range of the problem as much as the exceeded size. For example,
if the search range is [−M,M ], an element with value of M + α will be
M − α after the repair step.

(4) Apply a local search on the best solutions: In each iteration, to improve
the best solutions, we apply the Simulating Annealing algorithm on the
best cuckoo of each cluster. When the best cuckoo at each cluster get
improved, other cuckoos are affected from this improvement due to the
Migration step.

The pseudo code of the ICOA is as follows:

(1) Start.
(2) Initialization
(3) Calculate the cost of each cuckoo.
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(4) Assign some eggs between maxnum and minnum of eggs to each cuckoo.
(5) Calculate the ELR for each cuckoo and determine the position of each egg

of cuckoos according to the parent cuckoo.
(6) If some elements of the habitation vector of a cuckoo exceeds from the

predefined range then repair those elements.
(7) If number of current cuckoos in the population is greater than maxnum,

then demise some weaker cuckoos.
(8) Determine cuckoo societies using k-maens clustering and find the best

cuckoo in each cluster.
(9) Apply a local search algorithm on the best cuckoo.

(10) Move all cuckoos of each cluster toward to the best cuckoo in that cluster.
(11) Determine egg laying radius for each cuckoo.
(12) If the termination criteria is not satisfied then go to 3
(13) The best cuckoo is the best solution.
(14) End.

Fig. 1 presents flowchart of the ICOA.

Fig. 1: flowchart of the improved cuckoo optimization algorithm.
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5 The horner method

Whenever a cuckoo is evaluated, a relevant polynomial which is considered as
a possible solution of problem, should be evaluated. Therefore, using an opti-
mized method to evaluate the risen polynomials, could have significant effect
on the execution time of the algorithm. One of the best methods to do this, is
Horner’s method. This method, requires just n multiplications and n additions
to evaluate a nth-degree polynomial at x = α. In fact, less computation in this
method has two advantages. The first one is the reducing of rounding error
and as it mentioned, the second one is an improvement in the execution time.
The horner’s method is defined as follows [16].
Suppose the polynomial P (x) is as follows:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

The main purpose is to evaluate P (x). To do this, we put an = bn and for
k = n− 1, n− 2, . . . , 0, we calculate bk from the following equation

bk = ak + bk+1x0,

then
P (x0) = b0,

and P (x) can be written as

P (x) = (bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1)(x− x0) + b0.

6 Solving the Fredholm integral equations of the second kind using
ICOA

In our method, each cuckoo’s habitat represents a polynomial which its el-
ements are coefficients of that polynomial. For a cuckoo’s habitat such as
follows:

cuckoo habitat = [g0, g1, g2, . . . , gn],

we have the following polynomial:

u(x) = g0 + g1x+ · · ·+ gnx
n.

By substituting this polynomial in a FIESK, we have following equation

(g0 + g1x+ · · ·+ gnx
n) = f(x) +

∫ b

a

k(x, t)(g0 + g1x+ · · ·+ gnx
n)dt.

We can now calculate the right side using Simpson’s method. Also, the equa-
tion above can be rewritten as follows:

h(x) = g(x),
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where

h(x) = (g0 + g1x+ · · ·+ gnx
n)− f(x),

g(x) =

∫ b

a

k(x, t)(g0 + g1x+ · · ·+ gnx
n)dt.

Whenever the approximated u(x) approaches to the exact u(x), value of the
|h(x)− g(x)| approaches to zero. Therefore, we can define the cost function as
follows:

cost function =

n∑
i=0

∥g(xi)− h(xi)∥.

In this scheme, the lower value of above equation implies the better approxi-
mation for unknown u(x).

7 Parallelization of the cost function

Generally, the most time-consuming part of the evolutionary algorithms is
the evaluation of the cost function. Therefore, in this paper, to optimize the
running time of the algorithm, we calculate the cost function in a parallel
scheme. In our algorithm, we are facing with a M × N matrix in the step of
the calculating cost function. Where, M is the number of cuckoos and N is the
degree of the polynomials. In fact,to implement this algorithm, a main ”loop”
is needed to calculate this matrix. Since, calculating of the cost functions can
be done independently, we can easily use a parallel scheme.

Fig. 2 shows how a big program is divided to smaller parts and executed
in a parallel scheme. We can implement the main loop of the algorithm using
this scheme. In general, there are various ways to parallelize the main loop of
a problem. In this paper, we use multi processing (openMP) method to do it
[18].

Fig. 2: Parallelization of a problem
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8 Calculate the accuracy of the algorithm

8.1 Compare the results of our method with the results obtained by the least
square method

For all examples in this paper, we have the exact solution of the integral
equations. Therefore, we can compare the result with the exact solution to
evaluate the efficiency of our proposed method.

8.2 Calculate the accuracy of the algorithm by using S − Factor:

S − Factor is defined as follows [12]:

s =

[
1

N − 1

N∑
i=1

(q̂i − qi)
2

] 1
2

, (6)

where N is the number of estimated variables. qi, i = 1, 2, . . . , N are the values
of the result function at the point xi, i = 1, 2, . . . , N and q̂i, i = 1, 2, . . . , N are
the exact values of function at the point xi, i = 1, 2, . . . , N . In this paper, we
use S − Factor to evaluate the efficiency of a possible solution.

9 Numerical results

In this section, to have a convergence study for the our proposed method,
some Fredholm integral equations of the second kind have been considered.
All equations have been taken from [4].

Example 1

u(x) = 1− 19

15
x2 +

∫ 1

−1

(xt+ x2t2)u(t) dt.

Example 2

u(x) = 1 +

∫ π
4

0

(
1

2
(sec2(x)))u(t) dt.

Example 3

u(x) = −x4 +

∫ 1

−1

(xt2 − x2t)u(t) dt.
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Table 1: Input table for Example 1.

Parameters of the improved cuckoo optimization algorithm

Radius coeff 3.4975

Minimum number of eggs 2

Maximum number of eggs 10

Uper limit of the search interval 2

Lower limit of the search interval −2

The number of iterations 200

The number of clusters 5

The number of variables 5

Maximum number of cuckoos 50

The radius of egg laying 0.314606

The radius of motion 4

The number of discrete points for calculation of the cost function 20

Parameters of the integral equation

f(x) 1− 19
15

x2

λk(x, t) xt+ x2t2

Parameters of the simpson method

Beginning of the integration interval −1

The end of the integration interval 1

The number of discrete points in the simpson method 12

Parameters of the simulated annealing

Minimum temperature 4.5× 10−7

Maximum temperature 0.00095

The number of iterations 2300000
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Table 2: The results for Example 1.

Results of the improved cuckoo optimization algorithm

Execution time

Serial time 7 min

Parallel time 5 min

The cost of the final cuckoo 3.15845× 10−6

The cost of the best result 0.001516

Difference −0.001512

The approximation polynomial of the best cuckoo (−9.99376× 10−7)x4 + (4.24538× 10−7)x3

− (1.00034)x2 − (8.41502× 10−8)x+ (0.99999)

The result of the least square method
(the best result)

(−1.38861× 10−15)x4 + (2.28090× 10−16)x3

− (0.99999)x2 + (1.57926× 10−17)x+ (0.99999)

Difference [9.99376× 10−7, 4.24538× 10−7, 0.00034,
8.41502× 10−8, 1.68604× 10−7]

The S-Factor function for the best
polynomial obtained by least square
method

4.20903× 10−16

The S-Factor function for the best
polynomial obtained by improved
cuckoo optimization algorithm

0.00016

Difference 0.00016

Compare the exact function with the polynomial derived from the least square method and ICOA method in 60 points

The greatest difference between the
real answer and the approximate an-
swer of the improved cuckoo optimiza-
tion algorithm

0.00034

The least difference between the real
answer and the approximate answer of
the improved cuckoo optimization al-
gorithm

2.65587× 10−7

The greatest difference between the
real answer and the approximate an-
swer of the least square method

9.16045× 10−13

The least difference between the real
answer and the approximate answer of
the least square method

5.55111× 10−16
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Fig. 3: Comparison study for Example 1.

Fig. 4: Error study for Example 1.
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Table 3: Input table for Example 2.

Parameters of the improved cuckoo optimization algorithm

Radius coeff 6

Minimum number of eggs 2

Maximum number of eggs 10

Uper limit of the search interval 3

Lower limit of the search interval −3

The number of iterations 500

The number of clusters 5

The number of variables 7

Maximum number of cuckoos 200

The radius of egg laying 0.1746031746031746

The radius of motion 5.499

The number of discrete points for calculation of the cost function 50

Parameters of the integral equation

f(x) 1

λk(x, t) 1
2
(sec2(x))

Parameters of the simpson method

Beginning of the integration interval 0

The end of the integration interval π
4

The number of discrete points in the simpson method 42

Parameters of the simulated annealing

Minimum temperature 1× 10−43

Maximum temperature 0.00049

The number of iterations 5400000
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Table 4: The results for Example 2.

Results of the improved cuckoo optimization algorithm

Execution time

Serial time 80 min

Parallel time 8 min

The cost of the final cuckoo 0.0091

The cost of the best result 0.127387

Difference −0.00363857

The approximation polynomial of the best cuckoo (−0.438314)x6 + (2.491752)x5 −
(1.881152)x4 + (0.95981)x3

+ (0.626791)x2 + (0.008157)x+ (1.785388)

The result of the least square method
(the best result)

(1.997413)x6 + (2.819566)x5 −
(2.405886)x4 + (0.605745)x3

+ (0.876960)x2 + (0.005490)x+ (1.785070)

Difference [2.435727, 5.311319,
4.287039, 1.565558, 0.250169,
0.013647, 0.000318]

The S-Factor function for the best
polynomial obtained by least square
method

3.943776× 10−5

The S-Factor function for the best
polynomial obtained by improved
cuckoo optimization algorithm

0.000562

Difference 0.000522

Compare the actual function of answer with the polynomial derived from the least square method and ICOA method in 60 points

The greatest difference between the
real answer and the approximate an-
swer of the improved cuckoo optimiza-
tion algorithm

0.001092

The least difference between the real
answer and the approximate answer of
the improved cuckoo optimization al-
gorithm

0.000230

The greatest difference between the
real answer and the approximate an-
swer of the least square method

0.000104

The least difference between the real
answer and the approximate answer of
the least square method

4.993500× 10−6
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Fig. 5: Comparison study for Example 2.

Fig. 6: Error study for Example 2.
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Table 5: Input table for Example 3.

Parameters of the improved cuckoo optimization algorithm

Radius coeff 4

Minimum number of eggs 2

Maximum number of eggs 10

Uper limit of the search interval 2

Lower limit of the search interval −2

The number of iterations 100

The number of clusters 5

The number of variables 5

Maximum number of cuckoos 250

The radius of egg laying 0.05758683729433272

The radius of motion 3.496

The number of discrete points for calculation of the cost function 20

Parameters of the integral equation

f(x) −x4

λk(x, t) xt2 − x2t

Parameters of the simpson method

Beginning of the integration interval −1

The end of the integration interval 1

The number of discrete points in the simpson method 12

Parameters of the simulated annealing

Minimum temperature 8.7× 10−7

Maximum temperature 0.0021

The number of iterations 36000000
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Table 6: The results for Example 3.

Results of the improved cuckoo optimization algorithm

Execution time

Serial time 69 min

Parallel time 8 min

The cost of the final cuckoo 2.98511× 10−6

The cost of the best result 0.010288

Difference −0.010285

The approximation polynomial of the best cuckoo (−1.000001)x4 − (1.420742× 10−7)x3

+ (0.150891)x2 − (0.226335)x− (9.038432× 10−8)

The result of the least square method
(the best result)

(−1.000000)x4 − (2.28090× 10−16)x3

+ (0.150375)x2 − (0.225563)x+ (2.220446× 10−8)

Difference [1.760353× 10−6, 1.420742× 10−7,
0.000515, 0.000771, 9.038432× 10−8]

The S-Factor function for the best
polynomial obtained by least square
method

0.482526

The S-Factor function for the best
polynomial obtained by improved
cuckoo optimization algorithm

0.482069

Difference −0.000457

Compare the actual function of answer with the polynomial derived from the least square method and ICOA method in 60 points

The greatest difference between the
real answer and the approximate an-
swer of the improved cuckoo optimiza-
tion algorithm

1.697974

The least difference between the real
answer and the approximate answer of
the improved cuckoo optimization al-
gorithm answer

4.242014× 10−5

The greatest difference between the
real answer and the approximate an-
swer of the least square method answer

1.699260

The least difference between the real
answer and the approximate answer of
the least square method

3.124152× 10−6
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Fig. 7: Comparison study for Example 3.

Fig. 8: Error study for Example 3.
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Parameters for Examples 1, 2, and 3 are demonstrated in the Tables 1, 3, and
5, respectively. Also, the results for these examples are depicted in Tables 2, 4,
and 6. It is evident from results that the ICOA is capable of obtaining a good
approximation for the unknown function in the form of an polynomial by a
certain number of iterations in a specified interval. Another important issue
is that the execution time of parallel ICOA is much lower than the execution
time of the ICOA. Furthermore, it is evident that the polynomials obtained
by our proposed method are accurate and close to the exact solution.

10 Conclusions

In this paper an improved cuckoo optimization algorithm presented to solve
a class of integral equations called Fredholm integral equations of the second
kind. The experimental results showed that our presented method has a great
capability to solve this class of equations with a high accuracy. Therefore, this
method is a good choice to be used in real-world applications. Furthermore,
we showed our method has also the capability of being implemented in a
parallel scheme. The parallel implementation of our method showed a great
improvement in the execution time.
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