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Abstract In this paper, the Tau method based on shifted Legendre polyno-
mials has been introduced to approximate the numerical solutions of a class
of fractional integro-differential equations with a weakly singular kernel. By
using operational matrices we reduce the problem to a set of algebraic equa-
tions. Also, the upper bound of the error of the shifted Legendre expansion
is investigated. Finally, several numerical examples are given to illustrate the
high accuracy of the method.
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1 Introduction

In recent years scientist have been focused on the study of fractional differen-
tial equations due to their important application in various branches of science
and engineering. Fractional integral equations are used to model alot of phys-
ical problems [1,4,11,22].
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The application of fractional integro-differential equations with a weakly sin-
gular kernel create a wide area of research for many researches such as in the
elasticity and fracture mechanics [27], radiative equilibrium [12] and so on.

Since solving the fractional integral equations and integro-differential equa-
tions is very difficult analytically, therefore several researchers have been
solved these problems numerically. Many published papers have been devoted
to solve some physical phenomenon both analytically and numerically modeled
by fractional differential equations and fractional partial differential equations
[7,21,20].

Some analytical methods like the homotopy analysis method [3], the frac-
tional differential transform method [2], the Adomian decomposition [16,17]
and Laplace transform method [19] were investigated by the authors. Also,
there have been several numerical methods for the fractional integro-differential.
For instance, the second kind Chebyshev wavelet method [26], the Taylor ex-
pansion method [9], the cubic B-spline wavelet method [15], the hybrid col-
lection method [13]. In [23], the Nystrom method has been used for solving
fractional Volterra-Fredholm integro-differential equations with mixed condi-
tions.
However, only a few methods are proposed to solve the fractional integro-
differential equations with a weakly singular kernel [25,24].

In this work, we applied the shifted Legendre Tau (SLT) method for solving
fractional integro-differential equations with weakly singular kernel and we
compared our numerical results with the results in [25,24].

Let us consider the general form of a class of fractional integro-differential
equation with weakly singular kernel.

Dαy(t) = f(t) + λ1

∫ t

0

y(τ)

(t− τ)β
dτ + λ2

∫ 1

0

k(t, τ)y(τ)dτ, t ≥ 0, (1)

subject to initial conditions

y(s)(0) = dj , s = 0, 1, . . . , r − 1, j = 0, 1, . . . , r − 1, r − 1 < α ≤ r, (2)

where r ∈ N and y(s)(t) stands for the s-th order derivative of y(t), Dα(.)
denotes the Caputo fractional order derivative of order α and y(t) is the out-
put response. L2-functions k(t, τ) and f(t) are known. Here λ1, λ2 are real
constants and 0 < β < 1.

For α = 1 and β = 0, equation (1) becomes the linear integro-differential
equation. Especially if α = 0 and λ2 = 0, equation (1) reduces to the Abel’s
equation

y(t) = f(t) + λ1

∫ t

0

y(τ)

(t− τ)β
dτ

which occurs in many branches of science such as microscopy, seismology, radio
astronomy, and atomic scattering [10,14,8,5,6].

The main goal of this paper is to present an efficient numerical algorithm for
the solution of equation (1). Our method is devoted to reducing the problem
to a set of algebraic equations by expanding the approximate solution y(t)
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as shifted Legendre polynomials with unknown coefficients. The operational
matrices of integral and differential parts appearing in equation are given.
These matrices are utilized to evaluate the unknown coefficients of shifted
Legendre polynomials.

The organization of the rest of this article is as follows. In the next sec-
tion, we introduce the properties of shifted Legendre polynomials and func-
tion approximation. We express definitions and properties of fractional oper-
atores in section 3. In section 4 after constructing the operational matrices of
shifted Legendre polynomials, we summarize the process of solving the frac-
tional integro-differential equations with a weakly singular kernel based on
the shifted Legendre Tau method. The upper bound of the error of the shifted
Legendre expansion is proposed in section 5. In section 6, we show the numer-
ical results to illustrate the performance of the method and compare with the
results in [24] and [25]. Finally, the conclusion is given in section 7.

2 Properties of shifted Legendre polynomials

The classical Legendre polynomials are defined on the interval [−1, 1] and can
be determined with the aid of the following recurrence formulae

L0(t) = 1, L1(t) = t,

Li+1(t) =
2i+ 1

i+ 1
t Li(t)−

i

i+ 1
Li−1(t), i = 1, 2, . . . .

Assume that t ∈ [a, b] and let t = 2t−a−b
b−a . Then {Li(t)} are called the shifted

Legendre polynomials on [a, b]. In this paper, we mainly consider the shifted
Legendre polynomials defined on [0, l] .

For t ∈ [0, l], let Ll,i(t) = Li(
2t−l
l ), i = 0, 1, 2, . . . . Then the shifted Leg-

endre polynomials {Ll,i(t)} are defined by

Ll,0(t) = 1,

Ll,1(t) =
2t− l

l
,

Ll,i+1(t) =
(2i+ 1)(2t− l)

(i+ 1)l
Ll,i(t)−

i

i+ 1
Ll,i−1(t), i = 1, 2, . . . .

If Φl,m(t) is a vector function of shifted Legendre polynomials on the interval
[0, l], as

Φl,m(t) = [Ll,0, Ll,1, . . . , Ll,m]
T
, (3)

then the set of Ll,i(t) is a complete L2(0, l)-orthogonal system, namely

∫ l

0

Ll,i(t)Ll,j(t)dt =


l

2i+ 1
, i = j,

0, i ̸= j.
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So we define Πm = span {Ll,0, Ll,1, . . . , Ll,m}. For any y(t) ∈ L2(0, l), we write

y(t) =

∞∑
j=0

cjLl,j(t),

where the coefficients cj are given by

cj =
2j + 1

l

∫ l

0

y(t)Ll,j(t)dt, j = 0, 1, 2, . . . . (4)

In practice, only the first (m + 1)-terms of shifted Legendre polynomials are
considered.

Hence we can write

ym(t) ≃
m∑
j=0

cjLl,j(t) = CTΦl,m(t) = CTV Xt,

where CT = [c0, c1, . . . , cm] and V is a non-singular matrix given by

Φl,m(t) = V Xt,

with a standard basic vector, Xt =
[
1, t, t2, . . . , tm

]T .
Similarly a function of two independent variables k(t, τ) may be expressed in
terms of the double shifted Legendre polynomials as

k(t, τ) ≃
m∑
i=0

m∑
j=0

ki,jLl,i(t)Ll,j(τ) = ΦT
l,m(t)KΦl,m(τ), (5)

where K is a (m+ 1)× (m+ 1) matrix as

K =


k00 k01 . . . k0m
k10 k11 . . . k1m
...

... . . .
...

km0 km1 . . . kmm

 ,
where

ki,j =

(
2i+ 1

l

)(
2j + 1

l

)∫ l

0

∫ l

0

k(t, τ)Ll,i(t)Ll,j(τ)dtdτ. (6)

Also, k(t, τ) can be expressed as

k(t, τ) ≃ ΦT
l,m(t)KΦl,m(τ) = XT

t V
TKVXτ ,

where V = [vi,j ]i,j=0,1,...,m is a non-singular matrix given by Φl,m(t) = V Xt

with a standard basic vector, Xt =
[
1, t, t2, . . . , tm

]T . If we take K = V TKV

then we can write k(t, τ) ≃ XT
t KXτ .
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3 Fractional calculus

Definition 1 [24] The Riemann-Liouville fractional integral operator Jα of
order α is given by

Jαy(t) =
1

Γ (α)

∫ t

0

(t− τ)α−1y(τ)dτ, α > 0,

J0y(t) = y(t).

Definition 2 [24] The Caputo definition of fractional operator is given by

Dαy(t) =


dry(t)

dtr
, α = r ∈ N,

1

Γ (r − α)

∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ, 0 ≤ r − 1 < α < r.

The Caputo fractional derivatives of order α is also defined as

Dαy(t) = Jr−αDry(t).

The relation between the Caputo operator and the Riemann-Liouville is given
by the

DαJαy(t) = y(t),

DαJαy(t) = y(t)−
r−1∑
k=0

y(k)(0+)
tk

k!
, t > 0.

4 Operational matrices of shifted Legendre polynomials

In this section, we derive the operator matrix representation for the differen-
tial and integral parts seeming in the equation (1) using the operational Tau
method based on shifted Legendre polynomials.

4.1 Matrix representation of (1)

As a consequence of the previous section, and aid of following lemma and
theorems we derive formulas for numerical solvability of fractional integro-
differential equation with weakly singular kernel (1) based on shifted Legendre
polynomial of the operational Tau method.

Lemma 1 Let ym(t) ≃ CTV Xt be a polynomial where

CT = [c0, c1, . . . , cm, 0 . . . ] and Xt = [1, t, . . . ]T ,

then we have
dk

dtk
ym(t) = CTV ηkXt,
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tkym(t) = CTV µkXt,

k = 0, 1, 2, . . . ,

where

µ =


0 1 0 0 . . .
0 1 0
0 1

. . .

 ,
and

η =


0 . . .
1 0
0 2 0
0 0 3

. . .

 .

Proof see [18].

4.2 Matrix representation of integral parts

Lemma 2 If Γ is the Gamma function, then we have∫ t

0

τm

(t− τ)α−r+1
dτ =

Γ (r − α)Γ (m+ 1)

Γ (m− α+ r + 1)
tm−α+r, m = 0, 1, 2, . . . .

Proof With integration by parts and using Γ (α) = (α − 1)! for α > 0 it can
easily be obtained.

Theorem 1 Let Φl,m(t) = V Xt be the shifted Legendre vector then∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃ CTV ηrΓAV Xt, (7)

where Γ is a diagonal matrix with elements

Γi,i =
Γ (r − α)Γ (i+ 1)

Γ (i− α+ r + 1)
, i = 0, 1, 2, . . . ,m,

and
A =

[
B0, B1, . . . , Bm

]T
, Bj =

[
tj,0, tj,1, . . . , tj,m],

which tj,i, i, j = 0, 1, . . . ,m are the coefficients of Ll,i, i = 0, 1, . . . ,m in
expansion of tj−α+r.
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Proof∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃

∫ t

0

CTV ηrXτ

(t− τ)α−r+1
dτ

= CTV ηr
∫ t

0

Xτ

(t− τ)α−r+1
dτ

= CTV ηr
∫ t

0

[1, τ, . . . , τm]
T

(t− τ)α−r+1
dτ

= CTV ηr

[∫ t

0

1

(t− τ)α−r+1
dτ,

∫ t

0

τ

(t− τ)α−r+1
dτ, . . . ,

∫ t

0

τm

(t− τ)α−r+1
dτ

]T

,

by using lemma (2) we can write∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃ CTV ηr

[
Γ (r − α)Γ (1)

Γ (r − α+ 1)
tr−α,

Γ (r − α)Γ (2)

Γ (r − α+ 2)
tr−α+1, . . . ,

Γ (r − α)Γ (m+ 1)

Γ (m− α+ r + 1)
tm−α+r

]T

= CTV ηrΓΠ, (8)

where
Π =

[
tr−α, tr−α+1, . . . , tm−α+r

]T
.

By approximating tj−α+r, j = 0, 1, . . . ,m, we get

tj−α+r ≃
m∑
i=0

tj,iLl,i(t) = BjΦl,m(t), Bj = [tj,0, tj,1, . . . , tj,m],

we obtain

Π = [B0V Xt, B1V Xt, . . . , BmV Xt]
T = AΦl,m(t),

A = [B0, B1, . . . , Bm]T .
(9)

By substituting (9) into (8) we obtain∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃ CTV ηrΓAV Xt, (10)

Theorem 2 Let Φl,m(t) = V Xt be the shifted Legendre vector then∫ t

0

y(τ)

(t− τ)β
dτ ≃ CTV ∆AV Xt, (11)
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where ∆ is a diagonal matrix with elements

∆i,i =
Γ (1− β)Γ (i+ 1)

Γ (i− β + 2)
, i = 0, 1, 2, . . . ,m,

and
A =

[
B0, B1, . . . , Bm

]T
, Bj =

[
tj,0, tj,1, . . . , tj,m],

which tj,i, i, j = 0, 1, . . . ,m are the coefficients of Ll,i, i = 0, 1, . . . ,m in
expansion of tj−β+1.

Proof The proof is similar to proof in previous theorem.

Theorem 3 Let the analytic function y(t) and k(t, τ) be expressed as

y(t) ≃
m∑
j=0

cjLl,j(t) = CTΦl,m(t) = CTV Xt,

k(t, τ) ≃ ΦT
l,m(t)KΦl,m(τ) = XT

t V
TKVXτ = XT

t KXτ =

m∑
i=0

m∑
j=0

Ki,jτ
itj ,

where C = [c0, c1, . . . , cm] and V = [vi,j ]
m
i,j=0 is a non-singular matrix and

Xt = [1, t, t2, . . . , tm]T , then we have∫ 1

0

k(t, τ)y(τ)dτ ≃ CTVMXt, (12)

where

M =



m∑
j=0

K0,j

j + 1
. . . . . .

m∑
j=0

Km,j

j + 1
...

...
...

...
m∑
j=0

K0,j

j +m+ 1
. . . . . .

m∑
j=0

Km,j

j +m+ 1

 .

Proof Using Lemma (1) we have

y(τ) ≃ CTV Xτ ,

k(t, τ)y(τ) ≃ CTV
[
k(t, τ), τk(t, τ), τ2k(t, τ), . . . , τmk(t, τ)

]T
,

k(t, τ)τn =

m∑
i=0

m∑
j=0

Ki,jt
jτn+i.

So, the desired integration term can be written as∫ 1

0

k(t, τ)y(τ)dτ ≃ CTV
([ m∑

i=0

m∑
j=0

Ki,jt
j 1

n+ i+ 1

]m
n=0

)T

.
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On the other hand, we can show that([ m∑
i=0

m∑
j=0

Ki,j
tj

n+ i+ 1

]m
n=0

)T

=MXt,

which M is the following matrix

M =



m∑
j=0

K0,j

j + 1
. . . . . .

m∑
j=0

Km,j

j + 1
...

...
...

...
m∑
j=0

K0,j

j +m+ 1
. . . . . .

m∑
j=0

Km,j

j +m+ 1

 .

So, we have ∫ 1

0

k(t, τ)y(τ)dτ ≃ CTVMXt.

4.3 Matrix representation for the supplementary conditions

Let y(t) ≃
m∑
j=0

cjLl,j(t) = CTV Xt on the left hand side of (2), it can be written

as

y(s)(0) = dj , s = 0, 1, . . . , r − 1,

CTV ηjX0 = dj , j = 0, 1, . . . , r − 1.

Let Hj = ηjX0 where X0 = [1, 0, 0, . . . , 0]T thus the j-th condition number of
(2) is converted to

CTV Hj = 0 j = 0, 1, . . . , r − 1.

Now, by setting H as the matrix with columns Hj , j = 0, 1, . . . , r − 1 and
by setting d = [d1, d2, . . . , dj ], as the vector that contains right-hand side of
supplementary conditions, they take the form

CTV H = d. (13)

Now, Let us start our algorithm to solve (1) and (2).
We assume that the functions f(t), generally are polynomial. Otherwise, we

can approximate it by polynomials to any degree of accuracy (by interpolation
or Taylor series or other suitable method). Now, we approximate f(t) by the
shifted Legendre polynomials as

f(t) ≃
m∑
j=0

fjLl,j(t) = FV Xt, (14)
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where F = [f0, f1, . . . , fm] and fj are given in (4).
Using (7), (11), (12), (14), and substituting in equation (1), it is easy to

obtain that
1

Γ (r − α)
CTV ηrΓAV Xt = FV Xt + λ1C

TV ∆AVXt + λ2C
TVMXt,

thus, the matrix vector multiplication representation for the (1) is as follows

CTV1Φl,m(t) = FΦl,m(t) + CTV2Φl,m(t) + CTV3Φl,m(t),

where V1 =
1

Γ (r − α)
V ηrΓA , V2 = λ1V ∆A and V3 = λ2VMV −1. As we

pointed out in Section 2, the orthogonality of
{
Ll,i(t)

}m−1

i=0
, so we have

CTV1 = F + CTV2 + CTV3,

also from equation (13) we have following system{
CT [V1 − V2 − V3] = F,

CTV H = d.
(15)

Now, setting

ψ = V1 − V2 − V3,

H = V H,

G = [H1, H2, . . . , Hr, ψ1, ψ2, . . . , ψm+1−r],

g = [d1, d2, . . . , dr, F0, F1, . . . , Fm−r],

where Hi denotes the i-th column of H, system of (15) can be written as
CTG = g, which must be solved for the unknown coefficients c0, c1, . . . , cm.

4.4 Algorithm of shifted Legendre Tau approximation

Step 1. Choose m, form the set of shifted Legendre polynomials
{
Ll,i(t)

}m

i=0
,

and let the approximate solution be ym(t) ≃
m∑
i=0

ciLl,i(t).

Step 2. Compute the non singular coefficient matrix V with respect to Xt =[
1, t, t2, . . . , tm

]T
, such that Φl,m(t) = V Xt.

Step 3. By using orthogonality condition of {Ll,i(t)}mi=0 as

f(t) ≃
m∑
j=0

fjLl,j(t)
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where

fj =
2j + 1

l

∫ l

0

f(t)Ll,j(t)dt, j = 0, 1, 2, . . . ,m,

compute F = [f0, f1, . . . , fm].
Step 4. Compute the matrices M , η, A, Γ , and ∆ from Lemmas (1), (2), and

Theorems (1), (2), and (3) then set V1 = 1
Γ (r−α)V η

rΓA, V2 = λ1V ∆A,
and V3 = λ2VMV −1.

Step 5. Let CT = [c0, c1, . . . , cm] and obtain the entries of the vector solution
CT from the CTG = g where G = [H1, H2, . . . , Hr, ψ1, ψ2, . . . , ψm+1−r]
and g = [d1, d2, . . . , dr, F0, F1, . . . , Fm−r], Hi denotes the i-th column of
matrix V H and ψi denotes the i-th column of matrix V1 − V2 − V3.

5 Convergence analysis

In this section we present the shifted Legendre expansion of a function y(t)
with bounded second derivative, converges uniformly to y(t). Also we state
the estimate error for the proposed method.

Theorem 4 A continuous function y(t) ∈ [0, l], with bounded second deriva-
tive, say

∣∣∣d2y(t)
dt2

∣∣∣ ≤ α , can be expanded as an infinite sum of shifted Legendre

polynomials and the series
∞∑
i=0

ciLl,i(t) converges uniformly to the y(t). Fur-

thermore, we have

∫ l

0

(
y(t)−

m∑
i=0

ciLl,i(t)
)2

dt ≤ αl2
√

3l

8

√√√√ ∞∑
i=m+1

1

(2i− 3)4

Proof From (4), it follows that

ci =

(
2i+ 1

l

)∫ l

0

y(t)Ll,i(t)dt, i = 0, 1, . . . ,m.

By partial integration and using following equation

L′
l,i+1 − L′

l,i−1 =
2

l
(2i+ 1)Ll,i(t)
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we have

ci =
2i+ 1

l
× l

2(2i+ 1)

∫ l

0

y(t)
(
L′
l,i+1(t)− L′

l,i−1(t)
)
dt

=
1

2

(
y(t)

(
Ll,i+1(t)− Ll,i−1(t)

)∣∣∣l
0
−
∫ l

0

(
Ll,i+1(t)− Ll,i−1(t)

)dy
dt
dt

= −1

2

∫ l

0

l

2(2i+ 3)

(
L′
l,i+2(t)− L′

l,i(t)
)dy
dt
dt

+
l

2

∫ l

0

l

2(2i− 1)

(
L′
l,i(t)− L′

l,i−2(t)
)dy
dt
dt

=
l

4

∫ l

0

d2y(t)

dt2

(Ll,i+2(t)− Ll,i(t)

2i+ 3

)
dt

− l

4

∫ l

0

d2y(t)

dt2

(Ll,i(t)− Ll,i−1(t)

2i− 1

)
dt.

Now, let Ql,i(t) = (2i − 1)Ll,i+2(t) − 2(2i + 1)Ll,i(t) + (2i + 3)Ll,i−2(t) then
we have

ci =
l

4(2i+ 3)(2i− 1)

∫ l

0

d2y(t)

dt2
Ql,i(t)dt,

thus

|ci| ≤
l

4(2i+ 3)(2i− 1)

∫ l

0

∣∣∣d2y(t)
dt2

∣∣∣|Ql,i(t)|dt

≤ lα

4(2i+ 3)(2i− 1)

∫ l

0

|Ql,i(t)|dt.

Also we have(∫ l

0

|Qi(t)|dt
)2

=
(∫ l

0

|(2i− 1)Ll,i+2(t)− 2(2i+ 1)Ll,i(t) + (2i+ 3)Ll,i−2(t)|dt
)2

≤
(∫ l

0

(1)2dt
)(∫ l

0

(2i− 1)2L2
l,i+2(t) + (4i+ 2)2L2

l,i(t) + (2i+ 3)2L2
l,i−2(t)

)
dt

≤ l
( (2i− 1)2l

2i+ 5
+

(4i+ 2)2l

2i+ 1
+

(2i+ 3)2l

2i− 3

)
≤ 6l2(2i+ 3)2

2i− 3
.

Then we get ∫ l

0

|Qi(t)|dt ≤
√
6 l(2i+ 3)√
2i− 3

.

Thus we obtain

|ci| ≤
lα

4(2i+ 3)(2i− 1)
×

√
6 l(2i+ 3)√
2i− 3

=
l2α

√
6

4
√

(2i− 3)3
.
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Consequently,
∞∑
i=0

ci is absolute convergent and thus the expansion of the func-

tion converges uniformly.
Also, we let

εn =
(∫ l

0

(y(t)−
m∑
i=0

ciLl,i(t))
2dt

)1/2

,

where

ε2n =

∫ l

0

(
y(t)−

m∑
i=0

ciLl,i(t)
)2

dt

=

∫ l

0

( ∞∑
i=0

ciLl,i(t)−
m∑
i=0

ciLl,i(t)
)2

dt

=

∫ l

0

( ∞∑
i=m+1

ciLl,i(t)
)2

dt

=

∫ l

0

∞∑
i=m+1

c2iL
2
l,i(t)dt

=

∞∑
i=m+1

c2i

∫ l

0

L2
l,i(t)dt

=

∞∑
i=m+1

c2i
l

(2i+ 1)

≤
∞∑

i=m+1

6α2l5

16(2i− 3)3(2i+ 1)

≤ 6α2l5

16

∞∑
i=m+1

1

(2i− 3)4

Then we have

εn ≤ αl2
√

3l

8

√√√√ ∞∑
i=m+1

1

(2i− 3)4
.

Now, we give the estimate error of shifted Legendre Tau method for the weakly
singular Volterra integro-differential equation (1).
Firstly, we define

em(t) = y(t)− ym(t), (16)

the error function of the Legendre Tau approximation ym(t) to y(t), where
y(t) is the exact solution of (1). Therefore by using equations (16), (1), and
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(2) we have,

Dα(em(t)+ym(t)) = f(t)+λ1

∫ t

0

em(τ) + ym(τ)

(t− s)β
dτ+λ2

∫ 1

0

k(t, τ)(em(τ)+ym(τ))dτ,

(em + ym)(s)(0) = dj , s = 0, 1, . . . , r − 1, j = 0, 1, . . . , r − 1.

Also, we have

Dα(em(t)) = Hm(t) + λ1

∫ t

0

em(τ)

(t− s)β
dτ + λ2

∫ 1

0

k(t, τ)em(τ)dτ,

(em)(s)(0) = 0, s = 0, 1, . . . , r − 1,

Hm(t) is a perturbation term associated with ym(t) and can be obtained with
following formulae

Hm(t) = f(t)−Dα(ym(t)) + λ1

∫ t

0

ym(τ)

(t− s)β
ds+ λ2

∫ 1

0

k(t, τ)ym(τ)dτ.

We proceed to find an approximation (em,N )(t) to the em(t) in the same as
we did for the solutions of equations (1) and (2) (N denotes the Tau degree
of em(t)).

6 Numerical results and comparisons

In this section, we present five numerical examples to demonstrate the accuracy
of the proposed method. The results show that this method, by selecting a few
number of shifted Legendre polynomials is accurate.

Example 1 As a first application, we offer the following fractional order integro-
differential equation with weakly singular kernel [25,24]D 0.25y(t) = f(t) + 1

2

∫ t

0

y(τ)√
t− τ

dτ + 1
3

∫ 1

0
(t− τ)y(τ)dτ,

y(0) = 0,

with the exact solution y(t) = t3 + t2. In this example we have

f(t) =
Γ (3)t1.75

Γ (2.75)
+
Γ (4)t2.75

Γ (3.75)
− Γ (3)t

5
2
√
π

2Γ ( 72 )
− Γ (4)t

7
2
√
π

2Γ ( 92 )
− 7t

36
+

3

20
,

λ1 = 1
2 , λ2 = 1

3 , and k(t, τ) = t − τ . Table 1 shows the comparison between
the absolute errors obtained by second Chebyshev wavelets (SCW), Cosine
and Sine (CAS) wavelet and our method (SLT). From Table 1 we can see
clearly that the shifted Legendre Tau method can reach a higher degree of
accuracy than the SCW and CAS wavelet methods. From Figures 1 and 2 we
infer that the approximate solutions converge to the exact solution.
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Table 1 The absolute errors obtained at different points with different methods.

t SLT (m = 6) SCW (m′ = 6) CAS (m′ = 6)
0 3.85× 10−17 8.35× 10−3 3.05× 10−2

1/6 3.16× 10−15 1.25× 10−3 4.40× 10−2

2/6 1.10× 10−14 9.36× 10−3 3.87× 10−2

3/6 7.21× 10−15 2.24× 10−2 1.57× 10−2

4/6 6.77× 10−15 1.95× 10−2 2.85× 10−2

5/6 6.21× 10−15 3.25× 10−2 9.88× 10−2

+ + + + +
+ +

+ +
+
+
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

- - - - -
- -

- -
-
-
-
-
-
-
-
-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

- Exact solution

+ SLT solution

Fig. 1 Comparison of numerical and exact solutions of Example 1 for m = 6

0.2 0.4 0.6 0.8 1.0

2.´10-15

4.´10-15

6.´10-15

8.´10-15

1.´10-14

1.2´10-14

Fig. 2 The absolute error of Example 1 for m = 6
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Example 2 Consider the following equation [25,24]D 0.15y(t) = f(t) + 1
4

∫ t

0

y(τ)√
t− τ

dτ + 1
7

∫ 1

0
et+τy(τ)dτ,

y(0) = 0,

with the exact solution y(t) = t2 − t and

f(t) =
Γ (3)t1.85

Γ (2.85)
− Γ (2)t0.85

Γ (1.85)
− Γ (3)t

5
2
√
π

4Γ ( 72 )
+
Γ (2)t

3
2
√
π

4Γ ( 52 )
− et+1 − 3et

7
.

We apply SLT method to solve this problem. The comparisons of exact solution
and numerical solutions in different points with m = 6 are shown in Table 2.
Figure 3 shows the error function of this example with m = 6.

Table 2 The numerical solutions at different points with different methods for Example 2.

t SLT (m = 6) SCW (m′ = 6) CAS (m′ = 6) Exact solution
0 0 −1.5509× 10−2 6.1480× 10−3 0

1/6 −1.3889× 10−1 −1.4412× 10−1 −1.1115× 10−1 −1.3889× 10−1

2/6 −2.2222× 10−1 −2.2290× 10−1 −1.8713× 10−1 −2.2222× 10−1

3/6 −2.5000× 10−1 −2.4994× 10−1 −2.1160× 10−1 −2.5000× 10−1

4/6 −2.2222× 10−1 −2.2128× 10−1 −1.8346× 10−1 −2.2222× 10−1

5/6 −1.3889× 10−1 −1.3718× 10−1 −1.0222× 10−1 −1.3889× 10−1

0.2 0.4 0.6 0.8 1.0

5.´10-14

1.´10-13

1.5´10-13

Fig. 3 The absolute error of Example 2 for m = 6
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Example 3 Consider the following fractional order integro-differential equation
with a weakly singular kernelD 0.5y(t) = f(t)−

∫ t

0

y(τ)√
t− τ

dτ −
∫ 1

0
(tτ)y(τ)dτ,

y(0) = 1,

with
f(t) = 2

√
t− t

3
− 2.06 t3.5 − 256 t9/2

315
.

In this example we have λ1 = λ2 = 1, and k(t, τ) = tτ . The exact solution is
u(t) = 1− t4. We apply SLT method to solve this equation and the results are
given in Table 3 for different choices of t. The numerical solution and exact
solution have been compared in Figure 4.

Table 3 Absolute errors for Example 3.

t Error by SLT for m = 4
0 0
0.1 6.66× 10−16

0.2 5.55× 10−16

0.3 1.11× 10−16

0.4 5.55× 10−16

0.5 8.88× 10−16

0.6 1.11× 10−15

0.7 8.88× 10−16

0.8 3.33× 10−16

0.9 5.55× 10−17

1 3.71× 10−16

* * * * * * * * * * * * * * *
*
*
*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

- - - - - - - - - - - - - - -
-
-
-
-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

- Exact solution

* Tau solution

Fig. 4 Comparison of numerical and exact solutions of Example 3 for m = 8
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Example 4 Consider the following fractional order integro-differential equation
with a weakly singular kernel

D 1.25y(t) = f(t) + 1
2

∫ t

0

y(τ)
3
√
t− τ

dτ −
∫ 1

0
(t+ τ2)y(τ)dτ,

y(0) = 1, y′(0) = 0,

with

f(t) =
2

3
− 3t

2
+ 7.46 t1.75 − 3 t2/3

440
(110 + 81t3).

In this example we have λ1 = λ2 = 1, and k(t, τ) = t+ τ2. The exact solution
is u(t) = 2t3 + 1. In this example, we implement the SLT method to solve
this kind of fractional integro-differential equation for m = 4. The numerical
results and absolute errors for different choices of t have been provided in
Table 4. Also, the numerical results for m = 3 are shown in Figure 5. We can
find easily that the numerical solutions are more and more close to the exact
solution.

* * * * * * *
* *

* *
*
*
*
*
*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

- - - - - - -
- -

- -
-
-
-
-
-
-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

- Exact solution

* Tau solution

Fig. 5 Comparison of numerical and exact solutions of Example 4 for m = 3
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Table 4 Absolute errors for Example 4.

t Error by SLT for m = 4
0 2.22× 10−16

0.1 2.22× 10−16

0.2 2.22× 10−16

0.3 0
0.4 0
0.5 0
0.6 2.22× 10−16

0.7 2.22× 10−16

0.8 4.44× 10−16

0.9 8.88× 10−16

1 4.44× 10−16

Example 5 Consider the following fractional order integro-differential equation
with a weakly singular kernelD αy(t) = f(t) +

∫ t

0

y(τ)√
t− τ

dτ −
∫ 1

0
cos(t+ τ)y(τ)dτ,

y(0) = 0, y′(0) = 0,

where

f(t) =
−16

15
t5/2 + 2 cos(1− t) +

2(2 +
√
3)t2−

√
3

Γ (2−
√
3)

− sin(1− t)− 2 sin t.

The exact solution of this example for α =
√
3 is y(t) = t2. In this example we

have λ1 = 1, λ2 = −1, and k(t, τ) = cos(t− τ). The comparison of numerical
results for α = 1.25, α = 1.6, α = 1.7, α =

√
3, and the exact solution for

α =
√
3 are shown in Figure 6. The absolute errors for different choices of t

are shown in Table 5. As, we expected, Tau method has produced an accurate
approximation of the exact solution.

Table 5 Absolute errors for Example 5.

t Error by SLT for m = 4
0 2.77× 10−17

0.1 4.68× 10−17

0.2 6.93× 10−18

0.3 5.55× 10−17

0.4 2.77× 10−17

0.5 0
0.6 5.55× 10−17

0.7 1.11× 10−16

0.8 1.11× 10−16

0.9 2.22× 10−16

1 2.22× 10−16
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0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Exa.Sol Α= 3

Num.Sol.Of Α= 3

Num.Sol.Of Α=1.7

Num.Sol.Of Α=1.6

Num.Sol.Of Α=1.25

Fig. 6 Numerical solutions (different α) and exact solution (α =
√
3) for Example 5.

7 Conclusion

In this work, shifted Legendre Tau method have been applied to solve a class of
fractional integro-differential equations with weakly singular kernel. The most
important contribution of our work is that we transform the initial problem
into a linear algebraic system equations, and we compare our numerical results
with the results obtained in [24], [25]. We can see that the numerical results
obtained are better than in [24], [25]. The illustrative examples show that the
approximations are in very good coincidence with the exact solution.
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