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Abstract Let G be a group and N be a normal subgroup of G. In this paper,
we provide some results on c-covers of a pair of groups. Moreover, we prove
that every c-perfect pair of groups (G,N) admits at least one c-cover and also
we show that a c-cover of a pair of finite groups has a unique domain up to
isomorphism under some assumptions.
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1 Introduction and Preliminaries

Let G be a group and G ∼= F/R for a free group F . The Schur multiplier G is
isomorphic to (R ∩ F ′)/[R,F ] (see [9]). Also, the abelian group

M(c)(G) = R ∩ γc+1(F )/γc+1(R,F ),

is said to the c-nilpotent multiplier of G, where γc+1(F ) is the (c+1)-st term
of the lower central series of F , γ1(R,F ) = R, γc+1(R,F ) = [γc(R,F ), F ]
(c ≥ 1). In the case that c = 1, M(1)(G) = M(G) is the Schur multiplier of G
(see [4]).

Let (N,G) be a pair of groups such that N is a normal subgroup of G.
Then the Schur multiplier of (N,G) is defined to be the abelian group M(N,G)
appears in the following natural exact sequence

H3(G) → H3(G/N) → M(N,G) → M(G)

→ M(G/N) → N/[N,G] → (G)ab → (G/N)ab → 1,
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in which H3(−) is the third homology of a group with integer coefficients
(see [5]). If G ∼= F/R is a free presentation of G and N ∼= S/R, for some
normal subgroup S of F , and N has a complement in G, one can see that
M(N,G) ∼= R ∩ [S, F ]/[R,F ].

In the case N = G, the Schur multiplier of the pair (N,G) is the usual
Schur multiplier of G.

If N has a complement in G, then we can define

M(c)(N,G) ∼=
R ∩ [S,c F ]

[R,c F ]
.

In particular, if N = G, then M(c)(G,G) = M(c)(G) is the c-nilpotent mul-
tiplier of G (see [2,13,14] for more information). The notion of covering pairs
was defined by Ellis [5], he proved that every pair of finite groups has a cover-
ing pair. In [8], the authors proved that every nilpotent pair of groups of class
at most k with non-trivial c-nilpotent multiplier does not admit any c-covering
pair, for all c > k. In this paper, we prove some new results on c-covering pairs
of groups.

Let G and M be two groups with an action of G on M . Then the G-
commutator subgroup and G-center subgroup of M are defined, respectively,
as follows:

[M,G] = 〈[m, g] = mgm−1 | m ∈ M, g ∈ G〉,
Z(M,G) = {m ∈ M | mg = m, ∀g ∈ G}.

We recall that the subgroups [M,c G] and Zc(M,G) for all c ≥ 1, as follows:

[M,c G] = 〈[m, g1, . . . , gc] | m ∈ M, g1, . . . , gc ∈ G〉,
Zc(M,G) = {m ∈ M | [m, g1, . . . , gc] = 1, forallg1, . . . , gc ∈ G}.

Let (N,G) be a pair of groups. A relative c-central extension of the pair (N,G)
is a homomorphism σ : M → G together with an action of G on M such that

(i) σ(M) = N
(ii) σ(mg) = g−1σ(m)g, for all g ∈ G, m ∈ M ,
(iii) m′σ(m)

= m−1m′m, for all m,m′ ∈ M ,
(iv) kerσ ⊆ Zc(M,G).

In addition, the relative c-central extension σ : M → G is siad to be a c-cover
of (N,G) if there exists a subgroup A of M such that

(i) A ⊆ Zc(M,G) ∩ [M,c G],
(ii) A ∼= M(c)(N,G),
(iii) N ∼= M/A.

It is easy to see that 1-covering pair is the usual covering pair discussed in [5,
11].

Finally, a pair (N,G) of groups is called c-perfect, if [N,c G] = N .



Some Results on c-Covers of A Pair of Groups 3

2 On c-covers of a pair of groups

Let (N,G) be a pair of groups with a free presentation 1 → R → F
π→ G → 1

such that N ∼= S/R for a normal subgroup S of F , in which [R,S] ⊆ [R,c F ].
Consider the group homomorphism

δ :S/[R,c F ] → G

s[R,c F ] 7→ π(s).

It is easy to see that δ is a relative c-central extension by an action of G on
S/[R,c F ], defined by (s[R,c F ])g = sf [R,c F ], where π(f) = g.

By the above assumption, and a simple generalization of [12], we obtain
the following Lemmas.

Lemma 1 Let (N,G) be a pair of groups with G ∼= F/R and N ∼= S/R. If
σ : M → G is a relative c-central extension of the pair (N,G), then there
exists a homomorphism β : S/[R,c F ] → M such that the following diagram is
commutative

1 // R/[R,c F ] //

β1

��

// S/[R,c F ]

β

��

δ // N

1N

��

// 1

1 // A // M
σ // N // 1.

where δ is the relative c-central extension defined above. In particular, if
M is a perfect group with Φ(M) 6= M , then β is an epimorphism.

Lemma 2 Let (N,G) be a pair of groups, with G ∼= F/R and N ∼= S/R. Then
for every c-cover σ : M → G of (N,G) in which M is perfect and Φ(M) 6= M ,
there is a normal subgroup T of F such that

(i) M ∼= S/T and kerσ ∼= R/T ,
(ii) R/[R,c F ] = Mc(N,G)× T/[R,c F ].

Theorem 1 Let (N,G) be a pair of groups and σi : Mi → G (i = 1, 2)
be two c-covers of the pair (N,G) such that M ′

i = Mi and Φ(Mi) 6= Mi. If
α : M1 → M2 is an epimorphism such that α(kerσ1) = kerσ2, then α is an
isomorphism.

Proof Let G ∼= F/R be a free presentation of G and N ∼= S/R, for a normal
subgroup S of F . By using Lemma 2, there exist normal subgroups Ti (i = 1, 2)
of F such that

(i) Mi
∼= S/Ti and ker(σi) ∼= R/Ti,

(ii) R/[R,c F ] = M(c)(N,G)× Ti/[R,c F ].

So, we can consider the epimorphism α : S/T1 → S/T2 such that

α(R/T1) = R/T2.
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By using Lemma 1, there exists an epimorphism β : S/[R,c F ] → S/T2 such
that

kerβ = T2/[R,c F ].

Hence, the following diagram is commutative

1 // R/[R,c F ]

β1

��

// S/[R,c F ]

β

��

// N //

β2

��

1

1 // R/T2
// S/T2

// N // 1,

where β1 and β2 are the restricted and the induced homomorphisms of β,
respectively. We can see that β2 is an isomorphism. So, we obtain a homomor-
phism φ : S → S/T1 with α◦φ = β ◦γ, in which γ is the natural epimorphism
from S onto S/[R,c F ]. So, φ induces a homomorphism φ : S/[R,c F ] → S/T1.
Thus, the following diagrams are commutative:

1 // R/[R,c F ]

φ1

��

// S/[R,c F ]

φ

��

// N //

φ2

��

1

1 // R/T1
// S/T1

// N // 1,

S/[R,c F ]

φ

yyttt
tt
tt
tt β

%%JJ
JJ

JJ
JJ

J

S/T1
α // S/T2

where φ1 is restriction of φ and φ2 = (α′)
−1 ◦β2 is an isomorphism, where α′ :

N → N is the induced isomorphism by α. So, φ is onto. Put kerφ = E/[R,c F ],
for a normal subgroup E in S. We can see that E ⊆ T2 and E(R∩[S,c F ]) = R.
Hence, E = T2. Therefore, α is an isomorphism.

In the following result, we show that any c-perfect pair of groups has at least
one c-covering pair. Indeed, in Theorem 2, we generalize [12, Theorem 2·4].

Theorem 2 Any c-perfect pair of groups has at least one c-covering pair.

Proof Let (N,G) be a pair of groups and 1 → R → F
π→ G → 1 be a free

presentation of G in which N ∼= S/R, for a normal subgroup S of F . We have
the following relative c-central extension

1 → R/[R,c F ] → F/[R,c F ]
π→ G → 1.

Since π([S,c F ]/[R,c F ]) = N , by restricting π to [S,c F ]/[R,c F ], we obtain the
following relative c-central extension of (N,G):

1 → M(c)(N,G) → [S,c F ]/[R,c F ] → G → 1.



Some Results on c-Covers of A Pair of Groups 5

Now, we can see that

[S,c F ]/[R,c F ] = [[S,c F ]/[R,c F ],c G],

which completes the proof.

A relative c-central extension σ : M → G of a pair (N,G) is called universal,
if for every relative c-central extension θ : K → G, there exists a unique
homomorphism φ : M → K such that θ ◦ φ = σ.

In the following theorem, we show that if a pair (N,G) admits a universal
relative c-central extension, then it is c-perfect.

Theorem 3 Let (N,G) be a pair of groups and σ : M → G be a relative
c-central extension of (N,G). If σ is universal, then (N,G) is c-perfect.

Proof One can check that the exact sequence

1 → kerσ ×N/[N,c G] → M ×N/[N,c G]
θ→ G → 1,

where θ(m,n[N,c G]) = σ(m) for all m ∈ M and n ∈ N , is a relative c-central
extension of the pair (N,G). Define

φi : M → M ×N/[N,c G], for i = 1, 2

by φ1(m) = (m, 1) and φ2(m) = (m,σ(m)[N,c G]). Since θ ◦φi = σ, we obtain
φ1 = φ2. Thus, [N,c G] = N .

Lemma 3 ([8], Lemma 3.1 ) Let (N,G) be a pair of groups and K be a normal
subgroup of G such that K ⊆ N . Then the following sequence is exact:

1 → M(c)(K,G) → M(c)(N,G) → M(c)(
N

K
,
G

K
) → (K ∩ [N,c G])

[K,c G]
→ 1.

Proposition 1 Let (N,G) be a c-perfect pair of groups and M(c)(N,G) = 1.
Also, let M be a normal subgroup of G succh that M ⊆ N ∩ Zc(G). Then

M(c)(N/M,G/M) ∼= M,

and N is a c-covering pair of (N/M,G/M).

Proof By Lemma 3, we can see that the following sequence is exact.

M(c)(N,G) → M(c)(N/M,G/M) → M ∩ [N,c G] → 1.

Hence, we have

M(c)(N/M,G/M) ∼= M ∩ [N,c G] = M,

which completes the proof.
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Theorem 4 Let (N,G) be a pair of groups with a free presentation G ∼= F/R
and N ∼= S/R. Also, let σ : M → G be a relative c-central extension of the
pair (N,G) in which M is perfect and Φ(M) 6= M . Then

| kerσ ∩ [M,c G]| ≤ |M(c)(N,G)|.

Proof By Lemma 1, there exists an epimorphism β : S/[R,c F ] → M such that
the following diagram is commutative:

1 // R/[R,c F ]

β|

��

// S/[R,c F ]

β

��

// N //

1N

��

1

1 // kerσ // M // N // 1,

Put kerβ| = E/[R,c F ], for a normal subgroup E of R. We have

M ∼=
S/[R,c F ]

E/[R,c F ]
and kerσ ∼=

R/[R,c F ]

E/[R,c F ]
.

On the other hand,

(R ∩ ([S,c F ]E))/E ∼= (R ∩ [S,c F ])/(E ∩ [S,c F ])

∼= M(c)(N,G)/((E ∩ [S,c F ])/[R,c F ])

So, we obtain
| kerσ ∩ [M,c G]| ≤ |M(c)(N,G)|.

In the following theorem, we give some conditions to show a relative c-central
extension of a pair of groups is a homomorphic image of a c-covering pair.

Theorem 5 Let σ : M → G be a relative c-central extension of a pair (N,G)
of finite groups, in which M is perfect and Φ(M) 6= M . Then M is a homo-
morphic image of the domain of a c-covering pair.

Proof Let G ∼= F/R and N ∼= S/R. By using Lemma 1, there is an epimor-
phism β : S/[R,c F ] → M such that the following diagram commute

1 // R/[R,c F ]

β|

��

// S/[R,c F ]

β

��

δ // N //

1N

��

1

1 // kerσ // M // N // 1,

where δ is the relative c-central extension defined in Lemma 1.
Put kerβ| = kerβ = K/[R,c F ], for a normal subgroup K of R. We have

R/K ∼=
R/[R,c F ]

K/[R,c F ]
∼= kerσ ∼=

(R ∩ [S,c F ])/[R,c F ]

(K ∩ [S,c F ])/[R,c F ]
∼= (R ∩ [S,c F ])K/K,
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On the other hand, kerσ is finite. So, we obtain (R ∩ [S,c F ])K = R. Suppose
that T/[R,c F ] is a complement of (R ∩ [S,c F ])/[R,c F ] in K/[R,c F ]. So,

T ∩ (R ∩ [S,c F ]) = [R,c F ] and (R ∩ [S,c F ])T = R,

Thus,
R/[R,c F ] = M(c)(N,G)× T/[R,c F ].

Now, we can see that θ : S/T → F/R given by θ(sT ) = sR, together with the
action

θ : S/T × F/R → S/T

(s · T, f ·R) 7→ [s, f ]T,

is a c-cover of the pair (N,G) such that (S/T )/(K/T ) ∼= M .

The following theorem guaranties the existence of c-cover for c-capable pair of
groups. We recall from [7] that a pair (N,G) is said to be c-capable, if there
exists a relative c-central extension φ : M → G with kerφ = Zc(N,G).

Theorem 6 Let (N,G) be a c-capable pair of groups. Then there exists a
group K such that
(i) Zc(K,G) ⊆ [K,c G],
(ii) K/Zc(K,G) ∼= N .

Proof We can see that there exists a group T such that N ∼= T/Zc(T,G). Let
F/M ∼= T be a free presentation of T . Put Zc(T,G) ∼= R/M , for a normal sub-
group R of F . Then F/R ∼= G is a free presentation of G. Let E = H/[R,c F ] be
a complement of D = (R∩ [S,c F ])/[R,c F ] in B = R/[R,c F ], where S/R ∼= N .
Since E ⊆ B ⊆ Z(C), where C = [S,c F ]/[R,c F ] and E is a normal subgroup
of C, we obtain B = D × E. Put P = F/[R,c F ] and assume that K = P/E
and W = B/E. Now, we can see that W ⊆ Zc(K,G). Also, we have

Zc(F/M,G/M) = R/M.

So, [R,c F ] ⊆ M . Let (f [R,c F ])E ∈ Zc(K,G), where f ∈ F . Then

[f, x1, . . . , xc][R,c F ] ∈ E,

for all xi ∈ F (1 ≤ i ≤ c). Now

[f, x1, . . . , xc][R,c F ] ∈ [S,c F ]/[R,c F ] ∩H/[R,c F ] = 1.

Hence, [f, x1, . . . , xc] ∈ [R,c F ] ⊆ M and so,

fM ∈ Zc(F/M,G/M) = R/M.

Hence, f ∈ R. Therefore,

Zc(K,G) = B/E = D × E/E ∼= D = R ∩ [S,c F ]/[R,c F ] ∼= M(c)(N,G),

which completes the proof.
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The following corollary is an immediate consequence of Theorem 6.

Corollary 1 Any c-capable pair of groups has at least one c-covering pair.

It is known that any two covering groups of a finite group G are isoclinic.
Also, if G is a finite perfect pair of groups, then a covering group of G is also
perfect. The notion of c-isoclinism of pairs of groups is introduced in [6] (see
[1,15] for more information).

The pairs (N,G) and (N ′, G′) of groups are said to be c-isoclinic if there
exists isomorphisms

α : G/Zc(N,G) → G′/Zc(N
′, G′), and β : [N,c G] → [N ′,c G

′],

such that

α(N/Zc(N,G)) = N ′/Zc(N
′, G′), and β([n, g1, . . . , gc]) = [n′, g′1, . . . , g

′
c],

whenever
α(giZc(N,G)) = g′iZc(N

′, G′),

for every 1 ≤ i ≤ c and

α(nZc(N,G)) = n′Zc(N
′, G′),

and we write (N,G)
c∼ (N ′, G′). Let σi : Mi → G (i = 1, 2) be two c-covers of

a pair (N,G) of groups. In the following theorem, under some conditions we
prove the pairs (kerσ1,M1) and (kerσ2,M2) are c-isoclinic. In Theorem 7, we
extend [12, Theorem 2·8].

Theorem 7 Let (N,G) be a pair of groups and σi : Mi → G (i = 1, 2) be two
c-covers of (N,G) such that M ′

i = Mi and Φ(Mi) 6= Mi. Then

(kerσ1,M1)
c∼ (kerσ2,M2).

Proof Suppose that (N,G) and (N ′, G′) are two pairs of groups and

φ : G → G′,

is an epimorphism such that φ(N) = N ′ and kerφ ∩N = 1.
Let α : G/Zc(N,G) → G′/Zc(N

′, G′) be given by

α(gZc(N,G)) = φ(g)Zc(N
′, G′),

and
β : [N,c G] → [N ′,c G

′],

by β([n, g1, . . . , gc]) = [φ(n), φ(g1), . . . , φ(gc)]. Then we have (N,G)
c∼ (N ′, G′).

Now, if σ : M → G is a c-cover of the pair (N,G), then there exists an epi-
morphism φ : S/[R,c F ] → M such that

φ([S,c F ] ∩R/[R,c F ]) = kerσ.
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On the other hand,

kerφ ∩ [[S,c F ] ∩R/[R,c F ], S/[R,c F ]] = 1,

Hence,
(kerσ,M)

c∼ ([S,c F ] ∩R/[R,c F ], S/[R,c F ]),

as clained.
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