Some Results on *c*-Covers of A Pair of Groups

Homayoon Arabyani

Received: 21 June 2021 / Accepted: 6 November 2021

Abstract Let G be a group and N be a normal subgroup of G. In this paper, we provide some results on c-covers of a pair of groups. Moreover, we prove that every c-perfect pair of groups (G, N) admits at least one c-cover and also we show that a c-cover of a pair of finite groups has a unique domain up to isomorphism under some assumptions.

Keywords Pair of groups $\cdot c$ -cover $\cdot c$ -nilpotent multiplier

Mathematics Subject Classification (2010) 20E34 · 20E22 · 20F05

1 Introduction and Preliminaries

Let G be a group and $G \cong F/R$ for a free group F. The Schur multiplier G is isomorphic to $(R \cap F')/[R, F]$ (see [9]). Also, the abelian group

$$\mathcal{M}^{(c)}(G) = R \cap \gamma_{c+1}(F) / \gamma_{c+1}(R, F),$$

is said to the *c*-nilpotent multiplier of *G*, where $\gamma_{c+1}(F)$ is the (c+1)-st term of the lower central series of *F*, $\gamma_1(R, F) = R$, $\gamma_{c+1}(R, F) = [\gamma_c(R, F), F]$ $(c \geq 1)$. In the case that c = 1, $\mathcal{M}^{(1)}(G) = \mathcal{M}(G)$ is the Schur multiplier of *G* (see [4]).

Let (N,G) be a pair of groups such that N is a normal subgroup of G. Then the Schur multiplier of (N,G) is defined to be the abelian group $\mathcal{M}(N,G)$ appears in the following natural exact sequence

$$\begin{aligned} H_3(G) &\to H_3(G/N) \to \mathcal{M}(N,G) \to \mathcal{M}(G) \\ &\to \mathcal{M}(G/N) \to N/[N,G] \to (G)^{ab} \to (G/N)^{ab} \to 1, \end{aligned}$$

H. Arabyani (Corresponding Author)

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: $\pm 123{\text -}45{\text -}678910$

Fax: +123-45-678910

E-mail: arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir

in which $H_3(-)$ is the third homology of a group with integer coefficients (see [5]). If $G \cong F/R$ is a free presentation of G and $N \cong S/R$, for some normal subgroup S of F, and N has a complement in G, one can see that $\mathcal{M}(N,G) \cong R \cap [S,F]/[R,F].$

In the case N = G, the Schur multiplier of the pair (N, G) is the usual Schur multiplier of G.

If N has a complement in G, then we can define

$$\mathcal{M}^{(c)}(N,G) \cong \frac{R \cap [S,_c F]}{[R,_c F]}$$

In particular, if N = G, then $\mathcal{M}^{(c)}(G, G) = \mathcal{M}^{(c)}(G)$ is the *c*-nilpotent multiplier of *G* (see [2, 13, 14] for more information). The notion of covering pairs was defined by Ellis [5], he proved that every pair of finite groups has a covering pair. In [8], the authors proved that every nilpotent pair of groups of class at most *k* with non-trivial *c*-nilpotent multiplier does not admit any *c*-covering pair, for all c > k. In this paper, we prove some new results on *c*-covering pairs of groups.

Let G and M be two groups with an action of G on M. Then the Gcommutator subgroup and G-center subgroup of M are defined, respectively,
as follows:

$$[M,G] = \langle [m,g] = m^g m^{-1} \mid m \in M, g \in G \rangle,$$

$$Z(M,G) = \{ m \in M \mid m^g = m, \quad \forall g \in G \}.$$

We recall that the subgroups $[M_{,c} G]$ and $Z_c(M, G)$ for all $c \ge 1$, as follows:

$$[M,_c G] = \langle [m, g_1, \dots, g_c] \mid m \in M, g_1, \dots, g_c \in G \rangle,$$

$$Z_c(M, G) = \{ m \in M \mid [m, g_1, \dots, g_c] = 1, for all g_1, \dots, g_c \in G \}.$$

Let (N, G) be a pair of groups. A relative *c*-central extension of the pair (N, G) is a homomorphism $\sigma : M \to G$ together with an action of G on M such that

- (i) $\sigma(M) = N$ (ii) $\sigma(m^g) = g^{-1}\sigma(m)g$, for all $g \in G, m \in M$,
- (iii) $m'^{\sigma(m)} = m^{-1}m'm$, for all $m, m' \in M$,

(iv) ker $\sigma \subseteq Z_c(M, G)$.

In addition, the relative c-central extension $\sigma: M \to G$ is said to be a c-cover of (N, G) if there exists a subgroup A of M such that

(i) $A \subseteq Z_c(M,G) \cap [M,_c G],$ (ii) $A \cong \mathcal{M}^{(c)}(N,G),$ (iii) $N \cong M/A.$

It is easy to see that 1-covering pair is the usual covering pair discussed in [5, 11].

Finally, a pair (N, G) of groups is called *c*-perfect, if [N, G] = N.

2 On c-covers of a pair of groups

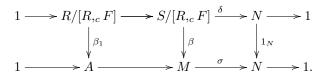
Let (N, G) be a pair of groups with a free presentation $1 \to R \to F \xrightarrow{\pi} G \to 1$ such that $N \cong S/R$ for a normal subgroup S of F, in which $[R, S] \subseteq [R, F]$. Consider the group homomorphism

$$\delta : S/[R,_c F] \to G$$
$$s[R,_c F] \mapsto \pi(s).$$

It is easy to see that δ is a relative *c*-central extension by an action of *G* on S/[R, F], defined by $(s[R, F])^g = s^f[R, F]$, where $\pi(f) = g$.

By the above assumption, and a simple generalization of [12], we obtain the following Lemmas.

Lemma 1 Let (N,G) be a pair of groups with $G \cong F/R$ and $N \cong S/R$. If $\sigma : M \to G$ is a relative c-central extension of the pair (N,G), then there exists a homomorphism $\beta : S/[R, F] \to M$ such that the following diagram is commutative



where δ is the relative c-central extension defined above. In particular, if M is a perfect group with $\Phi(M) \neq M$, then β is an epimorphism.

Lemma 2 Let (N, G) be a pair of groups, with $G \cong F/R$ and $N \cong S/R$. Then for every c-cover $\sigma : M \to G$ of (N, G) in which M is perfect and $\Phi(M) \neq M$, there is a normal subgroup T of F such that

(i) $M \cong S/T$ and ker $\sigma \cong R/T$, (ii) $R/[R,_c F] = \mathcal{M}^c(N,G) \times T/[R,_c F]$.

Theorem 1 Let (N,G) be a pair of groups and $\sigma_i : M_i \to G$ (i = 1,2) be two c-covers of the pair (N,G) such that $M'_i = M_i$ and $\Phi(M_i) \neq M_i$. If $\alpha : M_1 \to M_2$ is an epimorphism such that $\alpha(\ker \sigma_1) = \ker \sigma_2$, then α is an isomorphism.

Proof Let $G \cong F/R$ be a free presentation of G and $N \cong S/R$, for a normal subgroup S of F. By using Lemma 2, there exist normal subgroups T_i (i = 1, 2) of F such that

(i) $M_i \cong S/T_i$ and $\ker(\sigma_i) \cong R/T_i$, (ii) $R/[R,_c F] = \mathcal{M}^{(c)}(N,G) \times T_i/[R,_c F]$.

So, we can consider the epimorphism $\alpha: S/T_1 \to S/T_2$ such that

$$\alpha(R/T_1) = R/T_2$$

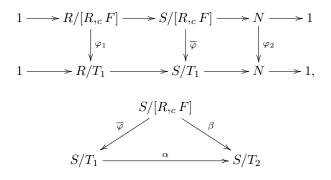
By using Lemma 1, there exists an epimorphism $\beta:S/[R,_cF]\to S/T_2$ such that

$$\ker \beta = T_2 / [R, F].$$

Hence, the following diagram is commutative

$$1 \longrightarrow R/[R,_c F] \longrightarrow S/[R,_c F] \longrightarrow N \longrightarrow 1$$
$$\downarrow^{\beta_1} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\beta_2}$$
$$1 \longrightarrow R/T_2 \longrightarrow S/T_2 \longrightarrow N \longrightarrow 1,$$

where β_1 and β_2 are the restricted and the induced homomorphisms of β , respectively. We can see that β_2 is an isomorphism. So, we obtain a homomorphism $\varphi : S \to S/T_1$ with $\alpha \circ \varphi = \beta \circ \gamma$, in which γ is the natural epimorphism from S onto S/[R, cF]. So, φ induces a homomorphism $\overline{\varphi} : S/[R, cF] \to S/T_1$. Thus, the following diagrams are commutative:



where φ_1 is restriction of $\overline{\varphi}$ and $\varphi_2 = (\alpha')^{-1} \circ \beta_2$ is an isomorphism, where $\alpha' : N \to N$ is the induced isomorphism by α . So, $\overline{\varphi}$ is onto. Put ker $\overline{\varphi} = E/[R, F]$, for a normal subgroup E in S. We can see that $E \subseteq T_2$ and $E(R \cap [S, F]) = R$. Hence, $E = T_2$. Therefore, α is an isomorphism.

In the following result, we show that any *c*-perfect pair of groups has at least one *c*-covering pair. Indeed, in Theorem 2, we generalize [12, Theorem $2 \cdot 4$].

Theorem 2 Any c-perfect pair of groups has at least one c-covering pair.

Proof Let (N, G) be a pair of groups and $1 \to R \to F \xrightarrow{\pi} G \to 1$ be a free presentation of G in which $N \cong S/R$, for a normal subgroup S of F. We have the following relative c-central extension

$$1 \to R/[R, F] \to F/[R, F] \xrightarrow{\pi} G \to 1.$$

Since $\overline{\pi}([S, cF]/[R, cF]) = N$, by restricting $\overline{\pi}$ to [S, cF]/[R, cF], we obtain the following relative *c*-central extension of (N, G):

$$1 \to \mathcal{M}^{(c)}(N,G) \to [S,_c F]/[R,_c F] \to G \to 1.$$

Now, we can see that

$$[S_{,c} F]/[R_{,c} F] = [[S_{,c} F]/[R_{,c} F]_{,c} G],$$

which completes the proof.

A relative c-central extension $\sigma: M \to G$ of a pair (N, G) is called universal, if for every relative c-central extension $\theta: K \to G$, there exists a unique homomorphism $\varphi: M \to K$ such that $\theta \circ \varphi = \sigma$.

In the following theorem, we show that if a pair (N, G) admits a universal relative *c*-central extension, then it is *c*-perfect.

Theorem 3 Let (N,G) be a pair of groups and $\sigma : M \to G$ be a relative *c*-central extension of (N,G). If σ is universal, then (N,G) is *c*-perfect.

Proof One can check that the exact sequence

$$1 \to \ker \sigma \times N/[N,_c G] \to M \times N/[N,_c G] \xrightarrow{\theta} G \to 1,$$

where $\theta(m, n[N, G]) = \sigma(m)$ for all $m \in M$ and $n \in N$, is a relative *c*-central extension of the pair (N, G). Define

$$\varphi_i: M \to M \times N/[N,_c G], for i = 1, 2$$

by $\varphi_1(m) = (m, 1)$ and $\varphi_2(m) = (m, \sigma(m)[N, G])$. Since $\theta \circ \varphi_i = \sigma$, we obtain $\varphi_1 = \varphi_2$. Thus, [N, G] = N.

Lemma 3 ([8], Lemma 3.1) Let (N, G) be a pair of groups and K be a normal subgroup of G such that $K \subseteq N$. Then the following sequence is exact:

$$1 \to \mathcal{M}^{(c)}(K,G) \to \mathcal{M}^{(c)}(N,G) \to \mathcal{M}^{(c)}(\frac{N}{K},\frac{G}{K}) \to \frac{(K \cap [N,_c G])}{[K,_c G]} \to 1.$$

Proposition 1 Let (N, G) be a c-perfect pair of groups and $\mathcal{M}^{(c)}(N, G) = 1$. Also, let M be a normal subgroup of G succe that $M \subseteq N \cap Z_c(G)$. Then

$$\mathcal{M}^{(c)}(N/M, G/M) \cong M,$$

and N is a c-covering pair of (N/M, G/M).

Proof By Lemma 3, we can see that the following sequence is exact.

$$\mathcal{M}^{(c)}(N,G) \to \mathcal{M}^{(c)}(N/M,G/M) \to M \cap [N,_c G] \to 1.$$

Hence, we have

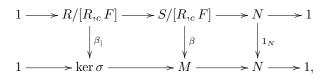
$$\mathcal{M}^{(c)}(N/M, G/M) \cong M \cap [N,_c G] = M,$$

which completes the proof.

Theorem 4 Let (N, G) be a pair of groups with a free presentation $G \cong F/R$ and $N \cong S/R$. Also, let $\sigma : M \to G$ be a relative c-central extension of the pair (N, G) in which M is perfect and $\Phi(M) \neq M$. Then

$$|\ker \sigma \cap [M_{,c}G]| \le |\mathcal{M}^{(c)}(N,G)|.$$

Proof By Lemma 1, there exists an epimorphism $\beta: S/[R, F] \to M$ such that the following diagram is commutative:



Put ker $\beta_{\parallel} = E/[R, F]$, for a normal subgroup E of R. We have

$$M \cong \frac{S/[R,_c F]}{E/[R,_c F]} \qquad \text{and} \qquad \ker \sigma \cong \frac{R/[R,_c F]}{E/[R,_c F]}.$$

On the other hand,

$$(R \cap ([S,_c F]E))/E \cong (R \cap [S,_c F])/(E \cap [S,_c F])$$
$$\cong \mathcal{M}^{(c)}(N,G)/((E \cap [S,_c F])/[R,_c F])$$

So, we obtain

$$|\ker \sigma \cap [M_{,c}G]| \le |\mathcal{M}^{(c)}(N,G)|.$$

In the following theorem, we give some conditions to show a relative *c*-central extension of a pair of groups is a homomorphic image of a *c*-covering pair.

Theorem 5 Let $\sigma : M \to G$ be a relative c-central extension of a pair (N, G) of finite groups, in which M is perfect and $\Phi(M) \neq M$. Then M is a homomorphic image of the domain of a c-covering pair.

Proof Let $G \cong F/R$ and $N \cong S/R$. By using Lemma 1, there is an epimorphism $\beta: S/[R, F] \to M$ such that the following diagram commute

$$\begin{split} 1 & \longrightarrow R/[R,_c F] & \longrightarrow S/[R,_c F] \xrightarrow{\delta} N & \longrightarrow 1 \\ & & \downarrow^{\beta_{|}} & & \downarrow^{\beta} & & \downarrow^{1_N} \\ 1 & \longrightarrow \ker \sigma & \longrightarrow M & \longrightarrow N & \longrightarrow 1, \end{split}$$

where δ is the relative *c*-central extension defined in Lemma 1. Put ker $\beta_{\parallel} = \ker \beta = K/[R, F]$, for a normal subgroup K of R. We have

$$R/K \cong \frac{R/[R,cF]}{K/[R,cF]} \cong \ker \sigma \cong \frac{(R \cap [S,cF])/[R,cF]}{(K \cap [S,cF])/[R,cF]} \cong (R \cap [S,cF])K/K,$$

On the other hand, ker σ is finite. So, we obtain $(R \cap [S, F])K = R$. Suppose that T/[R, F] is a complement of $(R \cap [S, F])/[R, F]$ in K/[R, F]. So,

$$T \cap (R \cap [S, cF]) = [R, cF] \quad \text{and} \quad (R \cap [S, cF])T = R,$$

Thus,

$$R/[R,_c F] = \mathcal{M}^{(c)}(N,G) \times T/[R,_c F].$$

Now, we can see that $\theta: S/T \to F/R$ given by $\theta(sT) = sR$, together with the action

$$\label{eq:basic} \begin{split} \overline{\theta} &: S/T \times F/R \to S/T \\ & (s \cdot T, f \cdot R) \mapsto [s, f]T, \end{split}$$

is a c-cover of the pair (N, G) such that $(S/T)/(K/T) \cong M$.

The following theorem guaranties the existence of *c*-cover for *c*-capable pair of groups. We recall from [7] that a pair (N, G) is said to be *c*-capable, if there exists a relative *c*-central extension $\varphi : M \to G$ with ker $\varphi = Z_c(N, G)$.

Theorem 6 Let (N,G) be a c-capable pair of groups. Then there exists a group K such that

(i) $Z_c(K,G) \subseteq [K,_c G],$ (ii) $K/Z_c(K,G) \cong N.$

Proof We can see that there exists a group T such that $N \cong T/Z_c(T, G)$. Let $F/M \cong T$ be a free presentation of T. Put $Z_c(T, G) \cong R/M$, for a normal subgroup R of F. Then $F/R \cong G$ is a free presentation of G. Let E = H/[R, F] be a complement of $D = (R \cap [S, F])/[R, F]$ in B = R/[R, F], where $S/R \cong N$. Since $E \subseteq B \subseteq Z(C)$, where C = [S, F]/[R, F] and E is a normal subgroup of C, we obtain $B = D \times E$. Put P = F/[R, F] and assume that K = P/E and W = B/E. Now, we can see that $W \subseteq Z_c(K, G)$. Also, we have

$$Z_c(F/M, G/M) = R/M$$

So, $[R, cF] \subseteq M$. Let $(f[R, cF])E \in Z_c(K, G)$, where $f \in F$. Then

$$[f, x_1, \ldots, x_c][R, F] \in E$$

for all $x_i \in F$ $(1 \le i \le c)$. Now

$$[f, x_1, \dots, x_c][R, F] \in [S, F]/[R, F] \cap H/[R, F] = 1$$

Hence, $[f, x_1, \ldots, x_c] \in [R, cF] \subseteq M$ and so,

$$fM \in Z_c(F/M, G/M) = R/M.$$

Hence, $f \in R$. Therefore,

$$Z_c(K,G) = B/E = D \times E/E \cong D = R \cap [S,_c F]/[R,_c F] \cong \mathcal{M}^{(c)}(N,G),$$
which completes the proof.

The following corollary is an immediate consequence of Theorem 6.

Corollary 1 Any c-capable pair of groups has at least one c-covering pair.

It is known that any two covering groups of a finite group G are isoclinic. Also, if G is a finite perfect pair of groups, then a covering group of G is also perfect. The notion of *c*-isoclinism of pairs of groups is introduced in [6] (see [1,15] for more information).

The pairs (N, G) and (N', G') of groups are said to be *c*-isoclinic if there exists isomorphisms

$$\alpha: G/Z_c(N,G) \to G'/Z_c(N',G'), \quad \text{and} \quad \beta: [N,_c G] \to [N',_c G'],$$

such that

 $\alpha(N/Z_c(N,G)) = N'/Z_c(N',G'), \text{ and } \beta([n,g_1,\ldots,g_c]) = [n',g_1',\ldots,g_c'],$

whenever

$$\alpha(g_i Z_c(N,G)) = g'_i Z_c(N',G'),$$

for every $1 \leq i \leq c$ and

$$\alpha(nZ_c(N,G)) = n'Z_c(N',G'),$$

and we write $(N, G) \stackrel{c}{\sim} (N', G')$. Let $\sigma_i : M_i \to G$ (i = 1, 2) be two *c*-covers of a pair (N, G) of groups. In the following theorem, under some conditions we prove the pairs (ker σ_1, M_1) and (ker σ_2, M_2) are *c*-isoclinic. In Theorem 7, we extend [12, Theorem 2.8].

Theorem 7 Let (N, G) be a pair of groups and $\sigma_i : M_i \to G$ (i = 1, 2) be two *c*-covers of (N, G) such that $M'_i = M_i$ and $\Phi(M_i) \neq M_i$. Then

$$(\ker \sigma_1, M_1) \stackrel{c}{\sim} (\ker \sigma_2, M_2)$$

Proof Suppose that (N, G) and (N', G') are two pairs of groups and

$$\varphi: G \to G',$$

is an epimorphism such that $\varphi(N) = N'$ and ker $\varphi \cap N = 1$. Let $\alpha : G/Z_c(N,G) \to G'/Z_c(N',G')$ be given by

$$\alpha(gZ_c(N,G)) = \varphi(g)Z_c(N',G'),$$

and

$$\beta: [N,_c G] \to [N',_c G'],$$

by $\beta([n, g_1, \ldots, g_c]) = [\varphi(n), \varphi(g_1), \ldots, \varphi(g_c)]$. Then we have $(N, G) \stackrel{c}{\sim} (N', G')$. Now, if $\sigma : M \to G$ is a *c*-cover of the pair (N, G), then there exists an epimorphism $\varphi : S/[R, cF] \to M$ such that

$$\varphi([S_{,c} F] \cap R/[R_{,c} F]) = \ker \sigma.$$

On the other hand,

$$\ker \varphi \cap \left[[S_{,c} F] \cap R/[R_{,c} F], S/[R_{,c} F] \right] = 1,$$

Hence,

$$(\ker \sigma, M) \stackrel{c}{\sim} ([S, F] \cap R/[R, F], S/[R, F]),$$

as clained.

References

- H. Arabyani, Some remarks on n-isoclinic pairs of groups, Tbilisi Mathematical Journal. 14, 207–212 (2021).
- H. Arabyani, H. Safa, Some properties of c-covers of a pair of Lie algebras, Quaest. Math. 42, 37–45 (2019).
- M. Araskhan, On the c-covers and a special ideal of Lie algebras, Iran, J. Sci. Technol. Trans. A Sci. 40, 165–169 (2016).
- 4. R. Bear, Representation of groups as quotient groups, I, II and III, Trans Amer. Math. Soc. 58, 295–419 (1945).
- 5. G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures, 6, 355–371 (1998).
- Sh. Heidarian, A. Gholami, On n-Isoclinic Pairs of Groups, Algebra Colloq. 18, 999–1006 (2011).
- A. Hokmabadi, A. Pourmirzaei, S. Kayvanfar, A criterion for c-capability of pairs of groups, Tbilisi Mathematical Journal, 5, 31–38 (2012).
- 8. A. Hokmabadi, F. Mohammadzadeh, B. Mashayekhy, On Nilpotent Multipliers of Pairs of Groups, Mathematics Interdisciplinary Research, 5, 367–377 (2020).
- 9. G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
- M. R. R. Moghaddam, A. R. Salemkar, Relative covering group, Comm. Algebra, 31, 5769–5780 (2003).
- M. R. R. Moghaddam, A. R. Salemkar, K. Chiti, Some properties on the Schur multiplier of a pair of groups, Journal of Algebra, 312, 1–8 (2007).
- A. Pourmirzaei, M. Hassanzadeh, B. Mashayekhy, On relative central extensions and covering pairs, J. Algebraic Syst. 4, 1–13 (2016).
- H. Safa, H. Arabyani, On c-nilpotent multiplier and c-covers of a pair of Lie algebras, Comm. Algebra 45, 4429–4434 (2017).
- H. Safa, H. Arabyani, M. Norouzi, On the c-nilpotent multiplier of a pair of Lie algebras, Publ. Math. Debrecen. 97, 253–264 (2020).
- A. R. Salemkar, F. Saeedi, T. Karimi, The structure of isoclinism classes of pairs of groups, Southeast Asian Bull. Math. 31, 1173–1182 (2007).