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Abstract The Newell–Whitehead–Segel (NWS) equation is an important model
arising in fluid mechanics. Various researchers worked on approximate solu-
tions to this model by using different methods. In this paper, the Sine-Cosine
wavelets method is applied for solving numerically the NWS equation. The
Sine-Cosine wavelet operational matrix of integration is obtained and used to
transform the equations into a system of algebraic equations. To demonstrate
the effectiveness and applicability of this method, two numerical examples are
included.

Keywords Newell-Whitehead-Segel equation · Numerical method · Sine-
Cosine wavelets · Operational matrix · Function approximation

Mathematics Subject Classification (2010) 65Nxx · 65T60

1 Introduction

In natural phenomena, nonequilibrium systems are usually shown in many ex-
tended states; uniform, oscillatory, chaotic, and pattern states. Many stripe
patterns, e.g., ripples in the sand, stripes of seashells, occurs in a variety of
spatially extended systems which can be described by a set of equation called
amplitude equations. One of the most important amplitude equations is the
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NWS equation which describes the appearance of the stripe pattern in two-
dimensional systems. Moreover, this equation was applied to several problems
in various systems, e.g., Rayleigh-Benard convection, Faraday instability, non-
linear optics, chemical reactions, and biological systems.
The general type of NWS equation is given by

ut = εuxx + au+ buq, (x, t) ∈ (0, 1)× (0, tF ), (1)

with the initial and Dirichlet boundary conditions

u(x, 0) = g(x), x ∈ [0, 1], (2)
u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, tF ], (3)

where a, b, and ε are real numbers and q is a positive integer. Also, tF repre-
sents the final time, g(x), f1(t), and f2(t), are differentiable known functions.

In recent years various methods and techniques are developed to solve
this nonlinear, parabolic partial differential equation. For a = −b = ε = 1,
and q = 3, equation (1) becomes the Allen-Cahn equation. This equation
arises in many scientific applications such as mathematical biology, quantum
mechanics, and plasma physics. It is well known that phenomena of plasma
media and fluid dynamics are modeled by kink-shaped and Tanh solution or
bell-shaped sech solutions. The Allen-Cahn equation serves as a model for the
study of phase separation in isothermal, isotropic, and binary mixtures such
as molten alloys [24]. Several methods have been suggested to solve the NWS
equation [11,18,13].

One way to solve equations numerically is to use wavelets. The basic idea
of wavelets goes back to the early 1960s [5,4]. The wavelet analysis is the de-
composition of a function into shifted and scaled versions of the basic wavelet.
Also, the wavelet basis is an orthogonal basis for L 2(R) and is generated by
the translation and dilatation of the basic wavelet. There are developments
concerning the multiresolution analysis algorithm based on wavelets [6] and
the construction of compactly supported orthonormal wavelet basis [14]. So
far, several problems have been solved numerically using different wavelets,
for example, we can refer to references [3,1,16,7,17,9,22,23].

In the present paper, we apply the Sine-Cosine wavelets method for solving
equation (1) with the initial and boundary conditions (2) and (3). Sine-Cosine
wavelets has been used and showed efficiency to solve various problems. Az-
izi and Pourgholi have applied Sine-Cosine wavelets method for solving the
Drinfel’d–Sokolov–Wilson System [2]. Razzaghi and Yousefi in [19] have em-
ployed a Sine-Cosine wavelet to solve variational problems. Tavassoli Kajani
et al. [12] have proposed a method based on Sine-Cosine wavelet for solving
integro-differential equations. A numerical evaluation of Hankel transform for
seismology has been given in [10] using the Sine-Cosine wavelets approach.
Amir and Umer Saeed in [21] have used Sine-Cosine wavelets to solve the
fractional nonlinear oscillator equations, and so on.
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The paper is organized as follows: in Section 2, we describe the Sine-Cosine
wavelets and function approximation. The convergence analysis of the Sine-
Cosine wavelets is given in Section 3. In Section 4, the application and proce-
dure of implementation of the method, are presented. The numerical results
are reported in Section 5 and finally, the conclusions are summarized in Section
6.

2 Sine-Cosine wavelets

In this section first, we give some necessary mathematical preliminaries of
Sine-Cosine wavelets which are used further in this paper, then function ap-
proximation and the operational matrix via this conception are introduced.

Wavelets are mathematical functions that are constructed using dilation
and translation of a single function called the mother wavelet denoted by φ(x).
If the dilation parameter is a and the translation parameter is b, we have the
following family of continuous wavelets [8]:

ψa,b(x) = |a|− 1
2φ

(x− b

a

)
, a, b ∈ R, a ̸= 0.

If the parameters a and b are restricted to take values a = a−k
0 and b = nb0a

−k
0 ,

a family of discrete wavelets which forms a wavelet basis for L 2(R) is obtained
as:

ψk,n(x) = |a0|
k
2φ(ak0x− nb0),

where a0 > 1, b0 > 0, and n and k are positive integers. Especially, if the
dilation parameter is 2 and the translation parameter is 1, the set {ψk,n(x)}
forms an orthonormal basis.

Sine-Cosine wavelets are defined on interval x ∈ [0, 1) as ([10])

ψn,m(x) =

{
2k+1/2fm(2kx− n), x ∈ [ n

2k
, n+1

2k
),

0, elsewhere,
(4)

where

fm(x) =


1√
2
, m = 0,

cos(2mπx), m = 1, 2, . . . , L,

sin(2(m− L)πx), m = L+ 1, L+ 2, . . . , 2L,

(5)

and L is any positive integer, k = 0, 1, 2, . . . , is the level of resolution, n =
0, 1, 2, . . . , 2k − 1, is the translation parameter, m = 0, 1, 2, . . . , 2L and x is
the normalized time. Sine-Cosine wavelets have compact support and forms a
orthonormal basis of L 2([0, 1)).
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2.1 Function approximation

Since the set of Sine-Cosine wavelets forms an orthonormal basis, this implies
that any function u(x) ∈ L 2([0, 1)) can be expanded as

u(x) =

∞∑
n=0

2L∑
m=0

cn,mψn,m(x), (6)

where cn,m =< u,ψn,m >=
∫ 1

0
u(x)ψn,m(x) dx. By truncating the infinite

series (6) at levels n = 2k − 1, we obtain an approximate representation for
u(x) as

u(x) ≃
2k−1∑
n=0

2L∑
m=0

cn,mψn,m(x) = CTΨ(x). (7)

where C and Ψ are (2k(2L+ 1)× 1)-vectors. given by

C =
[
c0,0, . . . , c0,2L, c1,0, . . . , c1,2L, . . . . . . , c2k−1,0, . . . , c2k−1,2L

]T
,

Ψ =
[
ψ0,0, . . . , ψ0,2L, ψ1,0, . . . , ψ1,2L, . . . . . . , ψ2k−1,0, . . . , ψ2k−1,2L

]T
. (8)

2.2 Sine–Cosine wavelets operational matrix of integration

The integration of the vector Ψ(x), can be obtained as∫ x

0

Ψ(s) ds = PΨ(x),

where P is 2k(2L+ 1)× 2k(2L+ 1) operational matrix given by

P =
1

2k+1/2


F S · · · S
0 F · · · S
...

... . . . ...
0 0 · · · F

 ,

where S and F are (2L+1)× (2L+1) matrices (see [12]). For example, when
k = 1 and L = 2, we have

P10×10 =
1

2



1
2 0 0 − 1

π − 1
2π 1 0 0 0 0

0 0 0 1
2π 0 0 0 0 0 0

0 0 0 0 1
4π 0 0 0 0 0

1
2π − 1

2π 0 0 0 0 0 0 0 0
1
4π 0 − 1

4π 0 0 0 0 0 0 0
0 0 0 0 0 1

2 0 0 − 1
π − 1

2π
0 0 0 0 0 0 0 0 1

2π 0
0 0 0 0 0 0 0 0 0 1

4π
0 0 0 0 0 1

2π − 1
2π 0 0 0

0 0 0 0 0 1
4π 0 − 1

4π 0 0


.
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3 Convergence analysis of the Sine-Cosine wavelets

In this section, we get the convergence of the Sine-Cosine wavelets approxi-
mation of a function. For this purpose, we state and prove the following con-
vergence theorem.

Theorem 1 Let k → ∞, then the series solution (7) converges to u(x).

Proof Let Sk,L(x) be a sequence of partial sums of cn,mψn,m(x) as

Sk,L(x) =

2k−1∑
n=0

2L∑
m=0

cn,mψn,m(x). (9)

We prove that Sk,L is a Cauchy sequence in Hilbert space L 2([0, 1)) and then,
we show that Sk,L converges to u(x), when k → ∞. In order to reach the first
aim, let Sk′,L be arbitrary sums of cn,mψn,m(x) with k > k′, then∥∥∥∥∥Sk,L − Sk′,L

∥∥∥∥∥
2

=

∥∥∥∥∥
2k−1∑
n=2k′

2L∑
m=0

cn,mψn,m(x)

∥∥∥∥∥
2

=

〈
2k−1∑
n=2k′

2L∑
m=0

cn,mψn,m(x),

2k−1∑
i=2k′

2L∑
j=0

ci,jψi,j(x)

〉

=

2k−1∑
n=2k′

2L∑
m=0

2k−1∑
i=2k′

2L∑
j=0

cn,mc̄i,j

〈
ψn,m, ψi,j

〉

=

2k−1∑
n=2k′

2L∑
m=0

|cn,m|2.

From the Bessel’s inequality, we have
∞∑

n=0

2L∑
m=0

|cn,m|2 is convergent, and hence

∥∥∥Sk,L − Sk′,L

∥∥∥2 → 0 as k → ∞.

This implies that Sk,L is a Cauchy sequence and hence, it converges to a
function in L 2([0, 1)) , say, U(x). We need to show that U(x) = u(x). For this
end, 〈

U − u, ψn,m

〉
=

〈
U , ψn,m

〉
−
〈
u, ψn,m

〉
= lim

k→∞

〈
Sk,L, ψn,m

〉
− cn,m

= cn,m − cn,m = 0.

Therefore,
2k−1∑
n=0

2L∑
m=0

cn,mψn,m(x) converges to u(x) as k → ∞.
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4 Application of the method

In this section, we present our method for solving equation (1). To show the
applications of Sine-Cosine wavelets in solving this equation, we divide the
interval [0, tF ] into N equal parts of length ∆t = tF

N and denote tj = (j−1)∆t,
j = 1, 2, . . . , N + 1. Now, we assume that u̇′′(x, t) can be expanded in terms
of Sine-Cosine wavelets as [2]

u̇′′(x, t) ∼=
2k−1∑
n=0

2L∑
m=0

cn,mψn,m(x) = CTΨ(x), (10)

where . and ′ mean differentiation with respect to t and x, respectively.
By integrating equation (10) once with respect to t from tj to t and twice with
respect to x from 0 to x, and using the boundary conditions (3), we obtain

u′′(x, t) = (t− tj)C
TΨ(x) + u′′(x, tj), (11)

u̇(x, t) = CTP 2Ψ(x) + xf ′2(t) + (1− x)f ′1(t), (12)
u(x, t) = (t− tj)C

TP 2Ψ(x) + x[f2(t)− f2(tj)] + (1− x)[f1(t)− f1(tj)]

+ u(x, tj). (13)

Discretizing the results (11)-(13) at the collocation points

xi =
2i− 1

2M
, i = 1, 2, . . . ,M = 2k(2L+ 1),

and t→ tj+1 we have

u′′(xi, tj+1) = ∆tCTΨ(xi) + u′′(xi, tj), (14)
u̇(xi, tj+1) = CTP 2Ψ(xi) + xif

′
2(tj+1) + (1− xi)f

′
1(tj+1), (15)

u(xi, tj+1) = ∆tCTP 2Ψ(xi) + xi[f2(tj+1)− f2(tj)]

+ (1− xi)[f1(tj+1)− f1(tj)] + u(xi, tj). (16)

To linearized the nonlinear term uq in equation (1), we use the linearization
form given by Rubin and Graves [20] as follows

uq = (1− q)uq(x, tj) + quq−1(x, tj)u(x, tj+1). (17)

Using linear expression (17), the discrete form of equation (1) considering xi
and tj+1 as follows

u̇(xi, tj+1)− εu′′(xi, tj+1)−
(
a+ bquq−1(xi, tj)

)
u(xi, tj+1) = b(1− q)uq(xi, tj)

(18)
Now, by using equations (14)-(16), equation (18) leads to

AC = B, (19)
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where

A =

[(
1−∆t(a+ bquq−1(xi, tj))

)
P 2Ψ(xi)− ε∆tΨ(xi)

]
,

B = b(1− q)uq(xi, tj)−
[
xif

′
2(tj+1) + (1− xi)f

′
1(tj+1)

]
+ εu′′(xi, tj)

+ (a+ bquq−1(xi, tj))

[
u(xi, tj) + xi

[
f2(tj+1)− f2(tj)

]
+ (1− xi)

[
f1(tj+1)− f1(tj)

]]
.

From the equation (19), the coefficients C can be calculated. Finally, putting
the calculated coefficients into the equation (16), we can successively calculate
the approximate solution.

5 Numerical results

In this section, the numerical examples are discussed to demonstrate the ca-
pability, consistency, and efficiency of the presented method which described
in Section 4.

Example 1 In this example, equation (1) is considered for the parameters a =
2, b = −3, ε = 1, and q = 2. In this case, NWS equation is written as

ut = uxx + 2u− 3u2, (x, t) ∈ [0, 1]× [0, 1],

with the exact solution ([15])

u(x, t) =
2λ e2 t

3
(
λ e2 t − λ+ 2

3

) ,
where λ is an arbitrary constant.

Example 2 If the parameters a = −b = ε = 1, and q = 3 are written into
equation (1), the equation is reduced to the Allen-Cahn equation which is
written as

ut = uxx + u− u3, (x, t) ∈ [0, 1]× [0, 1],

with the exact solution ([15])

u(x, t) =
1

1 + e
−

√
2

2

(
x+ 3

√
2

2 t
)
+c0

,

where c0 is integration constant.

Tables 1 and 2 show the comparison among the exact and numerical solutions
u(x, t) at different points. Also, the difference between the exact and numerical
results for u(x, t), are shown graphically in Fig. 1.
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Table 1: Comparison between the exact and numerical solutions at t = 0.1
when L = 1 and k = 2.

Example 1 Example 2
x uex(x, t) unu(x, t) |uex(x, t)− unu(x, t)| uex(x, t) unu(x, t) |uex(x, t)− unu(x, t)|

0.125 0.916897 0.916897 3.468194e− 08 0.999736 0.999737 9.704408e− 07
0.375 0.916897 0.916898 3.108614e− 07 0.999779 0.999780 1.928517e− 06
0.625 0.916897 0.916898 8.939672e− 07 0.999814 0.999816 1.911994e− 06
0.875 0.916897 0.916899 1.848915e− 06 0.999845 0.999845 9.841383e− 07

Table 2: Comparison between the exact and numerical solutions at x = 0.458
when L = 1 and k = 2.

Example 1 Example 2
t uex(x, t) unu(x, t) |uex(x, t)− unu(x, t)| uex(x, t) unu(x, t) |uex(x, t)− unu(x, t)|
0.1 0.916897 0.916898 5.081713e− 07 0.999791 0.999793 2.031222e− 06
0.2 0.858487 0.858488 7.938125e− 07 0.999820 0.999824 3.845009e− 06
0.3 0.815931 0.815932 9.751446e− 07 0.999845 0.999851 5.347303e− 06
0.4 0.784107 0.784108 1.104137e− 06 0.999867 0.999873 6.578716e− 06
0.5 0.759844 0.759845 1.205749e− 06 0.999885 0.999893 7.574116e− 06
0.6 0.741069 0.741070 1.292842e− 06 0.999901 0.999910 8.363406e− 06
0.7 0.726374 0.726375 1.372439e− 06 0.999915 0.999924 8.972209e− 06
0.8 0.714770 0.714771 1.448567e− 06 0.999927 0.999936 9.422454e− 06
0.9 0.705542 0.705543 1.523644e− 06 0.999937 0.999947 9.732881e− 06
1 0.698162 0.698164 1.599182e− 06 0.999946 0.999956 9.919475e− 06
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(a) Example 1
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(b) Example 2

Fig. 1: Difference between the exact and numerical solutions, at time t = 0.5,
when L = 1 and k = 4.

6 Conclusion

In this paper, we used the Sine-Cosine wavelets method to solve the NWS
equation (1). The obtained results demonstrate the accuracy of this method
and its stability compared to the exact solutions. The results show that this
method can be a powerful mathematical tool for finding the numerical solu-
tions of nonlinear equations.
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