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Abstract A group G is said to be n-abelian, if (xy)n = xnyn, for any x, y ∈ G
and a positive integer n. In 1979, Fay and Waals introduced the n-potent and
the n-center subgroups of a group G, denoted by Gn and Zn(G), respectively.
In this paper, we show that the index of the n-center is bounded by an order
power of the n-potent subgroup, for some classes of groups. In fact for all n-
abelian groups G with finite n-potent subgroup, we prove that if G/Zn(G) is
finitely generated, then [G : Zn(G)] ≤ |Gn|d(G/Zn(G)). Moreover, we conclude
that [G : Zn(G)] ≤ |Gn|2 log2 |Gn|, for some n-capable group G.
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1 Introduction

A basic theorem of I. Schur [8] asserts that if the center of a group G has finite
index, then the derived subgroup of G is finite. A question that naturally arises
from Schur’s theorem is whether the converse of theorem is valid? An extra
special p-group of infinite order shows that the answer is negative (See [2]).
One of the remarkable problems is finding conditions under which the converse
of Schur’s theorem holds. B.H. Neumann [5] provided a partial converse of
Schur’s theorem as follows
If G is finitely generated by k elements and γ2(G) is finite, then G/Z(G) is
finite and |G/Z(G)| ≤ |γ2(G)|k.
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This result was generalized by P. Niroomand [6]. He proved that if G′ is finite
and G/Z(G) is finitely generated, then G/Z(G) is finite and

|G/Z(G)| ≤ |G′|d(G/Z(G)),

in which d(X) is the minimal number of generators of a group X. B. Sury
[9] gave a completely elementary short proof of a further generalization of
the Niroomand’s result. M.K. Yadav [11] states another extension of the Neu-
mann’s result when Z2(G)/Z(G) is finitely generated. He [12] also provided
other modifications of the converse of Schur’s theorem as follows
Theorem 1 For a group G the factor group G/Z(G) is finite if any of the
following holds true.
(i) G′ is finite and Z2(G) is abelian.

(ii) G′ is finite and Z2(G) ≤ G′.
(iii) G′ is finite and Z2(G)/Z(Z2(G)) is finitely generated.
(iv) G/G′Z2(G) is finite and G/Z(Z2(G)) is finitely generated.

In 1979, T. H. Fay and G. L. Waals [1] introduced the notion of the n-potent
and the n-center subgroups of a group G, for a positive integer n, respectively,
as follows

Gn = 〈[x, yn]|x, y ∈ G〉,
Zn(G) = {x ∈ G|xyn = ynx, ∀ y ∈ G},

where [x, y] = x−1y−1xy. It is easy to see that Gn is a fully invariant subgroup
and Zn(G) is a characteristic subgroup of G.
It seems to be considerable to find the relationship between the n-center factor
and n-potent subgroup.
In the present study we extend the Niroomand’s result as a partial converse of
Schur’s theorem for the n-center factor and the n-potent subgroup. Moreover,
we give some bounds for the order of the n-center factor in terms of the order
of the n-potent subgroup. In particular, for an n-capable group H = G/Zn(G)
such that G is an n-abelian group and |Hn| = m, we prove that

[H : Zn(H)] ≤ m2 log2 m.

2 Main Results

In this section, we first state a generalization of Niroomand’s result as a partial
converse of Schur’s theorem, when G is an n-abelian group. A group G is said
to be n-abelian, if (xy)n = xnyn for all x, y ∈ G, from which it follows that
[xn, y] = [x, y]n = [xn, yn]. The origins of the subject may be traced back to
1944 and are associated with the name of Levi [3,4].
Theorem 2 Let G be an n-abelian group such that d(G/Zn(G)) and Gn are
finite. Then G/Zn(G) is finite and

|G/Zn(G)| ≤ |Gn|d(G/Zn(G)).
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Proof Let G/Zn(G) = 〈x̄1, . . . , x̄t〉, such that x̄i = xiZ
n(G), for all 1 ≤ i ≤ t.

Since G is n-abelian, for all z ∈ Zn(G) we have

[yz, xn
i ] = [y, xn

i ]
z[z, xn

i ] = [y, xn
i ][[y, xi]

n, z] = [y, xn
i ].

Now, we can consider the well defined map f : G/Zn(G) → Gn × · · · × Gn

(t-times) defined by ȳ 7→ ([y, xn
1 ], . . . , [y, x

n
t ]). It is enough to show that f is

one to one. For this, let x̄, ȳ ∈ G/Zn(G) and f(x̄) = f(ȳ). So [x, xn
i ] = [y, xn

i ]

for all 1 ≤ i ≤ t. Since [x−1, xn
i ] = [xn

i , x]
x−1 , we have

[yx−1, xn
i ] = ([y, xn

i ][x
n
i , x])

x−1

= 1.

On the other hand, G is generated by xi (1 ≤ i ≤ t) module Zn(G) and G is
n-abelian. Therefore yx−1 ∈ Zn(G), which completes the proof.

The following useful corollary is a consequence of the above theorem.

Corollary 1 Let a group G be n-abelian and nilpotent such that d(G/Zn(G))
and Gn are finite. Then |G/Zn(G)| divides |Gn|d(G/Zn(G)).

Proof Since G/Zn(G) is a finite nilpotent group, so

G/Zn(G) = P1/Z
n(G)× · · · × Pt/Z

n(G),

where Pi/Z
n(G) (1 ≤ i ≤ t) is a pi-Sylow subgroup of G/Zn(G). It is im-

mediate from Theorem 2, |Pi/Z
n(Pi)| ≤ |(Pi)n|d(Pi/Z

n(Pi)) which means that
|Pi/Z

n(Pi)| divides |(Pi)n|d(Pi/Z
n(Pi)) (1 ≤ i ≤ t). Notice that since G is n-

abelian group, hence Gn = (P1)n . . . (Pt)n. On the other hand one can easily
check that d(Pi/Z

n(Pi)) ≤ d(G/Zn(G)). Therefore we have

|G/Zn(G)| divides
∏t

i=1 |(Pi)n|d(G/Zn(G)) = |Gn|d(G/Zn(G)).

An important problem which goes back to Schur’s theorem is finding the re-
lationship between G/Z(G) and G′. One of the best results is given by J.
Wiegold in [10]. He showed that if |G/Z(G)| = n, then |G′| ≤ n

1
2 log

n
2 . Also,

some upper bounds for the order of G/Z(G) can be fined in [6,7,12].
Here we extend some results in [7], for the n-center and the n-potent sub-

groups and give an upper bound for the order of G/Zn(G) in terms of the
order of Gn, in a group G which is n-abelian and n-capable. Note that a group
G is n-capable provided that G ∼= E/Zn(E), for some group E.

Lemma 1 Let G be a group and H be an n-abelian subgroup of G generated
by k elements and |Gn| = t. Then [G : CG(H

n)] ≤ tk.
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Proof Let {x1, . . . , xk} be a set of generators of H. Denote by Cl(xi), the
conjugacy class of xi. Then we have

[G : CG(H
n)] = [G :

k⋂
i=1

CG(x
n
i )] ≤

k∏
i=1

[G : CG(x
n
i )]

=

k∏
i=1

|Cl(xn
i )|

≤
k∏

i=1

|Gn|k = tk.

Lemma 2 Let G be a group and C be a proper subgroup of G. Then

Gn = [G \ C,Gn].

Proof It is enough to show that [c, gn] ∈ [G\C,Gn], for all c, g ∈ G. If c ∈ G\C,
then the assertion holds, immediately. Let c ∈ C. Then [cx, gn] ∈ [G \ C,Gn],
for some element x ∈ G \ C. Therefore we have

[c, gn] = ([x, gn]c)−1[cx, gn] ∈ [G \ C,Gn].

Lemma 3 Let G be a group. Put Z = Gn ∩ Zn(G) and let U, V be subgroups
of G such that Z ≤ U, V ≤ Gn. Then there exist elements y, z of G with the
following properties.

(i) If Z 6= U , then U ∩ CG(y) 6= U .
(ii) If V 6= Gn, then V 6= 〈V, [y, z]〉.

Proof (i) Suppose that Z 6= U . Put C = CG(U). Now, C is a proper subgroup
of G. Let y ∈ G \ C. Then [y, x] 6= 1, for some element x in U . Therefore
U ∩ CG(y) 6= U .
(ii) Let V 6= Gn. If Z = U , then we can choose the element [y, zn] in Gn such
that [y, zn] 6∈ V and the assertion holds. Suppose that Z 6= U . Thus by (i)
we have CG(U) = C is a proper subgroup of G. Then Lemma 2 implies that
Gn = [G \C,Gn], and so we have V 6= [G \C,Gn]. Hence there exist elements
y ∈ G \ C, z ∈ G such that [y, zn] 6∈ V . It follows that V 6= 〈V, [y, z]〉.

Lemma 4 Let G be a group such that G/Zn(G) is n-abelian. Also, let

Z = Gn ∩ Zn(G) and [Gn : Z] = m.

Suppose that T is a subgroup of G such that Gn ≤ T and T/Z is n-abelian
also the following properties hold.

(i) Gn = TnZ.
(ii) Gn ∩ Zn(T ) = Z.

(iii) d(T/Z) = k.
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Then there exists a subgroup M of G such that

[G : M ] ≤ mk and [M,Gn, Gn] = 1.

Proof Put M/Z = CG/Z((T/Z)n). Then we have |(G/Z)n| = [Gn : Z] = m.
Therefore, Lemma 1 implies that

[G : M ] = [G/Z : CG/Z((T/Z)n] = mk.

On the other hand [M,Tn] ≤ Z ≤ Zn(G). Thus [M,Tn, Gn] = 1 and so
[M,Tn, Tn] = 1. Then we have [Tn, Tn,Mn] ≤ [Tn, Tn,M ] = 1, by the
Three Subgroup Lemma. Since G/Zn(G) is n-abelian, [T, Tn,M ] = 1 so we
have [Tn,M

n] = 1. This implies that [Gn,M
n] = [TnZ,M

n] = 1 and hence
[Tn, Gn,Mn] = 1. On the other hand, [Mn, Tn, Gn] = 1. Then by the Three
Subgroup Lemma we have [Mn, Gn, Tn] = [Gn,Mn, Tn] = 1. Since G/Zn(G)
is n-abelian we have [M,Gn, Tn] = 1. Therefore [M,Gn] ≤ Zn(T ) ∩ Gn = Z
and so [M,Gn, Gn] = 1.

Lemma 5 Let G be an n-abelian group and |Gn : Zn(G) ∩ Gn| = m. Then
there exists a subgroup T as in Lemma 4 with k ≤ 2 log2 m.

Proof For 1 ≤ i ≤ l − 1, we define the elements yi+1, zi+1 recursively by
applying Lemma 3 for Vi = 〈Z, [y1, z1]n, . . . , [yi, zi]n〉 and Ui = CGn(V

n
i ). Now

we have
Z = V0 < V1 < V2 < · · · < Vl = Gn

and
Gn = U0 > U1 > U1 > · · · > Ul = Z,

where l is the smallest integer such that Vl = Gn and Ul = Z.
Since m = [Gn : Z] ≥ 2l, we have l ≤ log2 m. Put T = 〈Z, y1, z1, . . . , yl, zl〉.
Then it is easy to check that T has the required properties.

We have now accumulated all the information necessary to prove the following
result.

Theorem 3 Let G be an n-abelian group such that [Gn : Zn(G) ∩ Gn] = m.
Then

[G : Zn
2 (G)] ≤ m2 log2 m.

Proof By Lemma 4 and Lemma 5 we can conclude that there exists a subgroup
M of G such that [M,Gn, Gn] = 1 and [G : M ] ≤ mk with k ≤ 2 log2 m. Hence
the assertion follows.

As a corollary, we easily obtain the following result.

Corollary 2 Let H = G/Zn(G) in which G is an n-abelian group and

|Hn| = m.

Then [H : Zn(H)] ≤ m2 log2 m.
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Proof Owing to this H = G/Zn(G), we have

|Hn| =
∣∣∣GnZ

n(G)

Zn(G)

∣∣∣= ∣∣∣ Gn

Gn ∩ Zn(G)

∣∣∣= m.

Notice that since G is n-abelian group, hence by Theorem 3 we have

[H : Zn(H)] = [G : Zn
2 (G)] ≤ m2log2m.
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