On the Order of the *n***-Center Factor Subgroup of An** *n***-Abelian Group**

Azam Pourmirzaei

Received: 28 December 2021 / Accepted: 31 January 2022

Abstract A group *G* is said to be *n*-abelian, if $(xy)^n = x^n y^n$, for any $x, y \in G$ and a positive integer *n*. In 1979, Fay and Waals introduced the *n*-potent and the *n*-center subgroups of a group *G*, denoted by G_n and $Zⁿ(G)$, respectively. In this paper, we show that the index of the *n*-center is bounded by an order power of the *n*-potent subgroup, for some classes of groups. In fact for all *n*abelian groups *G* with finite *n*-potent subgroup, we prove that if $G/Z^n(G)$ is finitely generated, then $[G: Z^n(G)] \leq |G_n|^{d(G/Z^n(G))}$. Moreover, we conclude that $[G: Z^n(G)] \leq |G_n|^{2\log_2 |G_n|}$, for some *n*-capable group *G*.

Keywords Schur's theorem \cdot *n*-abelian group \cdot *n*-center subgroup \cdot *n*-potent subgroup

Mathematics Subject Classification (2010) 20F14 *·* 20D99

1 Introduction

A basic theorem of I. Schur [8] asserts that if the center of a group *G* has finite index, then the derived subgroup of *G* is finite. A question that naturally arises from Schur's theorem is whether the converse of theorem is valid? An extra special *p*-group of infinite order shows that the answer is negative (See [2]). One of the remarkable problems is finding conditions under which the converse of Schur's theorem holds. B.H. Neumann [5] provided a partial converse of Schur's theorem as follows

If G is finitely generated by k elements and $\gamma_2(G)$ *is finite, then* $G/Z(G)$ *is finite and* $|G/Z(G)| \leq |\gamma_2(G)|^k$.

A. Pourmirzaei

Department of Mathematics, Hakim Sabzevari University, P. O. Box 96179-76487, Sabzevar, Iran.

E-mail: a.pormirzaei@hsu.ac.ir

This result was generalized by P. Niroomand [6]. He proved that if *G′* is finite and $G/Z(G)$ is finitely generated, then $G/Z(G)$ is finite and

$$
|G/Z(G)| \leq |G'|^{d(G/Z(G))},
$$

in which $d(X)$ is the minimal number of generators of a group X. B. Sury [9] gave a completely elementary short proof of a further generalization of the Niroomand's result. M.K. Yadav [11] states another extension of the Neumann's result when $Z_2(G)/Z(G)$ is finitely generated. He [12] also provided other modifications of the converse of Schur's theorem as follows

Theorem 1 *For a group G the factor group* $G/Z(G)$ *is finite if any of the following holds true.*

- *(i)* G' *is finite and* $Z_2(G)$ *is abelian.*
- (*ii*) G' *is finite and* $Z_2(G) \leq G'$ *.*

(iii) G' is finite and $Z_2(G)/Z(Z_2(G))$ *is finitely generated.*

(iv) $G/G'Z_2(G)$ *is finite and* $G/Z(Z_2(G))$ *is finitely generated.*

In 1979, T. H. Fay and G. L. Waals [1] introduced the notion of the *n*-potent and the *n*-center subgroups of a group G , for a positive integer n , respectively, as follows

$$
G_n = \langle [x, y^n] | x, y \in G \rangle,
$$

\n
$$
Z^n(G) = \{ x \in G | xy^n = y^n x, \forall y \in G \},
$$

where $[x, y] = x^{-1}y^{-1}xy$. It is easy to see that G_n is a fully invariant subgroup and $Zⁿ(G)$ is a characteristic subgroup of *G*.

It seems to be considerable to find the relationship between the *n*-center factor and *n*-potent subgroup.

In the present study we extend the Niroomand's result as a partial converse of Schur's theorem for the *n*-center factor and the *n*-potent subgroup. Moreover, we give some bounds for the order of the *n*-center factor in terms of the order of the *n*-potent subgroup. In particular, for an *n*-capable group $H = G/Z^n(G)$ such that *G* is an *n*-abelian group and $|H_n| = m$, we prove that

$$
[H:Z^n(H)] \le m^{2\log_2 m}.
$$

2 Main Results

In this section, we first state a generalization of Niroomand's result as a partial converse of Schur's theorem, when *G* is an *n*-abelian group. A group *G* is said to be *n*-abelian, if $(xy)^n = x^n y^n$ for all $x, y \in G$, from which it follows that $[x^n, y] = [x, y]^n = [x^n, y^n]$. The origins of the subject may be traced back to 1944 and are associated with the name of Levi [3,4].

Theorem 2 *Let G be an n*-abelian group such that $d(G/Z^n(G))$ and G_n are *finite. Then* $G/Z^n(G)$ *is finite and*

$$
|G/Z^n(G)| \le |G_n|^{d(G/Z^n(G))}.
$$

Proof Let $G/Z^n(G) = \langle \bar{x}_1, \ldots, \bar{x}_t \rangle$, such that $\bar{x}_i = x_i Z^n(G)$, for all $1 \leq i \leq t$. Since *G* is *n*-abelian, for all $z \in Z^n(G)$ we have

$$
[yz,x_i^n]=[y,x_i^n]^z[z,x_i^n]=[y,x_i^n][[y,x_i]^n,z]=[y,x_i^n].\label{eq:2}
$$

Now, we can consider the well defined map $f: G/Z^n(G) \to G_n \times \cdots \times G_n$ (t-times) defined by $\bar{y} \mapsto ([y, x_1^n], \ldots, [y, x_t^n])$. It is enough to show that *f* is one to one. For this, let $\bar{x}, \bar{y} \in G/Z^n(G)$ and $f(\bar{x}) = f(\bar{y})$. So $[x, x_i^n] = [y, x_i^n]$ for all $1 \leq i \leq t$. Since $[x^{-1}, x_i^n] = [x_i^n, x]^{x^{-1}}$, we have

$$
[yx^{-1}, x_i^n] = ([y, x_i^n][x_i^n, x])^{x^{-1}} = 1.
$$

On the other hand, *G* is generated by x_i ($1 \le i \le t$) module $Z^n(G)$ and *G* is *n*-abelian. Therefore $yx^{-1} \in Z^n(G)$, which completes the proof.

The following useful corollary is a consequence of the above theorem.

Corollary 1 *Let a group G be n-abelian and nilpotent such that* $d(G/Z^n(G))$ and G_n are finite. Then $|G/Z^n(G)|$ divides $|G_n|^{d(G/Z^n(G))}$.

Proof Since $G/Z^n(G)$ is a finite nilpotent group, so

$$
G/Z^{n}(G) = P_1/Z^{n}(G) \times \cdots \times P_t/Z^{n}(G),
$$

where $P_i/Z^n(G)$ ($1 \leq i \leq t$) is a p_i -Sylow subgroup of $G/Z^n(G)$. It is immediate from Theorem 2, $|P_i/Z^n(P_i)| \leq |(P_i)_n|^{d(P_i/Z^n(P_i))}$ which means that $|P_i/Z^n(P_i)|$ divides $|(P_i)_n|^{d(P_i/Z^n(P_i))}$ $(1 \leq i \leq t)$. Notice that since G is nabelian group, hence $G_n = (P_1)_n \dots (P_t)_n$. On the other hand one can easily check that $d(P_i/Z^n(P_i)) \leq d(G/Z^n(G))$. Therefore we have

$$
|G/Z^n(G)|
$$
 divides $\prod_{i=1}^t |(P_i)_n|^{d(G/Z^n(G))} = |G_n|^{d(G/Z^n(G))}$.

An important problem which goes back to Schur's theorem is finding the relationship between $G/Z(G)$ and G' . One of the best results is given by J. Wiegold in [10]. He showed that if $|G/Z(G)| = n$, then $|G'| \leq n^{\frac{1}{2}log_2 n}$. Also, some upper bounds for the order of $G/Z(G)$ can be fined in [6,7,12].

Here we extend some results in [7], for the *n*-center and the *n*-potent subgroups and give an upper bound for the order of $G/Z^n(G)$ in terms of the order of G_n , in a group G which is *n*-abelian and *n*-capable. Note that a group *G* is *n*-capable provided that $G \cong E/Z^n(E)$, for some group *E*.

Lemma 1 *Let G be a group and H be an n-abelian subgroup of G generated by k elements* and $|G_n| = t$ *. Then* $[G : C_G(H^n)] \leq t^k$ *.*

Proof Let $\{x_1, \ldots, x_k\}$ be a set of generators of *H*. Denote by $Cl(x_i)$, the conjugacy class of x_i . Then we have

$$
[G : C_G(H^n)] = [G : \bigcap_{i=1}^k C_G(x_i^n)] \le \prod_{i=1}^k [G : C_G(x_i^n)]
$$

=
$$
\prod_{i=1}^k |Cl(x_i^n)|
$$

$$
\le \prod_{i=1}^k |G_n|^k = t^k.
$$

Lemma 2 *Let G be a group and C be a proper subgroup of G. Then*

$$
G_n = [G \setminus C, G^n].
$$

Proof It is enough to show that $[c, g^n] \in [G \backslash C, G^n]$, for all $c, g \in G$. If $c \in G \backslash C$, then the assertion holds, immediately. Let $c \in C$. Then $[cx, g^n] \in [G \setminus C, G^n]$, for some element $x \in G \setminus C$. Therefore we have

$$
[c, g^{n}] = ([x, g^{n}]^{c})^{-1} [cx, g^{n}] \in [G \setminus C, G^{n}].
$$

Lemma 3 *Let G be a group. Put* $Z = G_n \cap Z^n(G)$ *and let* U, V *be subgroups of G such that* $Z \leq U, V \leq G_n$ *. Then there exist elements y, z of G with the following properties.*

 (i) *If* $Z \neq U$ *, then* $U \cap C_G(y) \neq U$ *.* (*ii*) *If* $V \neq G_n$ *, then* $V \neq \langle V, [y, z] \rangle$ *.*

Proof (i) Suppose that $Z \neq U$. Put $C = C_G(U)$. Now, *C* is a proper subgroup of *G*. Let $y \in G \setminus C$. Then $[y, x] \neq 1$, for some element *x* in *U*. Therefore $U \cap C_G(y) \neq U$.

(ii) Let $V \neq G_n$. If $Z = U$, then we can choose the element $[y, z^n]$ in G_n such that $[y, z^n] \notin V$ and the assertion holds. Suppose that $Z \neq U$. Thus by (i) we have $C_G(U) = C$ is a proper subgroup of *G*. Then Lemma 2 implies that $G_n = [G \setminus C, G^n]$, and so we have $V \neq [G \setminus C, G^n]$. Hence there exist elements *y* ∈ *G* \setminus *C, z* ∈ *G* such that $[y, z^n]$ ∉ *V*. It follows that $V \neq \langle V, [y, z] \rangle$.

Lemma 4 *Let G be a group such that* $G/Z^n(G)$ *is n*-abelian. Also, let

$$
Z = G_n \cap Z^n(G) \quad and \quad [G_n : Z] = m.
$$

Suppose that T is a subgroup of G such that $G_n \leq T$ *and* T/Z *is n*-abelian *also the following properties hold.*

 (i) $G_n = T_n Z$. (iii) $G_n \cap Z^n(T) = Z$. (iii) $d(T/Z) = k$.

Then there exists a subgroup M of G such that

$$
[G:M] \le m^k \quad and \quad [M, G^n, G^n] = 1.
$$

Proof Put $M/Z = C_{G/Z}((T/Z)^n)$. Then we have $|(G/Z)_n| = [G_n : Z] = m$. Therefore, Lemma 1 implies that

$$
[G:M] = [G/Z : C_{G/Z}((T/Z)^n] = m^k.
$$

On the other hand $[M, T^n] \leq Z \leq Z^n(G)$. Thus $[M, T^n, G^n] = 1$ and so $[M, T^n, T^n] = 1$. Then we have $[T^n, T^n, M^n] \leq [T^n, T^n, M] = 1$, by the Three Subgroup Lemma. Since $G/Z^n(G)$ is *n*-abelian, $[T, T^n, M] = 1$ so we have $[T_n, M^n] = 1$. This implies that $[G_n, M^n] = [T_n Z, M^n] = 1$ and hence $[T^n, G^n, M^n] = 1$. On the other hand, $[M^n, T^n, G^n] = 1$. Then by the Three Subgroup Lemma we have $[M^n, G^n, T^n] = [G^n, M^n, T^n] = 1$. Since $G/Z^n(G)$ is *n*-abelian we have $[M, G^n, T^n] = 1$. Therefore $[M, G^n] \leq Z^n(T) \cap G_n = Z$ and so $[M, G^n, G^n] = 1$.

Lemma 5 Let *G* be an *n*-abelian group and $|G_n : Z^n(G) \cap G_n| = m$. Then *there exists a subgroup T as in Lemma 4 with* $k \leq 2 \log_2 m$ *.*

Proof For $1 \leq i \leq l-1$, we define the elements y_{i+1}, z_{i+1} recursively by applying Lemma 3 for $V_i = \langle Z, [y_1, z_1]^n, \dots, [y_i, z_i]^n \rangle$ and $U_i = C_{G_n}(V_i^n)$. Now we have

$$
Z = V_0 < V_1 < V_2 < \dots < V_l = G_n
$$

and

$$
G_n = U_0 > U_1 > U_1 > \cdots > U_l = Z,
$$

where *l* is the smallest integer such that $V_l = G_n$ and $U_l = Z$. Since $m = [G_n : Z] \ge 2^l$, we have $l \le \log_2 m$. Put $T = \langle Z, y_1, z_1, \ldots, y_l, z_l \rangle$. Then it is easy to check that *T* has the required properties.

We have now accumulated all the information necessary to prove the following result.

Theorem 3 Let *G* be an *n*-abelian group such that $[G_n : Z^n(G) \cap G_n] = m$. *Then*

$$
[G:Z_2^n(G)] \le m^{2\log_2 m}.
$$

Proof By Lemma 4 and Lemma 5 we can conclude that there exists a subgroup *M* of *G* such that $[M, G^n, G^n] = 1$ and $[G : M] \leq m^k$ with $k \leq 2 \log_2 m$. Hence the assertion follows.

As a corollary, we easily obtain the following result.

Corollary 2 Let $H = G/Z^n(G)$ in which G is an *n*-abelian group and

$$
|H_n|=m.
$$

Then $[H: Z^n(H)] \leq m^{2 \log_2 m}$.

Proof Owing to this $H = G/Z^n(G)$, we have

$$
|H_n| = \left| \frac{G_n Z^n(G)}{Z^n(G)} \right| = \left| \frac{G_n}{G_n \cap Z^n(G)} \right| = m.
$$

Notice that since *G* is *n*-abelian group, hence by Theorem 3 we have

$$
[H:Z^{n}(H)] = [G:Z_{2}^{n}(G)] \leq m^{2log_{2}m}.
$$

References

- 1. T. H. Fay, G. L. Waals, Some remarks on n-potent and n-abelian groups, J. Indian. Math. Soc., 47, 217–222 (1983).
- 2. P. Hall, Finite-by-nilpotent groups, Proc. Camb. Phil. Soc., 52, 611–616 (1956).
- 3. F. W. Levi, Notes on group theory I, J. Indian. Math. Soc., 8, 1–7 (1944).
- 4. F. W. Levi, Notes on group theory VII, J. Indian. Math. Soc., 9, 37–42 (1945).
- 5. B. H. Neumann, Groups with finite classes of conjugate elements. Proc. London. Math. Soc., 3, 178–187 (1951).
- 6. P. Niroomand, The converse of Schur's theorem, Arch. Math., 94, 401–403 (2010).
- 7. K. Podoski, B. Szegedy, Bounds for the index of the centre in capable groups, Proc. Amer. Math. Soc., 133, 3441–3445 (2005).
- 8. I. Schur, Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, Für. Math. J., 127, 20–50 (1904).
- 9. B. Sury, A generalization of a converse of Schur's theorem, Arch. Math., 95, 317–318 (2010).
- 10. J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z., 89, 345–347 (1965).
- 11. M. K. Yadav, Converse of Schur's theorem -A statement, arXiv:1212.2710v2 [math.GR], (2012).
- 12. M. K. Yadav, Converse of Schur's theorem and arguments of B.H. Neumann, arXiv:1011.2083v3 [math.GR], (2015).