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Abstract In this paper, the stochastic weakly singular integro-differential
equation is discussed. The shifted Legendre Tau method is introduced for find-
ing the unknown function. For this purpose, shifted Legendre polynomials and
their properties are introduced. The proposed method is based on expanding
the approximate solution as the elements of shifted Legendre polynomials. We
reduce the problem to set of algebraic equations by using operational matri-
ces. Also, the convergence analysis of shifted Legendre polynomials and error
estimation for this method have been discussed. Finally, several numerical
examples are given to demonstrate the high accuracy of the method.
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1 Introduction

Stochastic functional equations have been an interesting research area in differ-
ent fields, e.g. geophysics, biology, chemistry, epidemiology, microelectronic,
finance, and medical. Modeling such phenomena requires the use of various
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stochastic differential equations [13,14,4,5,21,9], stochastic integral equations
or stochastic integro-differential equations [20,26,10,27,24].

Since in many cases it is difficult to derive an explicit form of the solution
to these class of equations, numerical approximation becomes a practical way
to face this difficulty. Many published papers have been devoted to describe
numerical solution of stochastic differential and integral equations [8,1,18,11,
12,6].

The Tau method that is a way to solve linear and nonlinear functional
equations is one of the important types of the spectral method that express
the solution of the problem as a linear combination of orthogonal or non-
orthogonal basis functions. The main advantage of using orthogonal basis is
that the problem under consideration is reduced into solving a system of linear
or nonlinear algebraic equation [23]. Recently, different orthogonal basis func-
tions such as block pulse functions, Fourier series, Walsh functions, orthogonal
polynomials, and wavelets, were utilized to approximate solution of functional
equations [3,16,17,2]. Shifted Legendre polynomials have been widely applied
for solving functional equations [15,25].
In this paper the shifted Legendre polynomials will be used for solving the
stochastic weakly singular integro-differential equation as follows

ut(x, t) + a ux(x, t)− (b+ β
dB

dt
)uxx(x, t) =

∫ t

0

K(t− s)u(x, s)ds+ f(x, t),

(1)

where, a, b, and β are considered to be real constants. The integral term is
called memory term, the kernel is a weakly singular kernel

K(t− s) = (t− s)−α, 0 < α < 1,

subject to the initial condition

u(x, 0) = g0(x), 0 ≤ x ≤ l, (2)

and the boundary conditions

u(0, t) = f0(t), u(l, t) = f1(t), t ≥ 0, (3)

where, g0(x), f0(t), f1(t), and f(x, t) are the stochastic processes defined on
the probability space (Ω,F ,P) and u(x, t) is an unknown stochastic function
to be determined and B(t) is a one-dimensional Brownian motion process.
A real-valued stochastic process B(t), t ∈ [0, T ] is called Brownian motion, if
it satisfies the following properties [8,19]

(i) B(0) = 0 (with the probability 1).
(ii) For 0 ≤ s < t ≤ T the random variable given by the increment B(t) −

B(s) is normally distributed with mean zero and variance t− s; equiva-
lently, B(t) − B(s) ∼

√
t− sN(0, 1), where N(0, 1) denotes a normally

distributed random variable with zero mean and unit variance.
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(iii) For 0 ≤ s < t ≤ u < v ≤ T the increments B(t)−B(s) and B(v)−B(u)
are independent.

(iv) The function t → B(t) is continuous functions of t.

The paper is organized as follows. In the next section, the shifted Legendre
polynomials and their properties are described. In section 3, we construct the
operational matrices of Legendre polynomials. In section 4, by using shifted
Legendre Tau method we construct and develop an algorithm for the solution
of the stochastic weakly singular integro-differential equation with boundary
conditions. We obtain the error estimatoin for this method in section 5. Some
numerical examples are solved using the method of this article in section 6.
Finally, a conclusion is given in section 7.

2 Properties of shifted Legendre polynomials

It is well-known that the classical Legendre polynomials are defined on the
interval [−1, 1] and can be determined with the aid of the following recurrence
formulae

L0(z) = 1, L1(z) = z,

Li+1(z) =
2i+ 1

i+ 1
z Li(z)−

i

i+ 1
Li−1(z), i = 1, 2, . . . .

Assume z ∈ [za, zb] and let z∼ = 2z−za−zb
zb−za

. Then {Li(z
∼)} are called the

shifted Legendre polynomials on [za, zb]. In this paper, we mainly consider the
shifted Legendre polynomials defined on [0, l] .

For x ∈ [0, l], let Ll,i(x) = Li(
2x−l

l ), i = 0, 1, 2, . . . . Then the shifted
Legendre polynomials {Ll,i(x)} are defined by

Ll,0(x) = 1,

Ll,1(x) =
2x− l

l
,

Ll,i+1(x) =
(2i+ 1)(2x− l)

(i+ 1)l
Ll,i(x)−

i

i+ 1
Ll,i−1(x), i = 1, 2, . . . .

The set of Ll,i(x) is a complete L2(0, l)-orthogonal system, namely

∫ l

0

Ll,i(x)Ll,j(x)dx =


l

2i+ 1
, i = j,

0, i ̸= j.

So, we define Πm = span {Ll,0, Ll,1, . . . , Ll,m}. Thus, for any y(x) ∈ L2(0, l),
we write

y(x) =

∞∑
j=0

cjLl,j(x),
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where the coefficients cj are given by

cj =
2j + 1

l

∫ l

0

y(x)Ll,j(x)dx, j = 0, 1, 2, . . . . (4)

In practice, only the first (m + 1)-terms of shifted Legendre polynomials are
considered. Hence we can write

ym(x) ≃
m∑
j=0

cjLl,j(x),

which alternatively may be written in the matrix form

ym(x) ≃ CTΦl,m(x), CT = [c0, c1, . . . , cm] ,

with

Φl,m(x) = [Ll,0, Ll,1, . . . , Ll,m]
T
= V Xx, (5)

where V is the coefficient matrix of shifted Legendre polynomials as follows

V =


1 0 0 0 . . .
−1 2 0 0 . . .
1 −6 6 0 . . .
−1 12 −30 20 . . .
...

...
...

... . . .

 ,

and Xx =
[
1, x, x2, . . . , xm

]T , (.)T stands for the transpose.
Similarly a function of two independent variables u(x, t) which is infinitely

differentiable for 0 ≤ x ≤ l and 0 ≤ t ≤ τ may be expressed in terms of the
double shifted Legendre polynomials as

un,m(x, t) =

∞∑
i=0

∞∑
j=0

ai,jLl,i(x)Lτ,j(t). (6)

If the infinite series in (6) is truncated, then it can be written as

un,m(x, t) ≃
n∑

i=0

m∑
j=0

ai,jLl,i(x)Lτ,j(t) = ΦT
l,n(x)AΦτ,m(t), (7)

where the shifted Legendre vectors Φτ,n(x) and Φl,m(x) are defined similarly
to (5). Also the shifted Legendre coefficient matrix A is given by

A =


a00 a01 . . . a0m
a10 a11 . . . a1m
...

... . . .
...

an0 an1 . . . anm

 ,
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where

ai,j =

(
2i+ 1

τ

)(
2j + 1

l

)∫ τ

0

∫ l

0

u(x, t)Lτ,i(t)Ll,j(x)dxdt. (8)

Now, we present the shifted Legendre expansion of a function u(x, t) with
bounded mixed fourth partial derivative, converges uniformly to u(x, t).
Theorem 1 (convergence theorem) If a continuous function u(x, t), defined
on [0, l]× [0, τ ], has bounded mixed fourth partial derivative ∂4u(x,t)

∂x2 ∂t2 , then the
shifted Legendre expansion of the function as

∞∑
i=0

∞∑
j=0

ai,jLl,i(x)Lτ,j(t),

converges uniformly to the u(x, t).

Proof Let u(x, t) be a function defined on [0, l]× [0, τ ] such that
∣∣∣∂4u(x,t)
∂x2 ∂t2

∣∣∣ ≤ α,
where α is a positive constant and

ai,j =

(
2i+ 1

τ

)(
2j + 1

l

)∫ τ

0

∫ l

0

u(x, t)Lτ,i(t)Ll,j(x)dxdt,

for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. By partial integration and using follow-
ing equation

L′
l,i+1 − L′

l,i−1 =
2

l
(2i+ 1)Ll,i(x),

we have

ai,j =
2j + 1

2τ

∫ τ

0
u(x, t)

(
Ll,i+1(x)− Ll,i−1(x)

)∣∣∣l
0
Lτ,j(t)dt

−
2j + 1

2τ

∫ τ

0

∫ l

0

∂u(x, t)

∂x

(
Ll,i+1(x)− Ll,i−1(x)

)
Lτ,j(t)dxdt

= −
2j + 1

2τ

∫ τ

0

∫ l

0

∂u(x, t)

∂x

(
Ll,i+1(x)− Ll,i−1(x)

)
Lτ,j(t)dxdt

= −
(2j + 1)l

4τ

∫ τ

0

∂u(x, t)

∂x

(Ll,i+2(x)− Ll,i(x)

2i+ 3
−

Ll,i(x)− Ll,i−2(x)

2i− 1

)∣∣∣l
0
Lτ,j(t)dt

+
(2j + 1)l

4τ

∫ τ

0

∫ l

0

∂2u(x, t)

∂x2

(Ll,i+2(x)− Ll,i(x)

2i+ 3
−

Ll,i(x)− Ll,i−2(x)

2i− 1

)
Lτ,j(t)dxdt

=
(2j + 1)l

4τ

∫ τ

0

∫ l

0

∂2u(x, t)

∂x2

(Ll,i+2(x)− Ll,i(x)

2i+ 3
−

Ll,i(x)− Ll,i−2(x)

2i− 1

)
Lτ,j(t)dxdt.

Now, let Ql,i(x) = (2i − 1)Ll,i+2 − 2(2i + 1)Ll,i(x) + (2i + 3)Ll,i−2(x) then
we have

ai,j =
(2j + 1)l

4τ(2i+ 3)(2i− 1)

∫ τ

0

∫ l

0

∂2u(x, t)

∂x2
Ql,i(x)Lτ,j(t)dxdt

=
lτ

16(2i+ 3)(2i− 1)(2j + 3)(2j − 1)

∫ l

0

∫ τ

0

∂4u(x, t)

∂t2∂x2
Ql,i(x)Qτ,j(t)dtdx.
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Thus

|ai,j | ≤
lτ

16(2i+ 3)(2i− 1)(2j + 3)(2j − 1)

∫ l

0

∫ τ

0

∣∣∣∂4u(x, t)

∂t2∂x2

∣∣∣|Ql,i(x)||Qτ,j(t)|dtdx

≤ lτα

16(2i+ 3)(2i− 1)(2j + 3)(2j − 1)

∫ l

0

|Ql,i(x)|dx
∫ τ

0

|Qτ,j(t)|dt.

Also we have(∫ l

0
|Qi(x)|dx

)2
=

(∫ l

0
|(2i− 1)Ll,i+2(x)− 2(2i+ 1)Ll,i(x) + (2i+ 3)Ll,i−2(x)|dx

)2

≤
(∫ l

0
(1)2dx

)(∫ l

0
(2i− 1)2Ll,i+2(x)

2 + (4i+ 2)2Ll,i(x)
2 + (2i+ 3)2Ll,i−2(x)

2
)
dx

≤ l
( (2i− 1)2l

2i+ 5
+

(4i+ 2)2l

2i+ 1
+

(2i+ 3)2l

2i− 3

)
≤

6l2(2i+ 3)2

2i− 3
.

Then we get ∫ l

0

|Qi(x)|dx ≤
√
6l(2i+ 3)√
2i− 3

.

Thus we obtain

|ai,j | ≤
lτα

16(2i+ 3)(2i− 1)(2j + 3)(2j − 1)
×

√
6l(2i+ 3)√
2i− 3

×
√
6τ(2j + 3)√
2j − 3

=
3l2τ2α

8
√
(2i− 3)3

√
(2j − 3)3

.

Consequently,
∞∑
i=0

∞∑
j=0

ai,j is absolute convergent and thus the expansion of the

function converges uniformly.

Theorem 2 Let u(x, t) be a continuous function defined on [0, l]× [0, τ ] with
bounded mixed fourth partial derivative, say

∣∣∣∂4u(x,t)
∂x2 ∂t2

∣∣∣ ≤ α, then we have the
following accuracy estimation

εn ≤ 3αl2τ2

8

√√√√ ∞∑
i=n+1

1

(2i− 3)4

∞∑
j=m+1

1

(2j − 3)4
,

where

εn =
(∫ τ

0

∫ l

0

(u(x, t)−
n∑

i=0

m∑
j=0

ai,jLl,i(x)Lτ,j(t))
2dxdt

)1/2
. (9)

Also in the case of n = m the error bound is εn ≤ 3αl2τ2

8

∞∑
i=n+1

1
(2i−3)4 .
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Proof

ε2n =

∫ τ

0

∫ l

0

(
u(x, t)−

n∑
i=0

m∑
j=0

ai,jLl,i(x)Lτ,j(t)
)2

dxdt

=

∫ τ

0

∫ l

0

( ∞∑
i=0

∞∑
j=0

ai,jLl,i(x)Lτ,j(t)−
n∑

i=0

m∑
j=0

ai,jLl,i(x)Lτ,j(t)
)2

dxdt

=

∫ τ

0

∫ l

0

( ∞∑
i=n+1

∞∑
j=m+1

ai,jLl,i(x)Lτ,j(t)
)2

dxdt

=

∫ τ

0

∫ l

0

∞∑
i=n+1

∞∑
j=m+1

a2i,jL
2
l,i(x)L

2
τ,j(t)dxdt

=

∞∑
i=n+1

∞∑
j=m+1

a2i,j

∫ l

0

L2
l,i(x)dx

∫ τ

0

L2
τ,j(t)dt

=

∞∑
i=n+1

∞∑
j=m+1

a2i,j
lτ

(2i+ 1)(2j + 1)

≤
∞∑

i=n+1

∞∑
j=m+1

9α2l4τ4

64(2i− 3)3(2j − 3)3(2i+ 1)(2j + 1)

≤ 9α2l4τ4

64

∞∑
i=n+1

∞∑
j=m+1

1

(2i− 3)4(2j − 3)4

=
9α2l4τ4

64

∞∑
i=n+1

1

(2i− 3)4

∞∑
j=m+1

1

(2j − 3)4
.

Then we have

εn ≤ 3αl2τ2

8

√√√√ ∞∑
i=n+1

1

(2i− 3)4

∞∑
j=m+1

1

(2j − 3)4
, (10)

which in the case of n = m, εn ≤ 3αl2τ2

8

∞∑
i=n+1

1
(2i−3)4 .

3 Operational matrices of shifted Legendre polynomials

In this section, we make the operational matrix of stochastic weakly singular
integro-differential equation of the shifted Legendre vector.
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3.1 Matrix representation of partial differential part

The derivative of the vector Φl,m(x) can be expressed by

d

dx
Φl,m(x) = DΦl,m(x), (11)

where D is the (m+ 1)× (m+ 1) operational matrix of derivative given by

D = (di,j) =


2(2j + 1)

l
, for j = i− k, k =

{
1, 3, . . . ,m, if m odd,
1, 3, . . . ,m− 1, if m even.

0, otherwise.

For example, for odd m, we have

D =
2

l



0 0 0 0 . . . 0 0 0
1 0 0 0 . . . 0 0 0
0 3 0 0 . . . 0 0 0
1 0 5 0 . . . 0 0 0
...

...
...

...
...

...
...

...
0 3 0 7 . . . 2m− 3 0 0
1 0 5 0 . . . 0 2m− 1 0


.

Theorem 3 Let Φl,m(x) be the shifted Legendre vector and

un,m(x, t) = ΦT
l,n(x)AΦτ,m(t),

then

∂r

∂xr un,m(x, t) = ΦT
l,n(x)(D

T )rAΦτ,m(t). (12)

Proof From equations (7) and (11) we have

∂r

∂xr un,m(x, t) =
∂r−1

∂xr−1

(
ΦT
l,n(x)D

TAΦτ,m(t)
)

=
∂r−2

∂xr−2

( ∂

∂x
ΦT
l,n(x)D

TAΦτ,m(t)
)

=
∂r−2

∂xr−2

(
ΦT
l,n(x)(D

T )2AΦτ,m(t)
)

...

=
∂

∂x

(
ΦT
l,n(x)(D

T )r−1AΦτ,m(t)
)

= ΦT
l,n(x)(D

T )rAΦτ,m(t).
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Corollary 1 Let Φl,m(x) be the shifted Legendre vector and

un,m(x, t) = ΦT
l,n(x)AΦτ,m(t),

then
∂r

∂tr
un,m(x, t) = ΦT

l,n(x)ADrΦτ,m(t). (13)

Proof From equations (7) and (11) we have

∂r

∂tr
un,m(x, t) =

∂r−1

∂tr−1

(
ΦT
l,n(x)ADΦτ,m(t)

)
=

∂r−2

∂tr−2

(
ΦT
l,n(x)AD2Φτ,m(t)

)
...

=
∂

∂t

(
ΦT
l,n(x)ADr−1Φτ,m(t)

)
= ΦT

l,n(x)ADrΦτ,m(t).

Lemma 1 Let ym(t) = CTV Xt be a polynomial where

CT = [c0, c1, . . . , cm, 0, . . . ], Xt = [1, t, t2, . . . ]T ,

then we have
dk

dtk
ym(t) = CTV ηkXt,

tkym(t) = CTV µkXt,

k = 0, 1, 2, . . . ,

where

µ =


0 1 0 0 . . .
0 1 0
0 1

. . .

 and η =


0 . . .
1 0
0 2 0
0 0 3

. . .

 .

Proof see [22].

Lemma 2 Let Φl,m(x) be the shifted Legendre vector and

un,m(x, t) ≃ ΦT
l,n(x)AΦτ,m(t),

then

ts
∂r

∂xr un,m(x, t) ≃ ΦT
l,n(x)(D

T )rAµsΦτ,m(t), (14)

where µs = V µsV −1 and µ is given in Lemma 1.



278 Ruhangiz Azimi et al.

Proof From Theorem (3), Lemma (1), and equations (7) and (11) we have

ts
∂r

∂xr un,m(x, t) ≃ ts
(
ΦT
l,n(x)(D

T )rAΦτ,m(t)
)

≃ ΦT
l,n(x)(D

T )rAtsΦτ,m(t)

≃ ΦT
l,n(x)(D

T )rAtsV Xt

≃ ΦT
l,n(x)(D

T )rAV tsXt

≃ ΦT
l,n(x)(D

T )rAV µsXt

≃ ΦT
l,n(x)(D

T )rAV µsV −1V Xt

≃ ΦT
l,n(x)(D

T )rAµsΦτ,m(t).

3.2 Matrix representation of integral part

Lemma 3 If Γ is the Gamma function, then we have∫ t

0

sm

(t− s)α
ds =

Γ (1− α)Γ (m+ 1)

Γ (m− α+ 2)
tm−α+1, m = 0, 1, 2, . . . .

Proof With integration by parts and using Γ (α) = (α − 1)! it can easily be
obtained.

Theorem 4 Let Φl,m(x) = V Xx be the shifted Legendre vector then∫ t

0

u(x, s)

(t− s)α
ds ≃ ΦT

l,n(x)AV UKΦτ,m(t), (15)

where U is a diagonal matrix with elements

Ui,i =
Γ (1− α)Γ (i+ 1)

Γ (i− α+ 2)
, i = 0, 1, 2, . . . ,m,

and
K =

[
B0, B1, . . . , Bm

]T
, Bj =

[
tj,0, tj,1, . . . , tj,m],

which tj,i, i, j = 0, 1, . . . ,m are the coefficients of Lτ,i, i = 0, 1, . . . ,m in
expansion of tj−α+1.
Proof∫ t

0

u(x, s)

(t− s)α
ds ≃

∫ t

0

ΦT
l,n(x)AΦτ,m(s)

(t− s)α
ds

= ΦT
l,n(x)A

∫ t

0

[Lτ,0(s), Lτ,1(s), . . . , Lτ,m(s)]T

(t− s)α
ds

= ΦT
l,n(x)A

∫ t

0

V [1, s, . . . , sm]T

(t− s)α
ds

= ΦT
l,n(x)AV

[∫ t

0

1

(t− s)α
ds,

∫ t

0

s

(t− s)α
ds, . . . ,

∫ t

0

sm

(t− s)α
ds

]T
,
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by using lemma (3) we can write∫ t

0

u(x, s)

(t− s)α
ds ≃ ΦT

l,n(x)AV

[
Γ (1− α)Γ (1)

Γ (−α+ 2)
t−α+1,

Γ (1− α)Γ (2)

Γ (−α+ 3)
t−α+2,

. . . ,
Γ (1− α)Γ (m+ 1)

Γ (m− α+ 2)
tm−α+1

]T
= ΦT

l,n(x)AV UΠ, (16)
where

Π =
[
t−α+1, t−α+2, . . . , tm−α+1

]T
.

By approximating tj−α+1, j = 0, 1, . . . ,m, we get

tj−α+1 ≃
m∑
i=0

tj,iLτ,i(t) = BjΦτ,m(t),

Bj = [tj,0, tj,1, . . . , tj,m],

we obtain
Π = [B0Φτ,m(t), B1Φτ,m(t), . . . , BmΦτ,m(t)]T = KΦτ,m(t),

K = [B0, B1, . . . , Bm]T . (17)
By substituting (17) into (16) we obtain∫ t

0

u(x, s)

(t− s)α
ds ≃ ΦT

l,n(x)AV UKΦτ,m(t). (18)

4 Description of the proposed method

In this section, a new algorithm for solving stochastic weakly singular equations
is proposed based on shifted Legendre polynomials.
Consider the stochastic weakly singular integro-differential equation with a
weakly singular kernel (1). Let us start our algorithm to solve (1)-(3).

Now, we approximate the functions f(x, t), g0(x), f0(t), and f1(t) by the
shifted Legendre polynomials as

fn,m(x, t) ≃
n∑

i=0

m∑
j=0

fi,jLl,i(x)Lτ,j(t) = ΦT
l,n(x)FΦτ,m(t),

g0(x) ≃
n∑

i=0

giLl,i(x) = ΦT
l,n(x)G,

f0(t) ≃
m∑
i=0

piLl,i(t) = PΦτ,m(t),

f1(t) ≃
m∑
i=0

riLl,i(t) = RΦτ,m(t), (19)
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where F , G, P , and R are known matrices which can be written as

P = [p0, p1, . . . , pm] , R = [r0, r1, . . . , rm] , G = [g0, g1, . . . , gn]
T
,

F =


f00 f01 . . . f0m
f10 f11 . . . f1m
...

... . . .
...

fn0 fn1 . . . fnm

 ,

where pj , rj , and gj are given as in (4) but fij are given as in (8).
Now, we consider discretized Brownian motion, where B(t) is determined

at N1 + 1 distinct values and utilized an interpolation to construct B(t). Let
ti = ih, i = 0, 1, 2, . . . , N1, h = T

N1
and Bi denote B(ti). Condition (i) in

introduction says that B0 = 0 with probability 1, and condition (ii) and (iii)
tell us that

Bi = Bi−1 + dBi, i = 1, 2, . . . , N1,

where each dBi is an independent random variable of the form
√
hN(0, 1).

For approximation dB
dt we perform the following steps

1) Let B0 = 0.
2) Let Bi = Bi−1 +Random[Normal Distribution[0,

√
∆t]]. That’s mean each

Bi will be obtained by the sum of the previous value with a random amount
in the interval [0, 1] which distributed with mean 0 and variance

√
∆t.

3) Let data = {(0, 0), (∆t,B1), . . . , (N1∆t,BN1
)}.

4) Now, we obtain a polynomial interpolating from these points which is an
approximation for the B(t) function. B(t) is not differentiable but we ap-
proximate it as a polynomial and show it by B̃(t).

5) Let dB̃
dt =

J∑
i=0

pit
i then we have

dB̃

dt
uxx(x, t) =

J∑
i=0

pit
i
(
ΦT
l,n(x)(D

T )2AΦτ,m(t)
)

= ΦT
l,n(x)

( J∑
i=0

pi(D
T )2Aµi

)
Φτ,m(t). (20)

The Mathematica program for constructing Brownian motion is as follows

∆t =
1

N1
;

B[0] = 0;

B[i−] := B[i− 1] + Random[Normal Distribution[0,
√
∆t]];

data = Table[{i∆t,B[i]} , {i, 0, N1}];
B[t−] := Interpolating Polynomial[data, t];
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Now, using (12), (13), (15), (19), (20), and substituting in equation (1), it is
easy to obtain that

ΦT
l,n(x)AV UkΦτ,m(t) + ΦT

l,n(x)FΦτ,m(t) =ΦT
l,n(x)ADΦτ,m(t)

+ aΦT
l,n(x)D

TAΦτ,m(t)

− bΦT
l,n(x)(D

T )2AΦτ,m(t)

− βΦT
l,n(x)∆Φτ,m(t),

where ∆ =
J∑

i=0

pi(D
T )2Aµi. Hence the residual Rn,m(x, t) for (1) can be writ-

ten as

Rn,m(x, t) = ΦT
l,n(x)

[
AD + aDTA− b(DT )2A− β∆−AV Uk − F

]
Φτ,m(t)

= ΦT
l,n(x)HΦτ,m(t),

where

H = A (D − V Uk) +
(
aDT − b(DT )2

)
A− β∆− F.

For finding a typical matrix formulation, similar to the typical tau method, we
eliminate one last column and two last rows of the matrix H, then we generate
(n− 1)×m algebraic equations by using the following algebraic equations

Hij = 0, i = 0, 1, . . . , n− 2, j = 0, 1, . . . ,m− 1,

namely ∫ l

0

∫ τ

0

Rn,m(x, t)Lτ,i(t)Ll,j(x)dtdx = 0. (21)

Also, by substituting equations (7) and (19) in equations (2) and (3) we have

ΦT
l,n(x)AΦτ,m(0) = ΦT

l,n(x)G,

ΦT
l,n(0)AΦτ,m(t) = PΦT

τ,m(t),

ΦT
l,n(1)AΦτ,m(t) = RΦT

τ,m(t),

which implies that

AΦτ,m(0) = G, (22)
ΦT
l,n(0)A = P, (23)

ΦT
l,n(1)A = R. (24)

We can find n + 1 linear algebraic equations from (22), m linear algebraic
equations by choosing m equations from (23), similarly m equations from (24)
and finally (n−1)×m equations from (21). Since the number of the unknown
coefficients aij is equal to (n+1)× (m+1) we generate a system of (n+1)×
(m+ 1) equations. Consequently un,m(x, t) given in (7) can be calculated. In
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our implementation, we have solved this system using the Mathematica Solve
function.
In all the considered examples in section 6, this function has succeeded to
obtain an accurate approximate solution of the system. We summarize the
algorithm of the method as follows.

Algorithm of the method

Step 1. Choose the set of shifted Legendre polynomials {Ll,i(x)}ni=0, {Lτ,j(t)}mj=0,

and let the approximate solution un,m(x, t) =
n∑

i=0

m∑
j=0

ai,jLl,i(x)Lτ,j(t).

Step 2. Find the coefficient matrix V respect to Xx =
[
1, x, x2, . . . , xm

]T
,

such that Φl,m(x) = V Xx.
Step 3. Using equations (13), (12), (14) (15), and (19) convert problem (1)

and boundary conditions (2) and (3) to an algebraic system.
Step 4. Linearize the supplementary conditions in the same way as mentioned

in Step 3.
Step 5. We can find n+1 linear algebraic equations from (22), 2m equations

from (23) and (24), and m(n − 1) equations from (21) in the obtained
system.

Step 6. Solve the system obtained from Steps 4 and 5 to find the unknown
coefficients ai,j , i = 0, 1, . . . , n, and j = 0, 1, . . . ,m.

5 Error analysis for Tau method

In this section, we state the error analysis for the solution of stochastic weakly
singular integro-differential equations (2) and (3). Let

en,m(x, t) = u(x, t)− un,m(x, t). (25)

If um,n(x, t) is a good approximation for u(x, t) then for a given ε > 0, Max
|en,m(x, t)| < ε. To this end, we are looking for an approximation for en,m(x, t)
by using the same method we used for approximation of u(x, t). Firstly, we
obtain from equation (25) that

u(x, t) = en,m(x, t) + un,m(x, t). (26)

Therefore by using equations (26) and (1) we have,

(en,m)t(x, t) + a(en,m)x(x, t)− (b+ β
dB

dt
)(en,m)xx(x, t)

=

∫ t

0

k(t− s)en,m(x, s)ds+Hn,m(x, t),
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where, Hn,m(x, t) is a perturbation term associated with un,m(x, t) and can
be obtained with following formulae

Hn,m(x, t) =

∫ t

0

k(t− s)un,m(x, s)ds+ f(x, t)− (un,m)t(x, t)− a(un,m)x(x, t)

+ (b+ β
dB

dt
)(un,m)xx(x, t),

which dB
dt is the same approximation polynomial that is mentioned in previous

section, and the boundary conditions

en,m(x, 0) = u(x, 0)− un,m(x, 0)

= g0(x)− un,m(x, 0),

en,m(0, t) = u(0, t)− un,m(0, t)

= f0(t)− un,m(0, t),

en,m(l, t) = u(l, t)− un,m(l, t)

= f1(t)− un,m(l, t).

We proceed to find an approximation (en,m)n1,m1
(x, t) to the en,m(x, t) in the

same as we did for the solutions of equations (1)-(3) ((n1,m1) denotes the Tau
degree of en,m(x, t)).

6 Numerical results and comparisons

In this section, we present three numerical examples to demonstrate the ac-
curacy of the proposed method. The results show that this method, by select-
ing afew number of shifted Legendre polynomials is accurate. Let tn = nk,
n = 0, 1, 2, . . . ,M , k = T

M , xi = ih, i = 0, 1, 2, . . . , N , and h = l
N where M ,

N respectively denotes the final time level tM and the final space level xN ,
N + 1 is the number of nodes. In order to check the accuracy of the proposed
method, the maximum absolute errors and Mean squared errors between the
exact solution u(x, t) and the approximate solution un,m(x, t) are given by the
following definitions.

Maximum norm error: ∥eM∥∞ = max
0≤i≤N

|u(xi, tM )− un,m(xi, tM )|.

Mean squared error: ∥eM∥2 =
1

N

(
N∑
i=0

| u(xi, tM )− un,m(xi, tM ) |2
)1/2

.

Example 1 As a first application, we offer the following stochastic weakly sin-
gular integro-differential equation

ut(x, t)+aux(x, t)−(b+β
dB

dt
)uxx(x, t) =

∫ t

0

u(x, s)
3
√
t− s

ds+f(x, t), x ∈ [0, 1], t > 0,
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with a = 0.005, b = 0.5, and the following initial condition

u(x, 0) = 1− cos 2πx+ 2π2x(1− x), 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

f(x, t) =2(1 + t)(1 + 2π2(1− x)x− cos 2πx)

+
3

40
t2/3(20 + 3t(8 + 3t))(−1 + 2π2(−1 + x)x+ cos 2πx)

− 0.5(1 + t)2(−4π2 + 4π2 cos 2πx)

+ 0.005(1 + t)2(2π2(1− x)− 2π2x+ 2π sin 2πx).

The deterministic solution in kind of β = 0 (in the absence of the noise term)
is

u(x, t) = (t+ 1)2(1− cos 2πx+ 2π2x(1− x)).

The maximum absolute errors and Mean squared errors between the determin-
istic solution u(x, t) and the approximate solution un,m(x, t) for β = 0 with
various choices of (n = m) and two different grid sizes N = 100, M = 50, and
N = 50, M = 100, are presented in Table 1. Also this problem is solved by
proposed method for N1 = 3, m = n = 7. The behaviour of the approxima-
tion solutions together with contour plots for different values of β are shown
in Figures 1-3. The absolute errors of the approximate solution for β = 0 at
some different points (xi, tj) ∈ [0, 1]× [0, 1] are shown in Table 4.

Table 1 ∥eM∥∞ is the Maximum norm error and ∥eM∥2 is Mean squared error and β = 0

M = 50 N = 100 M = 100 N = 50
n = m ∥eM∥∞ ∥eM∥2 ∥eM∥∞ ∥eM∥2

7 2.32× 10−2 1.31× 10−3 2.33× 10−2 1.85× 10−3

9 6.34× 10−4 3.56× 10−5 6.34× 10−4 5.04× 10−5

11 1.58× 10−6 8.65× 10−8 1.19× 10−5 9.41× 10−7

13 3.18× 10−7 1.32× 10−8 3.18× 10−7 1.87× 10−8

15 2.12× 10−7 1.27× 10−8 2.07× 10−7 1.79× 10−8

Example 2 Consider the following stochastic weakly singular integro-differential
equation

ut(x, t)+aux(x, t)−(b+β
dB

dt
)uxx(x, t) =

∫ t

0

u(x, s)
4
√
t− s

ds+f(x, t), x ∈ [0, 1] , t > 0,

with a = 0.5 and b = 0.001, the following initial condition

u(x, 0) = 2 sin2 πx, 0 ≤ x ≤ 1,
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(a) approximation solution (b) contour plot

Fig. 1 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 1 for β = 0.0001

(a) approximation solution (b) contour plot

Fig. 2 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 1 for β = 0.001.

boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

and

f(x, t) =6.28319(1 + t+ t2) cos πx sin πx+ 2(1 + 2t) sin2 πx

− 8

231
t3/4(77 + 4t(11 + 8t)) sin πx2

− 0.002(1 + t+ t2)(2π)2 cos πx2 − 2(π)2 sin2 πx.
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(a) approximation solution (b) contour plot

Fig. 3 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 1 for β = 0.01

The deterministic solution in kind of β = 0 (in the absence of the noise term)
is

u(x, t) = 2(t2 + t+ 1) sin2 πx.

In this example, we implement our method to solve stochastic weakly singular
integro-differential equation. The results of this example for β = 0 with various
choices of (n = m) are shown in Table 2. Also, the graph of the maximum
absolute error function is shown in Fig 4. This problem is solved by proposed
method for N1 = 3 and m = n = 7. The behaviour of the approximation
solutions together with contour plots for different values of β are shown in
Figures 5 and 6. The absolute errors of the approximate solution for β = 0 at
some different points (xi, tj) ∈ [0, 1]× [0, 1] are shown in Table 4.

Table 2 Absolute error(|u(x, 0)− un,m(x, 0)|) for different choices of n,m and β = 0.

x m = n = 9 m = n = 11 m = n = 13
0 1.12× 10−4 2.39× 10−6 −1.87× 10−8

0.1 2.11× 10−5 6.90× 10−7 4.66× 10−10

0.2 5.20× 10−6 5.68× 10−7 −1.31× 10−9

0.3 2.12× 10−5 5.88× 10−7 2.96× 10−9

0.4 2.77× 10−5 4.17× 10−7 4.14× 10−9

0.5 1.18× 10−14 4.25× 10−14 −9.43× 10−13

0.6 2.77× 10−5 4.17× 10−7 −1.07× 10−9

0.7 2.12× 10−5 5.88× 10−7 −7.89× 10−9

0.8 5.20× 10−6 5.68× 10−7 −1.79× 10−9

0.9 2.11× 10−5 6.90× 10−7 −1.5× 10−10

1 1.12× 10−4 2.39× 10−6 −5.45× 10−8
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Fig. 4 Error function (|u(x, t) − un,m(x, t)|) for the Example 2, when m = n = 11 and
β = 0.

(a) approximation solution (b) contour plot

Fig. 5 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 2 for β = 0.0001

(a) approximation solution (b) contour plot

Fig. 6 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 2 for β = 0.001
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Example 3 Consider the following stochastic weakly singular integro-differential
equation

ut(x, t)+aux(x, t)−(b+β
dB

dt
)uxx(x, t) =

∫ t

0

u(x, s)√
t− s

ds+f(x, t), x ∈ [0, 1] , t > 0,

with a = 1 and b = 1 and initial condition

u(x, 0) = sin πx, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

f(x, t) = etπ cos πx+ et sin πx+ etπ2 sin πx− et
√
πerf(

√
t) sin πx.

The deterministic solution in kind of β = 0 (in the absence of the noise term)
is

u(x, t) = sin πx et.

We have solved this problem for m = n = 9 and compute u(x, t) − u9,9(x, t)
for different t and x (see Table 3). This problem is solved by proposed method
for N1 = 3 and m = n = 7. The behaviour of the approximation solutions
together with contour plots for different values of β are shown in Figures 7-9.
The absolute errors of the approximate solution for β = 0 at some different
points (xi, tj) ∈ [0, 1]× [0, 1] are shown in Table 4.

Table 3 Error function u(x, t)− u9,9(x, t) for different t and x of Example 3 and β = 0.

m = n = 9
t x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
0 3.96× 10−8 −3.22× 10−8 1.27× 10−8 1.72× 10−8 −3.27× 10−8

0.25 −5.18× 10−8 −1.34× 10−7 1.68× 10−7 −2.04× 10−8 −2.96× 10−7

0.5 −3.68× 10−8 −1.30× 10−7 2.16× 10−7 1.78× 10−8 −2.91× 10−7

0.75 −5.73× 10−9 −9.54× 10−8 3.32× 10−7 1.19× 10−7 −2.41× 10−7

1 −8.89× 10−8 −2.47× 10−7 4.79× 10−7 6.64× 10−8 −5.48× 10−7

7 Conclusion

In this research, a new computational method based on the shifted Legen-
dre polynomials together with the Tau method was proposed for solving a
class of stochastic weakly singular integro-differential equation. To this end,
operational matrices of partial derivatives and integral parts was derived. The
main advantage of the proposed method was that it transformed the problem
under study into solving a linear system of algebraic equations to achieve an
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(a) approximation solution (b) contour plot

Fig. 7 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 3 for β = 0.0001

(a) approximation solution (b) contour plot

Fig. 8 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 3 for β = 0.001

Table 4 The absolute errors of the approximate solution for β = 0.0001 at some different
points (xi, ti) ∈ [0, 1]× [0, 1].

β = 0.0001,m = n = 7
(xi, ti) e(xi, ti) for Ex.1 e(xi, ti) for Ex.2 e(xi, ti) for Ex.3
(0, 0) 3.48× 10−3 3.48× 10−3 1.70× 10−5

(0.1, 0.1) 4.51× 10−3 1.08× 10−3 1.23× 10−5

(0.2, 0.2) 1.28× 10−4 8.95× 10−4 8.13× 10−5

(0.3, 0.3) 5.28× 10−3 1.88× 10−3 2.30× 10−4

(0.4, .4) 9.90× 10−4 1.91× 10−3 3.35× 10−4

(0.5, 0.5) 1.23× 10−3 5.92× 10−4 3.84× 10−4

(0.6, 0.6) 1.54× 10−2 6.39× 10−3 3.68× 10−4

(0.7, 0.7) 4.80× 10−3 2.08× 10−2 2.07× 10−4

(0.8, 0.8) 6.04× 10−3 1.89× 10−1 7.60× 10−5

(0.9, 0.9) 4.25× 10−1 3.28× 10−1 9.67× 10−5

(1, 1) 3.48× 10−3 3.48× 10−3 1.70× 10−5
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(a) approximation solution (b) contour plot

Fig. 9 The graphs of the approximate solution (left side) and contour plot (right side) of
Example 3 for β = 0.01

approximate solution of the problem. Illustrative examples were included to
demonstrate the efficiency and accuracy of the proposed method. The perfor-
mance of the proposed method for the considered problems was measured by
calculating the maximum norm error and Mean squared error. Moreover, in
cases that exact solutions were existed, the results of the proposed method
were in a good agreement with the exact solutions.
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