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Abstract Let n be a positive integer. A group G is said to be n-abelian, if
(xy)n = xnyn, for any x, y ∈ G. In 1979, Fay and Waals introduced the n-
potent and the n-center subgroups of a group G, as Gn = 〈[x, yn]|x, y ∈ G〉,
Zn(G) = {x ∈ G|xyn = ynx, ∀y ∈ G}, respectively. Also, the second n-center
subgroup, Zn

2 (G), is defined by Zn
2 (G)/Zn(G) = Zn(G/Zn(G)). In this paper,

we give an upper bound for the index of the second n-center subgroup of any
n-abelian group G in terms of the order of n-potent subgroup Gn.
Keywords n-abelian group · n-center subgroup · n-potent subgroup.
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1 Introduction

Abelian groups are important in the theory of group. For that reason many
generalizations have been considered and exploited. One, in particular, is the
idea of an n-abelian group. This concept has first been discussed by F. Levi
[6,7] and it will play an important role in our discussion. If n is an integer and
n ≥ 1, then a group G is said to be n-abelian if (xy)n = xnyn, for all elements
x and y in G, from which it follows that [xn, y] = [x, y]n = [xn, yn]. Thus
a group is 2-abelian if and only if it is abelian, while non abelian n-abelian
groups do exist for every n > 2. Other self-evident fact about n-abelian groups
are that every n-abelian group is (1 − n)-abelian, and conversely. Indeed, n-
abelian groups have been classified by Alperin [1]. A detailed introduction to
n-abelian groups can be found in Baer’s paper [2].

In this article we use two other concepts, the n-potent and the n-center
subgroups of a group G, that have been introduced by Fay and Waals [3]. For
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a positive integer n, the n-potent and the n-center subgroups of a group G are
defined respectively, as follows

Gn = 〈[x, yn]|x, y ∈ G〉,
Zn(G) = {x ∈ G|xyn = ynx, ∀y ∈ G},

where [x, y] = x−1y−1xy. It is easy to see that Gn is a fully invariant subgroup
and Zn(G) is a characteristic subgroup of group G. The second n-center sub-
group, Zn

2 (G), is defined by Zn
2 (G)/Zn(G) = Zn(G/Zn(G)). The concepts of

n-potent and n-center subgroups are extensions of the important subgroups G′

and Z(G), respectively. One of the considerable problems in the group theory
is the study on the relationship between the derived subgroup and the center
factor group. In 1951, B.H Neumann [9] used an implicit idea of I. Schur [14]
and proved that G′ is finite when [G : Z(G)] is finite. This important result
has been known as the Schur’s theorem. We know the converse is not true for
infinite extra special groups (see [4]). However P. Hall in [4] showed that if G′

is finite then [G : Z2(G)] is bounded in terms of |G′|. The first explicit bound
was given by I.D. Macdonald [8]. Improving this bound, K. Podoski and B.
Szegedy [11] proved that [G : Z2(G)] ≤ |G′|2 log2 |G′|. They [10] also proved
that if G is a (not necessarily finite) group with [G′ : G′ ∩ Z(G)] = n, then
[G : Z2(G)] ≤ n2 log2 n.

Our motivation of writing this paper is to study the relation between the
orders of the second n-center factor and n-potent subgroup of an n-abelian
group. We first prove that if G = H/Zn(H) in which H is a finite n-abelian
group, then the index of the n-center subgroup is bounded by some function of
the order of n-potent subgroup. Then we find an upper bound for the index of
the second n-center subgroup of any n-abelian group G in terms of the order
of n-potent subgroup Gn.

2 Main Results

This section is devoted to obtain our main results. We begin with a key lemma.

Lemma 1 Let G be an n-abelian group such that |Gn| = t is finite and A be
an n-central subgroup of G such that [G : A] = m is finite. Then

[G : Zn(G)] ≤ m1+log2t.

Proof First, we find a subset X ⊆ G such that

G =< X,A > and |X| ≤ log2 m.

For this, put A0 = A and recursively construct subgroups Ai such that

Ai = 〈Ai−1, xi〉,

where xi is chosen arbitrarily in G \Ai−1. So we have

A = A0 < A1 < · · · < Ar = G,
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for some integer r. It is easy to see that G =< X,A >, in which

X = {x1, x2, . . . , xr}.

On the other hand, since [Ai : Ai−1] ≥ 2, we have

m = [G : A] = [Ar : Ar−1] · · · [A1 : A0] ≥ 2r.

Hence,

r ≤ log2 m. (1)

Put X̄ = {xn
1 , x

n
2 , . . . , x

n
r }. Since (xn

i )
g = xn

i [x
n
i , g], each conjugacy class of xn

i

in G is contained in some coset of Gn in G, and thus each of the classes has
cardinality no longer than |Gn|. This implies that [G : CG(x

n
i )] ≤ |Gn| for all

x ∈ X and so we have

[G : CG(X̄)] = [G :
∩

1≤i≤r

CG(x
n
i )] ≤

∏
1≤i≤r

[G : CG(x
n
i )] ≤ |Gn|r. (2)

Now we claim that A ∩ CG(X̄) is a subgroup of Zn(G).
Suppose that a ∈ A ∩ CG(X̄). Then [a, xn] = [a, bn] = 1, for all x ∈ X and
b ∈ A. On the other hand, G is an n-abelian group which is generated by A
and X, and A is n-central. So we have [a, gn] = 1 for all g ∈ G. Therefore,
a ∈ Zn(G) and the claim is proved. Then by using (1) and (2), we have

[G : Zn(G)] ≤ [G : A ∩ CG(X̄)]

= [G : A][A : A ∩ CG(X̄)]

≤ [G : A]|Gn|r

≤ mtlog2m = mmlog2t.

Therefore the desired assertion follows.

We come now to the Main Result of this paper. In order to prove the Main
Result, we first consider n-abelian groups with trivial n-center.
Theorem 1 Let G be an n-abelian group. There exits a function f(t) defined
on natural numbers such that if Zn(G) = 1 and |Gn| = t is finite, then
|G| ≤ f(t).

Proof Put C = CG(Gn) and m = [G : C]. Consider the map

φ : G → Aut(Gn),

defined by g 7→ φ(g), in which φ(g)(x) = xg, for all x ∈ Gn and g ∈ G. It is easy
to check that φ is a homomorphism with kerφ = C. Hence, G/C is isomorphic
to a subgroup of Aut(Gn). This implies that m ≤ t! and so m is bounded by
a function of t. On the other hand, [G,Gn, C] = [Gn, C] = 1. It follows that
[C,Gn, C] = 1. Then by the Three Subgroups Lemma, we have [C,C,Gn] = 1
and so [C,Cn, Gn] = 1. Thus [C,Cn] ≤ Zn(G) = 1 and we conclude that C
is an n-central subgroup of G. Now by applying Lemma 1 for the n-central
subgroup C ⊆ G of index m, we conclude that |G| = [G : Zn(G)] ≤ m1+log2 t.
Then the result follows, because m is bounded by t!.
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A group G is said to be n-capable if there exists a group E such that G ∼=
E/Zn(E) (See more details in [12]). Before we state the Main Result of the
paper, we define a function b(t), recursively. Assume that f(t) is the function
defined in Theorem 1. Let b(1) = 1, and for t > 1, we define

b(t) = max{f(t), (tM)1+log2 t},

in which M is the maximum value of b(t/q), where q runs over all prime
divisors of t. It is easy to see that f(t) ≤ b(t) and b(k) ≤ b(t), if k divides t.

Theorem 2 Let G = H/Zn(H) in which H is a finite n-abelian group. Then
there exists a function b(t) defined on the natural numbers such that

[G : Zn(G)] ≤ b(|Gn|).

Proof Let |Gn| = t. We have

Gn = [G,Gn] = [H/Zn(H),HnZn(H)/Zn(H)]

= [H,Hn]Zn(H)/Zn(H).

Putting U = HnZ
n(H), we have

|U/Zn(H)| = t. (3)

We use induction on the order of H to show that [G : Zn(G)] ≤ b(t). If H = 1,
then G = 1 and the inequality is trivially true. Now suppose that |H| ≥ 1
and the assertion holds for all groups with order less than |H|. We prove the
assertion for H. We can consider Z(H) > 1. Because, if Z(H) = 1, then one
can see easily Z(G) = 1. Hence G is capable and by [5, Theorem A], the result
holds. Now, since Z(H) > 1, there exists a normal subgroup T of G such that
T ≤ Z(H) ≤ Zn(H) and |T | = p where p is a prime number.
Put Y/T = Zn(H/T ). Then Y is a normal subgroup of H and

H/Y = (H/T )/Zn(H/T ),

is n-capable. Also, since Zn(H)T/T = Zn(H/T ) = Y/T , we have

Zn(H) ≤ Y ∩ U.

Now, we consider two cases.
Case 1. Suppose Zn(H) = Y ∩ U . Then we have

(H/Y )n = HnY/Y = HnZ
n(H)Y/Y

= UY/Y ∼= U/(Y ∩ U)

= U/Zn(H).

Hence, by using (3), we have |(H/Y )n| = t.
On the other hand, |H/Y | ≤ |H/T | < |H| and H/Y is an n-abelian group.
Therefore, by induction hypothesis, [H/Y : Zn(H/Y )] ≤ b(t). Assume that
A/Y = Zn(H/Y ). Then we have [H : A] ≤ b(t).
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Also, since [A,Hn] ≤ Y ∩ U = Zn(H), we have A/Zn(H) ≤ Zn(H/Zn(H)).
This implies that

[G : Zn(G)] ≤ [H/Zn(H) : A/Zn(H)] = [H : A] ≤ b(t),

and the assertion holds.
Case 2. Suppose Zn(H) < Y ∩ U .
Let y be an element of (Y ∩ U) Zn(H). Set C = CH(yn) ≤ H. Since

[Y,Hn] ≤ T ≤ Zn(H),

we have [h1, y
n, h2] = 1, for all h1, h2 ∈ H. So the map h 7→ [h, yn] defines a

homomorphism φ from H into T with kerφ = C. Thus H/C is isomorphic to
a subgroup of T . On the other hand, since y does not belong to Zn(H), we
have C < H. Therefore

[H : C] = p. (4)

It is easy to see that

U = [H,Hn]Zn(H) ⊆ CH(yn) = C.

Also, since [Hn, Y ] ⊆ T , we have 1 = [hn, y]p = [hn, yp] for all h ∈ H.
This implies that yp ∈ Zn(H) and so y has order p modulo Zn(H). Let
X = Zn(C). Then y ∈ X ∩ U and so yZn(H) ∈ (X ∩ U)/Zn(H). It follows
that p = |yZn(H)| divides [X ∩ U : Zn(H)]. This implies that [U : X ∩ U ] is
a divisor of [U : Zn(H)]/p = t/p. On the other hand, X is a normal subgroup
of H and

(H/X)n = HnX/X = UX/X ∼= U/(X ∩ U).

Hence |(H/X)n| = |U/(X ∩ U)| divides t/p. It follows that |(C/X)n| divides
t/p. Also C/X is an n-capable group such that |C/X| < |H|. Therefore by
induction hypothesis we have

[C/X : Zn(C/X)] ≤ b(|(C/X)n|) ≤ b(t/p).

Put V/X = Zn(C/X). Then we have

[C : V ] ≤ b(t/p). (5)

By using (4), H/C is cyclic. So there exists an element h ∈ H \ C such that
H = 〈h,C〉 = 〈h〉C. Set S/X = CV/X(hnX). Then we have

[V : S] = [V/X : CV/X(hnX)] ≤ |(V/X)n| ≤ |(H/X)n| ≤ t/p.

Hence applying (4) and (5), we have

[H : S] = [H : C][C : V ][V : S] ≤ tb(t/p) ≤ tM, (6)

where M is the maximum value of b(t/q), as q runs over all prime divisors of
t. Now we claim that

[S,Hn] ≤ X = Zn(C).
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Let a ∈ S and b ∈ H be arbitrary elements. Then b = hrc for an integer r
and c ∈ C. Since S ≤ V and [V,Cn] ≤ X, we have [a, cn] ∈ X. Also, by the
definition of S, [a, hn] ∈ X. Then by commutator calculus we can conclude
that [a, bn] ∈ X and the claim is proved.
On the other hand, S/X ≤ V/X ≤ C/X and so S ≤ C. Therefor we have
[S,Hn, Sn] = 1. Hence, by the Three Subgroup Lemma, we have

[S, Sn] ≤ Zn(H).

It follows that S/Zn(H) is n-central. Then Lemma 1, implies that
[G : Zn(G)] ≤ [H/Zn(H) : S/Zn(H)]1+log2t = [H : S]1+log2t.

Then by using (6) we have [G : Zn(G)] ≤ (tM)1+log2t and the required asser-
tion follows.
As an immediate consequence, we have the following interesting result.
Corollary 1 Let G be an n-abeian group. Then the index of the second n-
center of G is bounded above by some function of |Gn/(Gn ∩ Zn(G))|.
Proof By consider the factor group G/Zn(G) and applying Theorem 2, we
have

[G : Zn
2 (G)] = [G/Zn(G) : Zn(G/Zn(G))] ≤ b(|(G/Zn(G))n|).

Now, since
(G/Zn(G))n = GnZ

n(G)/Zn(G) ∼= Gn/(Gn ∩ Zn(G)),

the result follows.

References

1. J. L. Alperin, A classification of n-abelian groups, Canad. J. Math., 21, 1238–1244
(1969).

2. R. Baer, Factorization of n-soluble and n-nilpotent groups, Proc. Amer. Math. Soc., 4,
15–29 (1953).

3. T. H. Fay, G. L. Waals, Some remarks on n-potent and n-abelian groups, J. Indian.
Math. Soc., 47, 217–222 (1983).

4. P. Hall, Finite-by-nilpotent groups, Proc. Camb. Phil. Soc., 52, 611–616 (1956).
5. I.M. Isaacs, Derived subgroups and centers of capable groups, Proc. Amer. Math. Soc.,

129, 2853–2859 (2001).
6. F.W. Levi, Notes on group theory I, J. Indian. Math. Soc., 8, 1–7 (1944).
7. F.W. Levi, Notes on group theory VII, J. Indian. Math. Soc., 9, 37–42 (1945).
8. I.D. Macdonald, Some explicit bounds in groups with finite derived groups, proc. London

math. Soc., 11, 23–56 (1961).
9. B.H. Neumann, Groups with finite classes of conjugate elements. Proc. London. Math.

Soc., 3, 178–187 (1951).
10. K. Podoski, B. Szegedy, Bounds for the index of the centre in capable groups, Proc.

Amer. Math. Soc., 133, 3441–3445 (2005).
11. K. Podoski, B. Szegedy, Bounds in groups with finite Abelian coverings or with finite

derived groups, J. Group Theory, 5, 443�452 (2002).
12. M.R. Rismanchian, Some properties of n-capable and n-perfect groups, J. Sci. I.R. Iran,

24, 361–364 (2013).
13. D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York (1982).
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