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Abstract In this paper, the Tau method based on shifted Legendre polyno-
mials is proposed for solving a class of fractional stochastic integro-differential
equations. For this purpose, shifted Legendre polynomials and their properties
are introduced. By using the operational matrices of integration and stochastic
Ito-integration we transform the problem into the corresponding linear system
of algebraic equations. Finally the efficiency of the proposed method is con-
firmed by some examples. The results show that this method is very accurate
and efficient.
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1 Introduction

A probability space (Ω,F, P ) consists of three elements. A sample space Ω,
which is the set of all possible outcomes. An event space, which is a set of
events F , an event being a set of outcomes in the sample space. A probability

R. Azimi (Corresponding Author)
Adib Mazandaran Institute of Higher Education, Sari, Iran.
Tel.: +981133110809
Fax: +981133033960
E-mail: ruhangiz.azimi@gmail.com

M. Mohagheghy Nezhad
Adib Mazandaran Institute of Higher Education, Sari, Iran.
E-mail: mohaqeqi@gmail.com

S. Foadian
School of Mathematics and Computer Science, Damghan University, Damghan, Iran.
E-mail: s.foadian@std.du.ac.ir



222 Ruhangiz Azimi et al.

function P , which assigns each event in the event space a probability, which
is a number between 0 and 1 [23].

Stochastic integral equations are very important due to their application
for modelling stochastic phenomena in physics, fluid mechanics, biology, chem-
istry, finance, mechanics, microelectronics, etc. see [9,14,17]. The behavior of
dynamical systems in these kind of equations are often dependent on a noise
source and a Gaussion white noise, governed by certain probability laws. So,
modelling such phenomena often requires the use of different stochastic differ-
ential equations, stochastic integro-differential equations.

As deriving an explicit form of the solution for stochastic differential and
integral equations is difficult, numerical approximation becomes a practical
way to face this difficulty. Several numerical methods such as finite-difference
method [13], wavelet Galerkin method [5], Haar wavelets method [16], Laplace
transforms method [19], Chebyshev wavelet method [15], orthogonal functions
[24,21,3,10] have been used for solving fractional differential, integral equation,
stochastic integral equations.

The Tau method that is a way to solve linear and nonlinear functional
equations is one of the important types of the spectral method that express
the solution of the problem as a linear combination of orthogonal or non-
orthogonal basis functions. The main advantage of using orthogonal basis is
that the problem under consideration is reduced into solving a system of lin-
ear or nonlinear algebraic equation [20]. Recently, different orthogonal basis
functions such as block pulse functions, Walsh functions, orthogonal polyno-
mials and wavelets, Fourier series, were utilized to approximate solution of
functional equations [22,4,8,11,2].

Shifted Legendre polynomials have been widely applied for solving func-
tional equations [7,25]. In this paper the shifted Legendre polynomials will be
used for solving the fractional stochastic integro-differential equation which is
given in [1] as follows

Dαy(t) = f(t) + λ1

∫ t

0

k1(t, τ)y(τ)dτ + λ2

∫ t

0

k2(t, τ)y(τ)dB(τ), 0 ≤ t ≤ T,

(1)

subject to the initial conditions

y(j)(0) = dj , j = 0, 1, . . . , r − 1, r − 1 < α ≤ r, r ∈ N, (2)

where y(j)(t) stands for the j-th order derivative of y(t), Dα(.) denotes the
Caputo fractional order derivate of order α and y(t), f(t), and ki(t, τ), i = 1, 2
are the stochastic processes defined on the probability space (Ω,F, P ), y(t)
is unknown and

∫ t

0
k2(t, τ)y(τ)dB(τ) is Ito integral. Here, λ1 and λ2 are real

constants. A real-valued stochastic process B(t), t ∈ [0, T ] is called Brownian
motion, if it satisfies the following properties [6,15]

(i) B(0) = 0 (with the probability 1).
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(ii) For 0 ≤ s < t ≤ T the random variable given by increment B(t)− B(s)
is normally distributed with mean zero and variance t− s; equivalently,

B(t)−B(s) ∼
√
t− sN(0, 1),

where N(0, 1) denotes a normally distributed random variable with zero
mean and unit variance.

(iii) For 0 ≤ s < t ≤ u < v ≤ T the increments B(t)−B(s) and B(v)−B(u)
are independent.

(iv) The function t→ B(t) is continuous function of t.

The paper is organized as follows. In the next section, the shifted Legendre
polynomials and their properties are described. Section 3 is devoted to some
preliminary definitions of BPFs and fractional calculus. In Sections 4 and 5
after expressing the relation between BPFs and shifted Legendre polynomials,
Tau method based on shifted Legendre polynomials and their matrices are
proposed for solving fractional stochastic integro-differential equation. Some
numerical examples are solved using the method of this article in section 6.
Finally, a conclusion is given in section 7.

2 Properties of shifted Legendre polynomials

The classical Legendre polynomials are defined on the interval [−1, 1] and can
be determined with the aid of the following recurrence formulae

P0(x) = 1, P1(x) = x,

Pi+1(x) =
2i+ 1

i+ 1
x Pi(x)−

i

i+ 1
Pi−1(x), i = 1, 2, . . . .

Assume x ∈ [a, b] and let x = 2x−a−b
b−a . Then {Pi(x)} are called the shifted

Legendre polynomials on [a, b]. In this paper, we mainly consider the shifted
Legendre polynomials defined on [0, l] .

For t ∈ [0, l], let Ll,i(t) = Pi(
2t−l
l ), i = 0, 1, 2, . . . . Then the shifted Legen-

dre polynomials {Ll,i(t)} are defined by

Ll,0(t) = 1,

Ll,1(t) =
2t− l

l
,

Ll,i+1(t) =
(2i+ 1)(2t− l)

(i+ 1)l
Ll,i(t)−

i

i+ 1
Ll,i−1(t), i = 1, 2, . . . .

If ψl,m(t) be a vector function of shifted Legendre polynomials on the interval
[0, l], as

ψl,m(t) = [Ll,0, Ll,1, . . . , Ll,m]
T
, (3)
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then the set of Ll,i(t) is a complete L2(0, l)-orthogonal system, namely∫ l

0

Ll,i(t)Ll,j(t)dt =


l

2i+ 1
, i = j,

0, i ̸= j.

So we define Πm = span {Ll,0, Ll,1, . . . , Ll,m}. For any y(t) ∈ L2(0, l), we write

y(t) ≃
∞∑
j=0

cjLl,j(t),

where the coefficients cj are given by

cj =
2j + 1

l

∫ l

0

y(t)Ll,j(t)dt, j = 0, 1, 2, . . . . (4)

In practice, only the first (m + 1)-terms of shifted Legendre polynomials are
considered. Hence, we can write

ym(t) ≃
m∑
j=0

cjLl,j(t) = CTψl,m(t) = CTV Xt,

where CT = [c0, c1, . . . , cm] and V is a non-singular matrix given by

ψl,m(t) = V Xt,

with a standard basic vector, Xt =
[
1, t, t2, . . . , tm

]T , where, (.)T stands for
the transpose.

Similarly a function of two independent variables k(t, τ) may be expressed
in terms of the double shifted Legendre polynomials as

k(t, τ) ≃
m∑
i=0

m∑
j=0

ki,jLl,i(t)Ll,j(τ) = ψT
l,m(t)Kψl,m(τ), (5)

where K is a (m+ 1)× (m+ 1) matrix as

K =


k00 k01 . . . k0m
k10 k11 . . . k1m
...

... . . .
...

km0 km1 . . . kmm

 ,
where

ki,j =

(
2i+ 1

l

)(
2j + 1

l

)∫ l

0

∫ l

0

k(t, τ)Ll,i(t)Ll,j(τ)dtdτ, i, j = 0, 1, . . . ,m.

(6)
Also, k(t, τ) can be expressed as

k(t, τ) ≃ ψT
l,m(t)Kψl,m(τ) = XT

t V
TKVXτ ,
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where V = [vi,j ]i,j=0,1,...,m is a non-singular matrix given by ψl,m(t) = V Xt

with a standard basic vector, Xt =
[
1, t, t2, . . . , tm

]T . If we take K = V TKV

then we can write k(t, τ) ≃ XT
t KXτ .

Now, we present the shifted Legendre expansion of a function y(t) with
bounded second derivative, converges uniformly to y(t).

Theorem 1 A continuous function y(t) ∈ [0, l], with bounded second deriva-
tive, say

∣∣∣d2y(t)
dt2

∣∣∣ ≤ α, can be expanded as an infinite sum of shifted Legendre

polynomials and the series
∞∑
i=0

ciLl,i(t) converges uniformly to the y(t). Fur-

thermore, we have∫ l

0

(
y(t)−

m∑
i=0

ciLl,i(t)
)2
dt ≤ αl2

√
3l

8

√√√√ ∞∑
i=m+1

1

(2i− 3)4

Proof From (4), it follows that

ci =

(
2i+ 1

l

)∫ l

0

y(t)Ll,i(t)dt, i = 0, 1, . . . ,m.

By partial integration and using following equation

L′
l,i+1(t)− L′

l,i−1(t) =
2

l
(2i+ 1)Ll,i(t),

we have

ci =
2i+ 1

l
× l

2(2i+ 1)

∫ l

0

y(t)
(
L′
l,i+1(t)− L′

l,i−1(t)
)
dt

=
1

2

(
y(t)

(
Ll,i+1(t)− Ll,i−1(t)

)∣∣∣l
0
−
∫ l

0

(
Ll,i+1(t)− Ll,i−1(t)

)dy
dt
dt

= −1

2

∫ l

0

l

2(2i+ 3)

(
L′
l,i+2(t)− L′

l,i(t)
)dy
dt
dt

+
l

2

∫ l

0

l

2(2i− 1)

(
L′
l,i(t)− L′

l,i−2(t)
)dy
dt
dt

=
l

4

∫ l

0

d2y(t)

dt2

(Ll,i+2(t)− Ll,i(t)

2i+ 3

)
dt

− l

4

∫ l

0

d2y(t)

dt2

(Ll,i(t)− Ll,i−1(t)

2i− 1

)
dt.

Now, let Ql,i(t) = (2i − 1)Ll,i+2(t) − 2(2i + 1)Ll,i(t) + (2i + 3)Ll,i−2(t) then
we have

ci =
l

4(2i+ 3)(2i− 1)

∫ l

0

d2y(t)

dt2
Ql,i(t)dt,
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thus

|ci| ≤
l

4(2i+ 3)(2i− 1)

∫ l

0

∣∣∣∂2y(t)
∂t2

∣∣∣|Ql,i(t)|dt

≤ lα

4(2i+ 3)(2i− 1)

∫ l

0

|Ql,i(t)|dt.

Also we have

(∫ l

0

|Qi(t)|dt
)2

=
(∫ l

0

|(2i− 1)Ll,i+2(t)− 2(2i+ 1)Ll,i(t) + (2i+ 3)Ll,i−2(t)|dt
)2

≤
(∫ l

0

(1)2dt
)(∫ l

0

(2i− 1)2L2
l,i+2(t) + (4i+ 2)2L2

l,i(t) + (2i+ 3)2L2
l,i−2(t)

)
dt

≤ l
( (2i− 1)2l

2i+ 5
+

(4i+ 2)2l

2i+ 1
+

(2i+ 3)2l

2i− 3

)
≤ 6l2(2i+ 3)2

2i− 3
.

Then we get

∫ l

0

|Qi(t)|dt ≤
√
6 l(2i+ 3)√
2i− 3

.

Thus we obtain

|ci| ≤
lα

4(2i+ 3)(2i− 1)
×

√
6 l(2i+ 3)√
2i− 3

=
l2α

√
6

4
√

(2i− 3)3
.

Consequently,
∞∑
i=0

ci is absolute convergent and thus the expansion of the func-

tion converges uniformly. Also, we let

εn =
(∫ l

0

(y(t)−
m∑
i=0

ciLl,i(t))
2dt
)1/2

,
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where

ε2n =

∫ l

0

(
y(t)−

m∑
i=0

ciLl,i(t)
)2
dt

=

∫ l

0

( ∞∑
i=0

ciLl,i(t)−
m∑
i=0

ciLl,i(t)
)2
dt

=

∫ l

0

( ∞∑
i=m+1

ciLl,i(t)
)2
dt

=

∫ l

0

∞∑
i=m+1

c2iL
2
l,i(t)dt

=

∞∑
i=m+1

c2i

∫ l

0

L2
l,i(t)dt

=

∞∑
i=m+1

c2i
l

(2i+ 1)

≤
∞∑

i=m+1

6α2l5

16(2i− 3)3(2i+ 1)

≤ 6α2l5

16

∞∑
i=m+1

1

(2i− 3)4

Then we have

εn ≤ αl2
√

3l

8

√√√√ ∞∑
i=m+1

1

(2i− 3)4
.

From then on we assume l = 1 and let ψ1,m = ψm, L1,i = Li.

3 Preliminary definitions

3.1 Block Pulse functions

In this paper, it is assumed that T = 1. So, the set of BPFs are defined over
[0, 1], and h = 1

m . We define the m-set of BPFs as

ϕi(t) =

{
1, (i− 1)h ≤ t < ih,

0, otherwise.

The elementary properties of BPFs are as follows
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i) Disjointness: The BPFs are disjoint with each other in the interval [0, 1]
and

ϕi(t)ϕj(t) = δijϕi(t), i, j = 1, 2, . . . ,m.

ii) Orthogonality: The set of BPFs defined in the interval [0, 1] are orthogonal
with each other, that is∫ 1

0

ϕi(t)ϕj(t)dt = hδij , i, j = 1, 2, . . . ,m.

iii) Completeness: If m −→ ∞, then the BPFs set are complete, so an ar-
bitarary real bounded function f(t), which is square integrable in the
interval [0, 1], can be expanded into a Block Pulse series as

f(t) ≃
m∑
i=1

fiϕi(t),

where

fi =
1

h

∫ 1

0

ϕi(t)f(t)dt, i = 1, 2, . . . ,m.

iv) Vector form: Consider the first m terms of BPFs and write them as

Φ(t) = [ϕ1(t), ϕ2(t), . . . , ϕm(t)]
T
, t ∈ [0, 1].

The above representation and disjointness property follows

Φ(t)ΦT (t) =


ϕ1(t) 0 . . . 0
0 ϕ2(t) . . . 0
...

... . . . ...
0 0 . . . ϕm(t)

 ,
furthermore, we have

ΦT (t)Φ(t) = 1.

For an m-vector V we have

Φ(t)ΦT (t)V = V Φ(t), (7)

where V is an m×m matrix, and V = diag(V ).
Also, it is easy to show that for an m×m matrix A

ΦT (t)AΦ(t) = A
T
Φ(t), (8)

where A = diag(A) is a m-vector.
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3.2 Fractional calculus

Definition 1 The Riemann-Liouville fractional integral operator Jα of order
α is given by

Jαy(t) =
1

Γ (α)

∫ t

0

(t− τ)α−1y(τ)dτ, α > 0,

J0y(t) = y(t).

Definition 2 The Caputo definition of fractional operator is given by

Dαy(t) =


dry(t)

dtr
, α = r ∈ N,

1

Γ (r − α)

∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ, 0 ≤ r − 1 < α < r.

The Caputo fractional derivatives of order α is also defined as

Dαy(t) = Jr−αDry(t).

The relation between the Caputo operator and the Riemann-Liouville is given
by the

DαJαy(t) = y(t),

DαJαy(t) = y(t)−
r−1∑
k=0

y(k)(0+)
tk

k!
, t > 0.

4 Operational matrices of shifted Legendre polynomials

4.1 Relation between the BPFs and shifted Legendre polynomials

In this section we will obtain the relation between the BPFs and shifted Leg-
endre polynomials.

Theorem 2 Let ψm(t) and Φ(t) be the m-dimensional shifted Legendre poly-
nomials and BPFs vector respectively, the vector ψm(t) can be expanded by
BPFs vector Φ(t) as

ψm(t) ≃ QΦ(t),

where Q is an m×m matrix

Q =
[
ψm(

1

2m
), ψm(

3

2m
), . . . , ψm(

2m− 1

2m
)
]
.

Proof Let Li(t) , i = 1, 2, . . . ,m be the i-th element of shifted Legendre poly-
nomial. Expanding Li(t) into an m-term vector of BPFs, we have

Li(t) ≃
m∑
j=1

Qi,jϕj(t) = QT
i Φ(t), i = 1, 2, . . . ,m,
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where Qi is the i-th row and Qij is the (i, j)-th element of matrix Q. By using
orthogonality of BPFs we have

Qi,j =
1

h

∫ 1

0

Li(t)ϕj(t)dt =
1

h

∫ j
m

j−1
m

Li(t)dt.

By using mean value theorem for integrals we have

Qi,j =
1

h

( j
m

− j − 1

m

)
Li(εj) = Li(εj), εj ∈

( j
m
,
j − 1

m

)
,

by taking εj = 2j−1
2m so we have Qi,j = Li(

2j−1
2m ).

Lemma 1 For an m-vector V we have

ψm(t)ψT
m(t)V = V ψm(t),

in which V is an m × m matrix as V = QV1Q
−1, where V1 = diag(QTV ).

Moreover, it can be easy to show that for an m×m matrix A

ψT
m(t)Aψm(t) = A

T
ψm(t),

where AT
= UQ−1 and U = diag(QTAQ) is an m-vector.

Proof The results is the consequence of relations (7), (8), and Theorem (2).

Lemma 2 ([12]) Let Φ(t) be the BPFs, then integration of this vector can be
derived as ∫ t

0

Φ(τ)dτ ≃ PΦ(t),

where P is an m×m matrix given by

P =
h

2



1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
... . . . 2

0 0 0 . . . 1

 .

Lemma 3 ([12]) Let Φ(t) be the BPFs, then the Ito integral of this vector can
be derived as ∫ t

0

Φ(τ)dB(τ) ≃ PτΦ(t),

where Pτ is an m×m matrix given by

Pτ =


B(h2 ) B(h) B(h) . . . B(h)
0 B( 3h2 )−B(h) B(2h)−B(h) . . . B(2h)−B(h)
0 0 B( 5h2 )−B(2h) . . . B(3h)−B(2h)
...

...
... . . . ...

0 0 0 . . . B( (2m−1)h
2 )−B((m− 1)h)

 .
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Theorem 3 Suppose ψm(t) be the shifted Legendre vector defined in (3) then
the integral of this vector can be derived as∫ t

0

ψm(τ)dτ ≃ (QPQ−1)ψm(t).

Proof From Theorem (2) and Lemma (2), we have∫ t

0

ψm(τ)dτ ≃
∫ t

0

QΦ(τ)dτ ≃ QPΦ(t) ≃ (QPQ−1)ψm(t).

Theorem 4 Suppose ψm(t) be the shifted Legendre vector defined in (3) then
the Ito integral of this vector can be derived as∫ t

0

ψm(τ)dB(τ) ≃ (QPτQ
−1)ψm(t).

Proof Similar to previous Theorem and using Theorem (2) and Lemma (3) it
can be easily obtained.

In this section, we make the operational matrix of fractional integro-differential
equation with weakly singular kernel of the shifted Legendre vector.

4.2 Matrix representation of (1)

As a consequence of the previous section, and aid of following Lemma and
Theorems we derive formulas for numerical solvability of fractional stochastic
integro-differential equations (1) based on shifted Legendre polynomials of the
operational Tau method.

Lemma 4 Let ym(t) = CTV Xt be a polynomial where

CT = [c0, c1, . . . , cm, 0, . . . ],

and Xt = [1, t, t2, . . . ]T then we have

dk

dtk
ym(t) = CTV ηkXt,

tkym(t) = CTV µkXt,

k = 0, 1, 2, . . . ,

where

µ =


0 1 0 0 . . .
0 1 0
0 1

. . .

 , η =


0 . . .
1 0
0 2 0
0 0 3

. . .

 .
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Proof see [18].

Lemma 5 If Γ is the Gamma function, then we have∫ t

0

τm

(t− τ)α−r+1
ds =

Γ (r − α)Γ (m+ 1)

Γ (m− α+ r + 1)
tm−α+r, m = 0, 1, 2, . . . .

Proof With integration by parts and using Γ (α) = (α−1)! α > 0 it can easily
be obtained.

Theorem 5 Let ψm(t) = V Xt be the shifted Legendre vector then∫ t

0

y(r)(τ)

(t− τ)α−r+1
ds ≃ CTV ηrGAV Xt, (9)

where G is a diagonal matrix with elements

Gi,i =
Γ (r − α)Γ (i+ 1)

Γ (i− α+ r + 1)
, i = 0, 1, 2, . . . ,m,

and
A =

[
B0, B1, . . . , Bm

]T
, Bj =

[
tj,0, tj,1, . . . , tj,m

]
,

which tj,i, i, j = 0, 1, . . . ,m are the coefficients of Ll,i(t), i = 0, 1, . . . ,m in
expansion of tj−α+r.

Proof∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃

∫ t

0

CTV ηrXτ

(t− τ)α−r+1
dτ

= CTV ηr
∫ t

0

Xτ

(t− τ)α−r+1
dτ

= CTV ηr
∫ t

0

[1, τ, . . . , τm]
T

(t− τ)α−r+1
dτ

= CTV ηr

[∫ t

0

1

(t− τ)α−r+1
dτ,

∫ t

0

τ

(t− τ)α−r+1
dτ,

. . . ,

∫ t

0

τm

(t− τ)α−r+1
dτ

]T
,

by using Lemma (5) we can write∫ t

0

y(r)(τ)

(t− τ)α−r+1
dτ ≃ CTV ηr

[
Γ (r − α)Γ (1)

Γ (r − α+ 1)
tr−α,

Γ (r − α)Γ (2)

Γ (r − α+ 2)
tr−α+1,

. . . ,
Γ (r − α)Γ (m+ 1)

Γ (m− α+ r + 1)
tm−α+r

]T
= CTV ηrGΠ, (10)
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where

Π =
[
tr−α, tr−α+1, . . . , tm−α+r

]T
.

By approximating tj−α+r, j = 0, 1, . . . ,m, we get

tj−α+r ≃
m∑
i=0

tj,iLi(t) = Bjψm(t),

Bj = [tj,0, tj,1, . . . , tj,m],

we obtain

Π = [B0V Xt, B1V Xt, . . . , BmV Xt]
T = Aψl,m(t), A = [B0, B1, . . . , Bm]T .

(11)

By substituting (11) into (10) we obtain

∫ t

0

y(r)(τ)

(t− τ)α−r+1
ds ≃ CTV ηrGAV Xt. (12)

4.3 Matrix representation for the supplementary conditions

Let y(t) ≃
m∑
j=0

cjLl,j(t) = CTV Xt on the left hand side of (2), it can be written

as

y(j)(0) = dj , j = 0, 1, . . . , r − 1,

CTV ηjX0 = dj , j = 0, 1, . . . , r − 1.

Let Hj = ηjX0 where X0 = [1, 0, 0, . . . , 0]T thus the j-th condition number of
(2) is converted to

CTV Hj = dj , j = 0, 1, . . . , r − 1.

Now, by setting H as the matrix with columns Hj , j = 0, 1, . . . , r − 1 and
by setting d = [d1, d2, . . . , dj ], as the vector that contains right-hand side of
supplementary conditions, they take the form

CTV H = d. (13)
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5 Description of the proposed method

In this section, we apply the operational matrices of integration and stochas-
tic Ito-integration of the shifted Legendre polynomials for solving fractional
stochastic integro-differential equation (1) and (2).

For solving the problem by using the stochastic operational matrix of
shifted Legendre polynomials, we approximate y(t), f(t), k1(t, τ), and k2(t, τ)
in terms of shifted Legendre vector as follows

y(t) ≃ Y Tψ(t) = ψT (t)Y,

f(t) ≃ Fψ(t), (14)
k1(t, τ) ≃ ψT (t)K1ψ(τ),

k2(t, τ) ≃ ψT (t)K2ψ(τ),

where Y and F are shifted Legendre coefficients vector, K1 and K2 are shifted
Legendre coefficients matrices defined in equation (6).
By using above approximations, Lemma 1 and Theorem 2 we can obtain the
first and second term integral in the right hand of the (8) as following

∫ t

0

k1(t, τ)y(τ)dτ ≃
∫ t

0

ψT (t)K1ψ(τ)ψ
T (τ)Y dτ

= ψT (t)K1

∫ t

0

ψ(τ)ψT (τ)Y dτ

= ψT (t)K1

∫ t

0

Qdiag[QTY ]Q−1ψ(τ)dτ

= ψT (t)K1Qdiag[QTY ]Q−1

∫ t

0

ψ(τ)dτ

= ψT (t)K1Qdiag[QTY ]Q−1QPQ−1ψ(t)

= ψT (t)E1ψ(t)

= diag[QTE1Q]Q−1ψ(t)

= B1ψ(t) (15)

where

E1 = K1Q diag[QTY ]P Q−1, (16)

and

B1 = diag[QTE1Q]Q−1. (17)
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Also we have∫ t

0

k2(t, τ)y(τ)dBτ ≃
∫ t

0

ψT (t)K2ψ(τ)ψ
T (τ)Y dBτ

= ψT (t)K2

∫ t

0

ψ(τ)ψT (τ)Y dBτ

= ψT (t)K2

∫ t

0

Qdiag[QTY ]Q−1ψ(τ)dBτ

= ψT (t)K2Qdiag[QTY ]Q−1

∫ t

0

ψ(τ)dBτ

= ψT (t)K2Qdiag[QTY ]Q−1QPτQ
−1ψ(t)

= ψT (t)E2ψ(t)

= diag[QTE2Q]Q−1ψ(t)

= B2ψ(t) (18)

where

E2 = K2Q diag[QTY ]Pτ Q
−1, (19)

and

B2 = diag[QTE2Q]Q−1. (20)

Now, using Theorem (5) and equations (14), (15), and (18) and substituting
in (8) we obtain

1

Γ (r − α)
Y TV ηrGAψ(t) ≃ Fψ(t) + λ1B1ψ(t) + λ2B2ψ(t),

by setting
B3 =

1

Γ (r − α)
Y TV ηrGA,

and using the orthogonality of {Li(t)}m−1
i=0 we have

B3 − λ1B1 − λ2B2 ≃ F, (21)

this equation is hold for all t ∈ [0, 1), B1, B2, and B3 is linear function of Y ,
equation (21) is a linear system of equations for unknown vector Y .

Also, from equation (13) and replacing ≃ by =, we have following system{
B3 − λ1B1 − λ2B2 = F,

Y TV H = d.
(22)

Now setting
∆ = B3 − λ1B1 − λ2B2,

H = Y TV H,
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G = [H1, H2, . . . , Hr,∆1,∆2, . . . , ∆m+1−r],

and

g = [d1, d2, . . . , dr, F0, F1, . . . , Fm−r],

where Hi denotes the i-th column of H, system of (22) can be written as
G = g, which must be solved for the unknown coefficients y0, y1, . . . , ym.

5.1 Algorithm of shifted Legendre Tau approximation

Step 1. Choose m, form the set of shifted Legendre polynomials
{
Li(t)

}m

i=0

and let the approximate solution be ym(t) ≃
m∑
i=0

yiLi(t).

Step 2. Compute the non singular coefficient matrix V with respect to

Xt =
[
1, t, t2, . . . , tm

]T
,

such that ψm(t) = V Xt.
Step 3. Compute the shifted Legendre vector

Q =
[
ψm(

1

2m
), ψm(

3

2m
), . . . , ψm(

2m− 1

2m
)
]
.

Step 4. By using orthogonality condition of {Li(t)}mi=0 as

f(t) ≃
m∑
j=0

fjLj(t),

where fj = 2j+1
l

∫ l

0
f(t)Lj(t)dt, compute F = [f0, f1, . . . , fm].

Step 5. Compute the stochastic operational matrices pτ and p using Lemmas
(2) and (3).

Step 6. Compute the matrices G, η, A, E1, and E2 from Lemmas (4) and (5),
Theorem (5) and equations (16) and (19) then set B3 = 1

Γ (r−α)Y
TV ηrGA,

B1 = diag[QTE1Q]Q−1, and B2 = diag[QTE2Q]Q−1.

Step 7. Let Y T = [y0, y1, . . . , ym] and obtain the entries of the vector solution
Y T from the CTG = g where G = [H1, H2, . . . , Hr,∆1,∆2, . . . , ∆m+1−r]
and g = [d1, d2, . . . , dr, F0, F1, . . . , Fm−r], Hi denotes the i-th column of
matrix V H and ∆i denotes the i-th column of matrix B3 − λ1B1 − λ2B2.
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6 Numerical results and comparisons

In this section, we present three numerical examples to demonstrate the accu-
racy of the proposed method. The results show that this method, by selecting
a few number of shifted Legendre polynomials is accurate.

First we consider discretized Brownian motion, where B(t) is determined
at t distinct values and utilized an spline interpolation to construct B(t). Let
ti = ih, i = 0, 1, 2, . . . , N, h = T

N where N denotes the final space level tN ,
N+1 is the number of nodes and Bi denote B(ti). Condition (i) in introduction
says that B0 = 0 with probability 1, and condition (ii) and (iii) tell us that

Bi = Bi−1 + dBi, i = 1, 2, . . . , N,

where each dBi is an independent random variable of the form
√
hN(0, 1). In

order to check the accuracy of the proposed method, the absolute errors and
L2 norm errors between the exact solution y(t) and the approximate solution
ym(t) are given by the following definitions.

Absolute error: | y(t)− ym(t) |.

L2 norm error: 1

N

(
N∑
i=0

| y(ti)− ym(ti) |2
)1/2

.

Example 1 As a first application, we offer the following stochastic fractional
integro-differential equation as follows [1]{

D αy(t) = f(t) +
∫ t

0
etτy(τ)dτ + λ2

∫ t

0
etτy(τ)dBτ,

y(0) = 0,

the exact solution with α = 0.75 and λ2 = 0 is y(t) = t3, where y(t) is an
unknown stochastic process defined on the probability space (Ω,F, P ) and
B(t) is a Brownian motion process. In this example we have

f(t) =
−t5et

5
+

6t2.25

Γ (3.25)
.

Table 1 and Table 2 show L2 errors and absolute errors of the approximation
solution for different values of m with λ2 = 0.0001 and N = 10. From Table
1 we can see clearly that the shifted Legendre Tau (SLT) method can reach
a higher degree of accuracy. In [1] the authors obtained the best results in
m = 28 that is 6.3× 10−5. The approximation solution and exact solution are
shown in Figure 1.

Example 2 Consider the following stochastic fractional integro-differential equa-
tion as follows{

D αy(t) = f(t) +
∫ t

0
t sin τy(τ)dτ + λ2

∫ t

0
(t+ τ)y(τ)dBτ,

y(0) = 0.
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Table 1 L2 errors obtained for different values of m.

m L2 error
4 3.26× 10−5

6 1.08× 10−5

8 3.56× 10−6

10 1.47× 10−6

12 6.03× 10−7

14 3.34× 10−7

Table 2 Absolute errors obtained for different values of m with N = 10 and λ2 = 0.001.

t m = 8 m = 10 m = 12
0.1 5.62× 10−6 1.82× 10−5 6.31× 10−6

0.2 6.63× 10−6 3.40× 10−6 1.34× 10−6

0.3 2.61× 10−5 1.32× 10−6 8.09× 10−6

0.4 8.63× 10−5 4.11× 10−5 3.20× 10−5

0.5 2.17× 10−4 1.31× 10−4 9.15× 10−5

0.6 4.68× 10−4 2.90× 10−4 2.07× 10−4

0.7 9.19× 10−4 5.72× 10−4 4.08× 10−4

0.8 1.68× 10−3 1.05× 10−3 7.51× 10−4

0.9 2.94× 10−3 1.83× 10−3 1.28× 10−3
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+ SLT solution

Fig. 1 The absolute error of Example 1 for m = 14

In the absence of the noise term (λ2 = 0) the exact solution with α = 0.5, is
y(t) = t2 + t. In this example we have

f(t) =
2

Γ (2.5)
t1.5+

1

Γ (1.5)
t0.5+t(2−3 cos t−t sin t+t2 cos t)+(cos t−sin t)(t2+t).

We apply shifted Legendre Tau method to solve this problem. The L2 errors of
approximation solution for different values of m with λ2 = 0.0001 and N = 10
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are shown in Table 3. Figure 2 shows the error function of this example with
m = 6.

Table 3 L2 errors obtained for different values of m.

m L2 error
4 2.02× 10−5

6 4.56× 10−6

8 1.39× 10−6

10 6.83× 10−7
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Fig. 2 The graph of the approximate solution and exact solution for λ2 = 0.0001 and
m = 10

Example 3 Consider the following fractional integro-differential equationD αy(t) =
2t2−α

Γ (3− α)
− 1

3
t3 +

∫ t

0
y(τ)dτ +

∫ t

0
(τ + τ2)y(τ)dBτ,

y(0) = 0.

In the absence of the noise term (λ2 = 0) the exact solution, is u(t) = t2. We
apply shifted Legendre Tau method to solve this equation and the absolute
error are given in Table 4 for different choices of α. The numerical solution
have been compared in Figure 3 for α = 0.25, 0.5, and 0.95.
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Table 4 L2 errors obtained for different values of α with m = 10, N = 10, and λ2 = 0.001.

t α = 0.25 α = 0.85 α = 0.95
0.1 1.77× 10−4 1.12× 10−4 9.30× 10−6

0.3 1.21× 10−3 2.04× 10−4 6.53× 10−5

0.5 6.37× 10−4 3.30× 10−4 2.13× 10−4

0.7 1.13× 10−3 6.09× 10−4 4.17× 10−4

0.9 2.86× 10−3 1.12× 10−3 7.56× 10−4

0.2 0.4 0.6 0.8 1.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Α=0.95

Α=0.5

Α=.25

Fig. 3 Comparison of numerical and exact solutions of Example 3 for m = 8

7 Conclusion

In this work, a new computational method based on the shifted Legendre poly-
nomials with the Tau method was proposed for solving a class of fractional
stochastic integro-differential equation. For this purpose a new stochastic op-
erational matrix for shifted Legendre polynomials is derived. The BPFs and
their relations are used to derive this stochastic operational matrix. The most
important contribution of our work is that we transform the initial problem
into a linear algebraic system equations to obtain the approximation solution.
The illustrative examples show the validity of the proposed method. Undoubt-
edly these examples also exhibit the accuracy of the present method.
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