The Schur Multiplier of Pairs of Nilpotent Lie Algebras

Homayoon Arabyani

Received: 6 October 2021 / Accepted: 4 December 2021

Abstract The Schur multiplier of a pair of groups was introduced by Ellis in 1998. In this paper, we study the Schur multiplier of a pair of Lie algebras and give some conditions under which the Schur multiplier of a pair of Lie algebras is trivial. Moreover, we give some conditions under which the higher multiplier of a pair of Lie algebras is not trivial.

Keywords Pair of Lie algebras *·* Schur multiplier *·* Nilpotent Lie algebras

Mathematics Subject Classification (2010) 17B30 *·* 17B60 *·* 17B99

1 Introduction

All Lie algebras are considered over a fixed field *Λ* and [*,*] denotes the Lie bracket. Let *L* be a Lie algebra with a free presentation

$$
0 \to R \to F \to L \to 0.
$$

The Schur multiplier of L is denoted by $\mathcal{M}(L)$ and defined as

$$
\mathcal{M}(L) = \frac{R \cap [F, F]}{[R, F]}.
$$

One can easily verify that the Schur multiplier of a Lie algebra *L* is abelian and is independent of the choice of free presentation (see [11] for more information). The notion of the *c*-nilpotent multiplier of a Lie algebra was introduced by Salemkar et al. in 2009. Let *L* be a Lie algebra, the *c*-nilpotent multiplier of *L* is defined as

Fax: +123-45-678910

H. Arabyani

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: +123-45-678910

E-mail: arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir

$$
\mathcal{M}^{(c)}(L) = \frac{R \cap \gamma_{c+1}(F)}{\gamma_{c+1}(R,F)},
$$

where $\gamma_{c+1}(F)$ is the $(c+1)$ -st term of the lower central series of F , $\gamma_1(R, F)$ = *R* and $\gamma_{c+1}(R, F) = [\gamma_c(R, F), F]$. In particular, if $c = 1$, then $\mathcal{M}^{(1)}(L)$ is the Schur multiplier of *L*. By the Hopf type formula, $\mathcal{M}(L)$ is isomorphic to the second homology of *L* with coefficients in *Λ*.

Let (*N, L*) be a pair of Lie algebras, in which *N* is an ideal in *L*. The Schur multiplier of (N, L) to be the abelian Lie algebra $\mathcal{M}(N, L)$ appearing in the following natural exact sequence of Lie algebras

$$
H_3(L) \to H_3(L/N) \to \mathcal{M}(N, L) \to \mathcal{M}(L) \to \mathcal{M}(L/N) \to \frac{L}{[N, L]} \to \frac{L}{L^2} \to \frac{L}{(L^2 + N)} \to 0,
$$

where $\mathcal{M}(-)$ and $H_3(-)$ denote the Schur multiplier and the third homology of a Lie algebra, respectively.

Let $0 \to R \to F \to L \to 0$ be a free presentation of *L*. If the ideal *N* possesses complement in *L*, then

$$
\mathcal{M}(N,L)=\frac{R\cap [S,F]}{[R,F]}
$$

,

in which *S* is an ideal in *F*, such that $N \cong S/R$ (see [4,9,16] for further details). Similarly, we can define the *c*-nilpotent multiplier of a pair (*N, L*) as

$$
\mathcal{M}^{(c)}(N,L) = \frac{R \cap [S,{}_{c}F]}{[R,{}_{c}F]}.
$$

In particular, if $N = L$, then $\mathcal{M}^{(c)}(N, L) = \mathcal{M}^{(c)}(L)$ is the *c*-nilpotent multiplier of *L*. (See $[1,2,5,15,17,19]$ for more information).

2 Main Results

In this section, we prove some properties of the *c*-nilpotent multiplier of a pair of Lie algebras. Let (*N, L*) be a pair of Lie algebras, we first recall that the subalgebras $Z_c(N, L)$ and $[N, cL]$ for all $c \geq 1$ as follows:

$$
Z_c(N, L) = \{ n \in N \mid [n, l_1, \dots, l_c] = 0, \forall l_1, \dots, l_c \in L \},
$$

$$
[N, c] = \langle [n, l_1, \dots, l_c] \mid n \in N, l_1, \dots, l_c \in L \rangle,
$$

where,

$$
[n, l_1, \ldots, l_c] = [\ldots, [[n, l_1], l_2], \ldots, l_c], \ (c \ge 1),
$$

(see [16,17] for more information). Let (N, L) be a pair of Lie algebras. We recall that the *c*th precise center of the pair (*N, L*) is defined to be

$$
Z_c^*(N,L) = \cap \{ \varphi(Z_c(M,L)) \},\
$$

where, $\varphi : M \to L$ is a relative *c*-central extension of (N, L) . It is easy to see that $Z_c^*(L, L) = Z_c^*(L)$ (See [10,18]). Let (N, L) and (H, K) be two pairs of Lie algebras. A homomorphism from (N, L) to (H, K) is a homomorphism $f: L \to K$ such that $f(N) \subseteq H$. We say that (N, L) and (H, K) are isomorphic if *f* is an isomorphism and $f(N) = H$.

Moreover, a pair (N, L) is called nilpotent of class c, if $[N, cL] = 0$ and $[N, c-1] \neq 0$ for some positive integer *c* (see [9] for more information). The following Lemmas are useful in the proof of the next results.

Lemma 1 *([14], Theorem 3.3)* Let (f, f) : $(N, L) \to (K, H)$ be a homo*morphism of pairs of Lie algebras. Suppose that f induces isomorphism f*⁰ : $L/N \rightarrow H/K$ and $f_1 : N/\gamma_{c+1}(N, L) \rightarrow K/\gamma_{c+1}(K, H)$ *. Also, we assume that* $\bar{f}: \mathcal{M}^{(c)}(N,L) \to \mathcal{M}^{(c)}(K,H)$ *is an epimorphism. Then f induces the following isomorphism*

$$
(f_n, f_n|) : \left(\frac{N}{\gamma_{nc+1}(N, L)}, \frac{L}{\gamma_{nc+1}(N, L)}\right) \to \left(\frac{K}{\gamma_{nc+1}(K, H)}, \frac{H}{\gamma_{nc+1}(K, H)}\right),
$$

for $n \geq 0$ *.*

Lemma 2 *([1], Proposition 2.3) Let L be a Lie algebra and K be an ideal in L contained in N, then the following sequences are exact*

$$
0 \to \mathcal{M}^{(c)}(K,L) \to \mathcal{M}^{(c)}(N,L) \stackrel{\alpha}{\to} \mathcal{M}^{(c)}(\frac{N}{K},\frac{L}{K}) \to \frac{K \cap [N,cL]}{[K,cL]} \to 0, \quad (1)
$$

$$
\mathcal{M}^{(c)}(N,L) \to \mathcal{M}^{(c)}(\frac{N}{K}, \frac{L}{K}) \to N \to \frac{L}{[N, cL]} \to \frac{L}{[N, cL] + K} \to 0. \tag{2}
$$

Lemma 3 *(* $[6]$ *, Theorem 3.4)* Let *N* be a *c*-central ideal of Lie algebra L. *Then the following conditions are equivalent.*

- (i) $N \cap \gamma_{c+1}(L) \cong (\mathcal{M}^{(c)}(L/N)/((\mathcal{M}^{(c)}(L)),$ (iii) $N \subseteq Z_c^*(L)$,
- *(iii) the homomorphism* $\mathcal{M}^{(c)}(L) \to \mathcal{M}^{(c)}(L/N)$ *is injective.*

Theorem 1 *Let* (N, L) *be a pair of Lie algebras and* $0 \to R \to F \stackrel{\pi}{\to} L \to 0$ *be a free presentation of L such that* $N \cong S/R$ *for an ideal S in F.* If $K \subset$ $Z_c^*(N,L)$ *, then*

(i) the natural homomorphism $\mathcal{M}^{(c)}(L) \to \mathcal{M}^{(c)}(L/K)$ is injective,

 (iii) $K \subseteq Z_c^*(L) \cap N$,

- (iii) $\gamma_{c+1}^*(N,L) = \gamma_{c+1}^*(N/K,L/K)$,
	- $where, \gamma_{c+1}^{*}(N, L) = [S, {}_{c}F]/[R, {}_{c}F].$

Proof We define the following homomorphism:

$$
\delta: S/[R, {}_{c}F] \to L
$$

$$
s + [R, {}_{c}F] \stackrel{\delta}{\to} \pi(s).
$$

We can see that δ is a relative c-central extension by an action of L on $S/[R, cF]$ *, defined by*

$$
^{\ell}(s + [R, {}_{c}F]) = [s, f] + [R, {}_{c}F],
$$

where $\pi(f) = \ell$ *. Thus,*

$$
Z^*(N,L) \subseteq \delta(Z(S/[R,{}_cF],L)).
$$

Let $0 \to R \to T \to K \to 0$ *be a free presentation of K. If* $K \subseteq Z^*(N, L)$ *, then*

$$
\delta(T/[R, {}_{c}F]) \subseteq \delta(Z(S/[R, {}_{c}F], L).
$$

Also, we have

$$
Ker(\mathcal{M}^{(c)}(L) \to \mathcal{M}^{(c)}(L/K)) = [T, {}_cF]/[R, {}_cF] = Ker([S, {}_cF]/[R, {}_cF] \to [S, {}_cF]/[T, {}_cF]).
$$

Hence, (*i*) and (*iii*) hold. By Lemma 3, $K \subseteq Z_c^*(L)$ if and only if the homo*morphism* $\mathcal{M}^{(c)}(L) \to \mathcal{M}^{(c)}(L/K)$ *is injective and so, the result is held.*

By Theorem 1, we obtain the following result.

Corollary 1 *Let* (N, L) *be a pair of Lie algebras such that* $Z_c^*(N, L) = N$ *. Then* $\gamma_{c+1}^*(N, L) = 0$ *.*

The next lemma is useful in the proof of Theorem 2.

Lemma 4 *Let* (N, L) *be a pair of Lie algebras and* $0 \to R \to F \stackrel{\pi}{\to} L \to 0$ *, be a free presentation of L such that* $N \cong S/R$ *for an ideal S in F, then for all* $c \geq 1$

(i) $\gamma_{c+1}^*(N, L) = 0$ *if and only if* (N, L) *is nilpotent and* $\mathcal{M}^{(c)}(N, L) = 0$ *.*

(ii) If $\gamma_{c+1}^*(N,L) = 0$, then $\gamma_{c+1}^*(N/K, L/K) = 0$, where *K is an ideal of L such that* $K \subseteq Z_c^*(N, L)$ *.*

Proof (*i*) *It is clear.*

(ii) Let $0 \rightarrow R \rightarrow F \stackrel{\pi}{\rightarrow} L \rightarrow 0$ be a free presentation of L and N \cong *S/R for an ideal S in F.* Using the assumption, we have $[R, cF] = [S, cF]$ *. Thus, the pair* $(S/[R, cF], F/[R, cF])$ *is nilpotent of class c. Hence,* $N =$ $\bar{\pi}(Z_c(S/[R, F], F/[R, F]))$ *, where* $\bar{\pi}$ *is the natural epimorphism induced by π. Therefore, the result follows from Theorem 1.*

Now, we prove the following theorem.

Theorem 2 *Let* (*N, L*) *be a pair of finite dimensional nilpotent Lie algebras of nilpotency class* $c \geq 2$ *such that* $Z_c^*(N, L) \subseteq Z(N, L)$ *. Then* $\mathcal{M}(N, L) \neq 0$ *.*

Proof Let $\mathcal{M}(N, L) = 0$. By Lemma 1, we can see that there is a free pre*sentation* $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$ *of L with* $N \cong S/R$ *for an ideal S in F such that* $R \subseteq [S, n]$ *for all* $n \geq 0$ *. Moreover, if* $\mathcal{M}^{(c)}(N, L) = 0$ *, for some* $c \geq 1$ *then* $\mathcal{M}^{(d)}(N, L) = 0$ *for all* $d \geq 1$ *. Hence, By Lemma 4 (i), we have* $\gamma_{c+1}^*(N, L) = 0$ *. Also, using Lemma 4 (ii),* $\gamma_{c+1}^*(N/M, L/M) = 0$ *, where, M is an ideal in L such that* $M \subseteq Z_c^*(N, L)$ *. Thus,*

 $\mathcal{M}(N/M, L/M) = \mathcal{M}^{(c)}(N/M, L/M) = 0.$

In particular, we obtain

$$
\mathcal{M}(N/Z(N,L), L/Z(N,L)) = 0.
$$

On the other hand, using Lemma 2, the following sequence is exact:

$$
M \otimes L \to \mathcal{M}(N, L) \to \mathcal{M}(N/M, L/M) \to M \cap [N, L] \to 0,
$$

Thus, $[N, L] \cap Z(N, L) = 0$ *that implies* $[N, L] \cong [N/Z(N, L), L/Z(N, L)]$. *Hence, we have*

$$
[N/Z(N,L), L/Z(N,L)] = N/Z(N,L),
$$

which is a contradiction.

By Theorem 2, we obtain the following result. Note that in Corollary 2, we extend a result of Stitzinger and Bosko (2011).

Corollary 2 *Under assumptions of Theorem 2,* $\mathcal{M}^{(c)}(N,L) \neq 0$ *for all* $c \geq 1$ *.*

In the next result, we give a sufficient condition under which the Schur multiplier of a pair of Lie algebras is trivial.

Theorem 3 *Let* (*N, L*) *be a pair of finite dimensional nilpotent Lie algebras and* $f:(N, L) \rightarrow (H, K)$ *be an epimorphism. If* $Ker f \subseteq N^2$ *and* $\mathcal{M}(H, K)$ *is trivial, then f is an isomorphism.*

Proof $Set M = Ker f$, then $\mathcal{M}(N/M, L/M) = 0$. By Lemma 2, $(M \cap [N, L])/[M, L]$ *is trivial. Since* $M \subseteq N^2 \subseteq [N, L]$ *, so* $M = [M, L]$ *. Set*

$$
M_1 = M
$$
, and $M_{n+1} = [M, nL]$.

Thus,

$$
M = M_n \subseteq \gamma_{n+1}(N) \subseteq [N, {}_nL] = [[N, {}_{n-1}L], L].
$$

Now, since (N, L) *is nilpotent,* $[N, n] = 0$ *for some positive integer n. Therefore,* $M = 0$ *and so, f is an isomorphism.*

Corollary 3 *Let* (*N, L*) *be a pair of finite dimensional nilpotent Lie algebras. If* $\mathcal{M}(N/[N, L], L/[N, L]) = 0$ *, then* $\mathcal{M}(N, L) = 0$ *.*

References

- 1. H. Arabyani, Bounds for the dimension of the *c*-nilpotent multiplier of a pair of Lie algebras, Bull. Iranian Math. Soc., 43, 2411–2418 (2017).
- 2. H. Arabyani, Some results on the *c*-nilpotent multiplier of a pair of Lie algebras, Bull. Iranian Math. Soc., 45, 205–212 (2019).
- 3. H. Arabyani, Some Results on the Higher Multiplier of a Pair of Groups, Southeast Asian Bull. Math. 45, 429–435 (2021).
- 4. H. Arabyani, F. Saeedi, M. R. R. Moghaddam, E. Khamseh, Characterization of nilpotent Lie algebras pair by their Schur multipliers, Comm. Algebra, 42, 5474–5483 (2014).
- 5. H. Arabyani, H. Safa, Some properties of *c*-covers of a pair of Lie algebras, Quaest. Math., 42, 37–45 (2019).
- 6. M. Araskhan, On the *c*-covers and a special ideal of Lie algebras, Iran. J. Sci. Technol. Trans. A. Sci., 40, 165–169 (2016).
- 7. L. Bosko, E. Stitzinger, Schur multipliers of nilpotent Lie algebras, arXiv:1103. 1812v1 [math. RA] 9 Mar 2011.
- 8. B. Edalatzadeh, S. N. Hosseini, A. R. Salemkar, On characterizing pairs of nilpotent Lie algebras by their second relative homologies, J. Algebra, 549, 112–127 (2020).
- 9. A. Gholami, Z. Mohammad Abadi, S. Heidarian, Some generalized varietal properties on pair of groups, Southeast Asian Bull. Math., 36, 301–308 (2012).
- 10. A. Hokmabadi, A. Pourmirzaei, S. Kayvanfar, A criterion for *c*-capability of pairs of groups, Tbilisi Mathematical Journal, 5, 31–38 (2012).
- 11. K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom., 11, 9–22 (1994).
- 12. P. Niroomand, F. Johari, The structure, capability and the Schur multiplier of generalized Heisenberg Lie algebras, J. Algebra, 505, 482–489 (2018).
- 13. P. Niroomand, F. Johari, M. Parvizi, Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field, Linear Multilinear Algebra, 67, 542–554 (2019).
- 14. M. R. Rismanchian, M. Molavi, M. Araskhan, On dimension and homological methods of the (higher) Schur multiplier of a pair of Lie algebras, Comm. Algebra, 45, 4707–4716 (2017).
- 15. Z. Riyahi, A. R. Salemkar, A remark on the Schur multiplier of nilpotent Lie algebras, J. Algebra, 438, 1–6 (2015).
- 16. F. Saeedi, A. R. Salemkar, B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras, J. Lie Theory, 21, 491–498 (2011).
- 17. H. Safa, H. Arabyani, On *c*-nilpotent multiplier and *c*-covers of a pair of Lie algebras, Comm. Algebra., 45, 4429-4434 (2017).
- 18. H. Safa, H. Arabyani, Capable pairs of Lie algebras, Math. Proc. R. Ir. Acad., 118, 39–45 (2018).
- 19. A. R. Salemkar, B. Edalatzadeh, M. Araskhan, Some inequalities for the dimension of the *c*-nilpotent multiplier of Lie algebras, J. Algebra, 322, 1575–1585 (2009).