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Abstract The Schur multiplier of a pair of groups was introduced by Ellis
in 1998. In this paper, we study the Schur multiplier of a pair of Lie algebras
and give some conditions under which the Schur multiplier of a pair of Lie
algebras is trivial. Moreover, we give some conditions under which the higher
multiplier of a pair of Lie algebras is not trivial.
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1 Introduction

All Lie algebras are considered over a fixed field Λ and [, ] denotes the Lie
bracket. Let L be a Lie algebra with a free presentation

0 → R → F → L → 0.

The Schur multiplier of L is denoted by M(L) and defined as

M(L) =
R ∩ [F, F ]

[R,F ]
.

One can easily verify that the Schur multiplier of a Lie algebra L is abelian and
is independent of the choice of free presentation (see [11] for more information).
The notion of the c-nilpotent multiplier of a Lie algebra was introduced by
Salemkar et al. in 2009. Let L be a Lie algebra, the c-nilpotent multiplier of
L is defined as
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M(c)(L) =
R ∩ γc+1(F )

γc+1(R,F )
,

where γc+1(F ) is the (c+1)-st term of the lower central series of F , γ1(R,F ) =
R and γc+1(R,F ) = [γc(R,F ), F ]. In particular, if c = 1, then M(1)(L) is the
Schur multiplier of L. By the Hopf type formula, M(L) is isomorphic to the
second homology of L with coefficients in Λ.

Let (N,L) be a pair of Lie algebras, in which N is an ideal in L. The Schur
multiplier of (N,L) to be the abelian Lie algebra M(N,L) appearing in the
following natural exact sequence of Lie algebras

H3(L) → H3(L/N) → M(N,L) → M(L) → M(L/N) → L

[N,L]
→ L

L2
→

L

(L2 +N)
→ 0,

where M(−) and H3(−) denote the Schur multiplier and the third homology
of a Lie algebra, respectively.

Let 0 → R → F → L → 0 be a free presentation of L. If the ideal N
possesses complement in L, then

M(N,L) =
R ∩ [S, F ]

[R,F ]
,

in which S is an ideal in F , such that N ∼= S/R (see [4,9,16] for further
details). Similarly, we can define the c-nilpotent multiplier of a pair (N,L) as

M(c)(N,L) =
R ∩ [S, cF ]

[R, cF ]
.

In particular, if N = L, then M(c)(N,L) = M(c)(L) is the c-nilpotent multi-
plier of L. (See [1,2,5,15,17,19] for more information).

2 Main Results

In this section, we prove some properties of the c-nilpotent multiplier of a pair
of Lie algebras. Let (N,L) be a pair of Lie algebras, we first recall that the
subalgebras Zc(N,L) and [N, cL] for all c ≥ 1 as follows:

Zc(N,L) = {n ∈ N | [n, l1, . . . , lc] = 0, ∀l1, . . . , lc ∈ L},

[N, cL] = ⟨[n, l1, . . . , lc] | n ∈ N, l1, . . . , lc ∈ L⟩,

where,

[n, l1, . . . , lc] = [. . . , [[n, l1], l2], . . . , lc], (c ≥ 1),

(see [16,17] for more information). Let (N,L) be a pair of Lie algebras. We
recall that the cth precise center of the pair (N,L) is defined to be

Z∗
c (N,L) = ∩{φ(Zc(M,L))},
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where, φ : M → L is a relative c-central extension of (N,L). It is easy to
see that Z∗

c (L,L) = Z∗
c (L) (See [10,18]). Let (N,L) and (H,K) be two pairs

of Lie algebras. A homomorphism from (N,L) to (H,K) is a homomorphism
f : L → K such that f(N) ⊆ H. We say that (N,L) and (H,K) are isomorphic
if f is an isomorphism and f(N) = H.

Moreover, a pair (N,L) is called nilpotent of class c, if [N, cL] = 0 and
[N, c−1L] ̸= 0 for some positive integer c (see [9] for more information). The
following Lemmas are useful in the proof of the next results.

Lemma 1 ([14], Theorem 3.3) Let (f, f |) : (N,L) → (K,H) be a homo-
morphism of pairs of Lie algebras. Suppose that f induces isomorphism f0 :
L/N → H/K and f1 : N/γc+1(N,L) → K/γc+1(K,H). Also, we assume
that f̄ : M(c)(N,L) → M(c)(K,H) is an epimorphism. Then f induces the
following isomorphism

(fn, fn|) :
(

N

γnc+1(N,L)
,

L

γnc+1(N,L)

)
→

(
K

γnc+1(K,H)
,

H

γnc+1(K,H)

)
,

for n ≥ 0.

Lemma 2 ( [1], Proposition 2.3) Let L be a Lie algebra and K be an ideal in
L contained in N , then the following sequences are exact

0 → M(c)(K,L) → M(c)(N,L)
α→ M(c)(

N

K
,
L

K
) → K ∩ [N, cL]

[K, cL]
→ 0, (1)

M(c)(N,L) → M(c)(
N

K
,
L

K
) → N → L

[N, cL]
→ L

[N, cL] +K
→ 0. (2)

Lemma 3 ([6], Theorem 3.4) Let N be a c-central ideal of Lie algebra L.
Then the following conditions are equivalent.

(i) N ∩ γc+1(L) ∼= (M(c)(L/N)/((M(c)(L)),
(ii) N ⊆ Z∗

c (L),
(iii) the homomorphism M(c)(L) → M(c)(L/N) is injective.

Theorem 1 Let (N,L) be a pair of Lie algebras and 0 → R → F
π→ L → 0

be a free presentation of L such that N ∼= S/R for an ideal S in F . If K ⊆
Z∗
c (N,L), then

(i) the natural homomorphism M(c)(L) → M(c)(L/K) is injective,
(ii) K ⊆ Z∗

c (L) ∩N ,
(iii) γ∗

c+1(N,L) = γ∗
c+1(N/K,L/K),

where, γ∗
c+1(N,L) = [S, cF ]/[R, cF ].

Proof We define the following homomorphism:

δ : S/[R, cF ] → L

s+ [R, cF ]
δ→ π(s).
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We can see that δ is a relative c-central extension by an action of L on
S/[R, cF ], defined by

ℓ(s+ [R, cF ]) = [s, f ] + [R, cF ],

where π(f) = ℓ. Thus,

Z∗(N,L) ⊆ δ(Z(S/[R, cF ], L)).

Let 0 → R → T → K → 0 be a free presentation of K. If K ⊆ Z∗(N,L), then

δ(T/[R, cF ]) ⊆ δ(Z(S/[R, cF ], L).

Also, we have

Ker(M(c)(L) → M(c)(L/K)) = [T, cF ]/[R, cF ] = Ker([S, cF ]/[R, cF ] →
[S, cF ]/[T, cF ]).

Hence, (i) and (iii) hold. By Lemma 3, K ⊆ Z∗
c (L) if and only if the homo-

morphism M(c)(L) → M(c)(L/K) is injective and so, the result is held.

By Theorem 1, we obtain the following result.

Corollary 1 Let (N,L) be a pair of Lie algebras such that Z∗
c (N,L) = N .

Then γ∗
c+1(N,L) = 0.

The next lemma is useful in the proof of Theorem 2.

Lemma 4 Let (N,L) be a pair of Lie algebras and 0 → R → F
π→ L → 0, be

a free presentation of L such that N ∼= S/R for an ideal S in F , then for all
c ≥ 1

(i) γ∗
c+1(N,L) = 0 if and only if (N,L) is nilpotent and M(c)(N,L) = 0.

(ii) If γ∗
c+1(N,L) = 0, then γ∗

c+1(N/K,L/K) = 0, where K is an ideal of L
such that K ⊆ Z∗

c (N,L).

Proof (i) It is clear.
(ii) Let 0 → R → F

π→ L → 0 be a free presentation of L and N ∼=
S/R for an ideal S in F . Using the assumption, we have [R, cF ] = [S, cF ].
Thus, the pair (S/[R, cF ], F/[R, cF ]) is nilpotent of class c. Hence, N =
π̄(Zc(S/[R, cF ], F/[R, cF ])), where π̄ is the natural epimorphism induced by
π. Therefore, the result follows from Theorem 1.

Now, we prove the following theorem.

Theorem 2 Let (N,L) be a pair of finite dimensional nilpotent Lie algebras
of nilpotency class c ≥ 2 such that Z∗

c (N,L) ⊆ Z(N,L). Then M(N,L) ̸= 0.

Proof Let M(N,L) = 0. By Lemma 1, we can see that there is a free pre-
sentation 0 → R → F → L → 0 of L with N ∼= S/R for an ideal S in F
such that R ⊆ [S, nF ] for all n ≥ 0. Moreover, if M(c)(N,L) = 0, for some
c ≥ 1 then M(d)(N,L) = 0 for all d ≥ 1. Hence, By Lemma 4 (i), we have
γ∗
c+1(N,L) = 0. Also, using Lemma 4 (ii), γ∗

c+1(N/M,L/M) = 0, where, M
is an ideal in L such that M ⊆ Z∗

c (N,L). Thus,
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M(N/M,L/M) = M(c)(N/M,L/M) = 0.

In particular, we obtain

M(N/Z(N,L), L/Z(N,L)) = 0.

On the other hand, using Lemma 2, the following sequence is exact:

M ⊗ L → M(N,L) → M(N/M,L/M) → M ∩ [N,L] → 0,

Thus, [N,L] ∩ Z(N,L) = 0 that implies [N,L] ∼= [N/Z(N,L), L/Z(N,L)].
Hence, we have

[N/Z(N,L), L/Z(N,L)] = N/Z(N,L),

which is a contradiction.

By Theorem 2, we obtain the following result. Note that in Corollary 2, we
extend a result of Stitzinger and Bosko (2011).

Corollary 2 Under assumptions of Theorem 2, M(c)(N,L) ̸= 0 for all c ≥ 1.

In the next result, we give a sufficient condition under which the Schur mul-
tiplier of a pair of Lie algebras is trivial.

Theorem 3 Let (N,L) be a pair of finite dimensional nilpotent Lie algebras
and f : (N,L) → (H,K) be an epimorphism. If Ker f ⊆ N2 and M(H,K) is
trivial, then f is an isomorphism.

Proof Set M = Ker f , then M(N/M,L/M) = 0. By Lemma 2, (M∩[N,L])/[M,L]
is trivial. Since M ⊆ N2 ⊆ [N,L], so M = [M,L]. Set

M1 = M, and Mn+1 = [M, nL].

Thus,

M = Mn ⊆ γn+1(N) ⊆ [N, nL] = [[N, n−1L], L].

Now, since (N,L) is nilpotent, [N, nL] = 0 for some positive integer n. There-
fore, M = 0 and so, f is an isomorphism.

Corollary 3 Let (N,L) be a pair of finite dimensional nilpotent Lie algebras.
If M(N/[N,L], L/[N,L]) = 0, then M(N,L) = 0.
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