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Abstract The exit methods for producing the common weight in DEA are
complicated or they can’t produce full ranking for Decision Making Units
(DMUs). Wang and et al. [10,11] introduced two methods based on regresion
analysis for finding common weights. In these method they fined set of com-
mon weight so that the efficeincy which is computed by set of common weight
for all units, are always smaller or and equal to obtained optimistic efficeincy
from CCR model. In this methods we are trying to make the computed effi-
ceincy by common weight closer to obtained optimistic efficeincy from CCR
model, and or in other words the goal is to obtain unique hyperplane as all
distance of DMUs from this hyperplane will be minimal. In this paper by using
an example, we show that the obtained hyperplane from suggested methods
of Wang is passing throug PPS. In other words, in introduced method of pro-
posed hyperplane for ranking, isn’t relaying PPS, neccessarly. At the end, we
will introduce a new method for ranking the decision makind units that is a
correspond hyperplane of relaying common weight set on PPS and finally we
can use this techniqe for real data.
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1 Introduction

Data Envelopment Analysis (DEA) developed by Charnes and et al. [1], is
a non-parametric method to evaluate the efficeincy of a group of Decision
Making Units (DMUs) that these units produce several outputs by consume
several inputs. Since DEA does not have a default for the production func-
tion, therefore the type of relation between input and output is not default.
On the other hand, DEA separately calculates and evaluates the efficeincy of
each DMUs with input and output weights under the best conditions, that are
ideal for them. In addition, there is no default on the weights expect being
them nonnegative. Therefore, the choice of weights has a great flexibility and
freedom. Based on the freedom to choice input and output weight, it is very
likely that more than one DMU of efficient DEA Evaluated. Therefore, DMUs
are not completely separated. In other words, using variable weights for differ-
ent DMUs makes it possible to compare their efficeincy and rank the DMUs.
In order to reduce flexibility in selecting input and output weights, a set of
common weights instead of variable weights is proposed to evaluate DMUs.
Using common weights allows us to compare and rank the efficeincy of DMUs
on a base. Some proposed methods to obtain a set of common weights for
DMUs in DEA are as follow. Ganley and Cubbin [3], were given the common
weights by using maximizing total efficeincys of DMUs. Barboy and et al. [8]
have developed a two-step linear separate analysis method to produce common
weights. Friedman and Sinuany-Stern [2], used a canonical correlation analy-
sis to provide a weight vector for inputs and outputs, for all DMUs. Friedman
and Sinuany-Stern [2], provided a nonlinear separate analysis to produce com-
mon weights. Liu and Peng [7], proposed a Common Weight Analysis (CWA)
method to search for a common set of weights for DMUs. Hashymoto and Wu
[4], presented the Compromised Programming (DEA-CP) model to search for
a common set of weights by combining DEA and compromise programming
for DMUs. Also, Kao and Hung [6], suggested a similar compromise solution
to produce common weights under framework of DEA. Lou and et al. [11],
provided ranking the DMUs by applying weight restrictions that produce a
set of common weights for DMUs under comparison. Wang and et al. [10],
presented the methods to obtain a set of common weights based on regression
analysis. In this research, it is presented a new approach to search a set of
common weights that easily is estimated, as well as be able to completely rank
DMUs.

The proposed method, tries to find only a PPs-supported hyperplane,
which distance of all DMUs from the hyperplane is the lowest. The distance is
accepted as the error. In other words, it finds the set of common weight such
that the sum of these errors is minimized, so that efficeincy is obtained by a
set of common weights for DMUp (p = 1, . . . , n), always less than or equal to
the optimistic efficeincy obtained from CCR model for DMUp. The remainder
of this paper is organized as follows: Section 2, briefly introduces CCR model
which is presented by Charnes et al. [1] and definition efficeincy with a set of
weights. Section 3, presents the proposed models of Wang et al. [10] for ranking
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Decision Making Units which are based on regression analysis and the set of
common weights, in summary. Section 4 contains an example that shows the
hyperplane corresponding set of common weight from Wang’s model does not
rely on PPS. In Section 5, we present a new model to rank based on the set
of common weight and we will show that hyperplane corresponding that relies
on the PPS. In Section 6, we compare the proposed method from Wang and
new method by providing a practical example. Finally, we give conclusions in
Section 7.

2 CCR model and efficiency of DMUs

Let n, DMU have been evaluated with m input and s output. If xij , (i =
1, . . . ,m) and yrj , (r = 1, . . . , s) be input and output values and vi, (i =
1, . . . ,m) and ur, (r = 1, . . . , s) be input and output weights for n, DMU and
Θj be efficeincy of DMUj that definded by following equality

Θj =

∑s
r=1 uryrj∑m
i=1 vjxij

, j = 1, . . . , n (1)

According to the Charnes and et al model [1], the best relative efficiency of
any DMU can be measured.

Θ∗
p = max Θp =

s∑
r=1

uryrp

s.t
m∑
i=1

vixip = 1

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n,

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . ,m,

(2)

where DMUP refers to the under evaluation DMU, vi, (i = 1, . . . ,m) and
ur, (r = 1, . . . , s) are decision variables. If optimal objective function value,Θ∗

p

equals one, that means Θ∗
p = 1 then is efficency in terms of DEA or in summary

is efficiency. Otherwise is inefficiency of DEA or in summary is inefficiency. Now
because the considered efficiency be recognizable from the other efficiencies,
the efficiencies as defined by CCR model often named CCR efficiency and
in this paper considered as lucky efficiencies of DMU. The CCR model is
feasible for any (2). Therefore, the optimal weights are different from a DMU to
another. On the other hand, for optimal solution (U∗, V ∗)t from product CCR
model in order to evaluate of DMUP , alwayes reliance hyperplane {(x, y) :
U∗y−V ∗x = 0} is obtianed. In next section, we introduce the proposed Wang
and et al models.
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3 Wang and et al’s proposed models

Wang, Luo and Lan [11] propose two models (3) and (4) to estimate the
common weights.

min z =

n∑
j=1

(
Θ∗

j −
∑s

r=1 uryrj∑m
i=1 vjxij

)2

s.t.

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . ,m,

(3)

min j =

n∑
j=1

( s∑
r=1

uryrj −Θ∗
j

m∑
i=1

vixij

)2

s.t.
s∑

r=1

ur

( n∑
j=1

yrj

)
+

m∑
i=1

vi

( n∑
j=1

xij

)
= n, (b),

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . ,m.

(4)

The set of constraints (b) in model4 is applied for normalization. The aim of
these methods is finding the set of the common optimal weight of model3 or 4
that minimizes the difference Θj and Θ∗

j for j ∈ {1, . . . , n} or found the uniqe
hyperplane that the distance all DMUs will be minimum from it.

Because in the Wang models, the constraint U tyj−V txj ≤ 0,∀j ∈ {1, . . . , n}
doesn’t exit, then maybe the achieved hyperplane from these models passes
through PPS.

If we use the another distance such as norm one or Chebyshev distance for
expanded the regression models 3 or 4 for production the common weights,
maybe these models can’t produce the perfect ranking for DMUs.

The model (3) is definded by the norm infinity distance in following form

min max
{
|Θ∗

j −
U tyj
V txj

| : j = 1, . . . , n
}

s.t.

U ≥ 0,

V ≥ 0.

(5)
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This model converts the following simple form

min N

s.t.

V txj(−Θ∗
j +N) + U tyj ≥ 0, j = 1, . . . , n,

V txj(Θ
∗
j +N)− U tyj ≥ 0, j = 1, . . . , n,

U ≥ 0,

V ≥ 0,

(6)

and so the model (3) with norm 1 is defined in form

min

n∑
j=1

|Θ∗
j −

U tyj
V txj

|

s.t.

U ≥ 0

V ≥ 0.

(7)

The nonlinear model (7) with definition Θ∗
j −

Utyj

V txj
= fj − gj where fj and gj

are nonnegative for all j ∈ {1, . . . , n} is in following form

min

n∑
j=1

(fj + gj)

s.t.

V txj(fj − gj −Θ∗
j ) + U tyj = 0, j = 1, . . . , n,

U ≥ 0,

V ≥ 0,

fj ≥ 0, j = 1, . . . , n,

gj ≥ 0, j = 1, . . . , n.

(8)

In Section 4, we will give a numerical example that in this example the hyper-
plane corresponding to the models (5) and (7) passed from through PPS.

4 Numerical example

The obtained hyperplane from models (5) and (7) that is corresponding the
optimal solution (U∗, V ∗)t, is defined in form

{(x, y) : U∗y − V ∗x = 0}.

We show in the following example that this hyperplanes corresponding models
(5) and (7) passed through PPS and don’t be relay on PPS.
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Table 1 The set of example data

DMU U01 U02 U03 U04 U05 U06 U07 U08

I1 1 2 3 5 12 8 24 30
I2 10 8 5 1 18 30 15 40
O 1 1 1 1 1 1 1 1

Let Table 1 with data with two inputs and one output corresponding 8
determiners unit.

We obtain the set of the optimal solutions of this models with solving the
models (5) and (7) for all data of Table 1 by the GAMS program. The set of
the optimal solutions of the model (5) is in following form

v∗1 = 0.0002, v∗2 = 0.0001, u∗ = 0.0012.

The hyperplane corresponding of this set of optimal soltion is in form
{(x1, x2, y) : u

∗y−v∗1x1−v∗2x2 = 0} = {(x1, x2, y) : 0.0012y−0.0002x1−0.0001x2 = 0}
The intersection of these hyperplanes with line y = 1, is

l2 : 0.0002x1 + 0.0001x2 = 0.0012.

The set of optimal solutions (7) obtain following form
v∗1 = 0.0012, v∗2 = 0.0005, u∗ = 0.0066.

Also the uniqe hyperplane corresponding with the above set of the optimal
soution is in form
{(x1, x2, y) : u

∗y−v∗1x1−v∗2x2 = 0} = {(x1, x2, y) : 0.0066y−0.0012x1−0.0005x2 = 0}
The line l2 : 0.0012x1 + 0.0005x2 = 0.0066 is obtianed from intersection this
hyperplane and the line y = 1.

We showed in Figure 1, the Farel bound of the data Table 1 with the lines
l1 and l2. As seen in Figure 2, both of two hyperlines passed inside PPS. Then
in section 5 we will introduce a model that hyperline corresponding with the
set of common weights obtained from this model,is reliable on PPS.

5 The new method for full ranking of the decision units by the
reliable hyperplane on PPS

The new ranking model DMUs is following form with the set common weights

min
( n∑
j=1

|Θ∗
j − U tyj |p

) 1
p

s.t.

V txj ≤ 1, j = 1, . . . , n,

U tyj − V txj ≤ 0, j = 1, . . . , n,

U ≥ 1ε,

V ≥ 1ε.

(9)
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Fig. 1 The hyperplane passing in PPS

Where P is the distance parameter and P ∈ {1, 2, . . .} and also ε is the non-
Archimedes number that 1ε = (ε, . . . , ε). According to Θ∗

j (j ∈ {1, . . . , n}) is
ideal efficiency amount figurated DMUj , (j = 1, . . . , n) by CCR model, and
is obtained by model (2) independenty, is always Θ∗

j ≥ U tyj . So model (9) is
written in following form

min
( n∑
j=1

(Θ∗
j − U tyj)

p
) 1

p

s.t.

V txj ≤ 1, j = 1, . . . , n,

U tyj − V txj ≤ 0, j = 1, . . . , n,

(U, V ) ≥ 1ε.

(10)

Model (10) is written in following form for all distance parameters different
from norm 1 and Chebisheve norm

P = 1;

min w =

n∑
j=1

(Θ∗
j − U tyj)

s.t.

V txj ≤ 1, j = 1, . . . , n,

U tyj − V txj ≤ 0, j = 1, . . . , n,

(U, V ) ≥ 1ε.

(11)
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P = +∞;

min z = max{(Θ∗
j − U tyj) : j = 1, . . . , n}

s.t.

V txj ≤ 1, j = 1, . . . , n,

U tyj − V txj ≤ 0, j = 1, . . . , n,

(U, V ) ≥ 1ε.

(12)

Theorem 1 Models (11) and (12) are feasible.

Proof According to the feasible region of two models (11) and (12) is the same,
it is sufficient to prove feasiblity for only one of the two above models. Since
xj ̸= 0 and xj ≥ 0 and yj ≥ 0 and yj ̸= 0 is established for all of j ∈ {1, . . . , n}
then without entering into the totality of the argument, let

xj = (x1j , . . . , xkj , 0, . . . , 0) ∈ Rm, xij > 0, (i = 1, . . . , k)(j = 1, . . . , n),

yj = (y1j , . . . , ytj , 0, . . . , 0) ∈ Rs, yrj > 0, (r = 1, . . . , t)(j = 1, . . . , n).

Put xlj = max{xij |i = 1, . . . , k} and ypj = max{yrj |r = 1, . . . , t}.
The weight vectors of the output U and input V defined in form

V t =
[ 1

kxlj
, . . . ,

1

kxlj
, ε, . . . , ε

]t
≥ ε,

where the t first component of U is 1
kxlj

.

U t =
[ ε

typj
, . . . ,

ε

typj
, ε, . . . , ε

]t
≥ ε,

where the t first component of U is ε
typj

. Now, we show that

V txj ≤ 1, (j = 1, . . . , n) and U tyj − V txj ≤ 0, (j = 1, . . . , n).

V txj =



1
kxlj

...
1

kxlj

ε
...
ε


(x1j , · · · , xkj , 0, · · · , 0) =

x1j

kxlj
+ · · ·+ xkj

kxlj

≤ xlj

kxlj
+ · · ·+ xlj

kxlj
=

1

k
+ · · ·+ 1

k
=

k

k
= 1.
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So we prove that V txj ≤ 1, (j = 1, . . . , n).

U tyj − V txj =



ε
typj

...
ε

typj

ε
...
ε


(y1j , · · · , ytj , 0, · · · , 0)−



1
kxlj

...
1

kxlj

ε
...
ε


(x1j , · · · , xkj , 0, · · · , 0)

= ε
y1j
typj

+ · · ·+ ε
ytj
typj

− (
x1j

kxlj
+ · · ·+ xkj

kxlj
)

≤ ε
ypj
typj

+ · · ·+ ε
ypj
typj

− (
x1j

kxlj
+ · · ·+ xkj

kxlj
)

= ε− (
x1j

kxlj
+ · · ·+ xkj

kxlj
) ≤ 0.

Because ε is a tiny Archimedes number and (
x1j

kxlj
+ · · · + xkj

kxlj
) is a positive

expression, so ε− (
x1j

kxlj
+ · · ·+ xkj

kxlj
) will be smaller and or equals zero.

Theorem 2 Hyperplane which is corresponding to set of common optimal
weight of model (11), is relaying on PPS.

Proof Let (U∗, V ∗)t is the set of common optimal weight of model (11). So
H = {(x, y) : U∗y − V ∗x = 0} is hyperplane which is corresponding to it. For
proving of relaying, it’s sufficient to prove these two conditions

1. ∀ (x, y),
(
(x, y) ∈ PPS =⇒ U∗y − V ∗x ≤ 0

)
,

2. ∃ (x, y) ∈ H ∩ PPS.

For proving of condition 1 we should prove that all DMUj , (j = 1, . . . , n) with
input and output (xj , yj): U∗yj − V ∗xj ≤ 0. This matter is true with feasible
solution (U∗, V ∗)t.

For proving condition 2, it is sufficient that we have DMUj , (j = 1, . . . , n)
which is U∗yj − V ∗xj = 0. By contradiction, let hyperplane H isn’t passing
to none of decision units. Whereas (U∗, V ∗)t is the optimal solution of model
(11), it is also the feasible solution. So

U∗y1 − V ∗x1 ≤ 0,

U∗y2 − V ∗x2 ≤ 0,
...
U∗yn − V ∗xn ≤ 0.

(13)

Since y1 ≥ 0 and y1 ̸= 0. Without interrupting the whole argument, we assume
y11 > 0. We determine ∆ that (u∗

1 +∆,u∗
2, . . . , u

∗
s, V

∗)t is the fisible solution



206 Mohsen Rostamy-Malkhalifeh et al.

of madel (11). In other words,
(∆+ u∗

1)y11 + u∗
2y21 + · · ·+ u∗

sys1 − V ∗x1 ≤ 0,

(∆+ u∗
1)y12 + u∗

2y22 + · · ·+ u∗
sys2 − V ∗x2 ≤ 0,

...
(∆+ u∗

1)y1n + u∗
2y2n + · · ·+ u∗

sysn − V ∗xn ≤ 0,

(14)

After making simple the (14) relations we have
∆y11 ≤ V ∗x1 − (u∗

2y21 + · · ·+ u∗
sys1) = V ∗x1 − U∗y1,

∆y12 ≤ V ∗x2 − (u∗
2y22 + · · ·+ u∗

sys2) = V ∗x2 − U∗y2,
...
∆y1n ≤ V ∗xn − (u∗

2y2n + · · ·+ u∗
sysn) = V ∗xn − U∗yn,

(15)

with displacing U∗yj − V ∗xj = αj , (j = 1, . . . , n) and with regard to relation
(13) always αj > 0, (j = 1, . . . , n), and relations (15) will convert to below
relation

∆y1j ≤ αj , (j = 1, . . . , n).

For above relatios will happen two cases:
First case: If y1j = 0 then for every real number ∆, (u∗

1 +∆,u∗
2, . . . , u

∗
s, V

∗)t

will be the feasible solution of (11).
Second case: If y1j > 0 , then ∆ ≤ αj

y1j
.

So 0 ≤ ∆ ≤ min{ αj

y1j
: y1j > 0}. At the first of proof it is assumed that

y11 > 0. Therefor set of { αj

y1j
: yf1j > 0} has at least one member α1

y11
, so

min{ αj

y1j
: y1j > 0} will be bigger than zero. If δ = min{ αj

y1j
: y1j > 0}

with increasing u∗
1 to u∗

1+ δ always (u∗
1+ δ, u∗

2, . . . , u
∗
s, V

∗)t will be the feasible
solution of model (11). Now, the amount of the targetfunction will be computed
for this feasible solution like as below

w = (Θ∗
1 − ((u∗

1 + δ)y11 + · · ·+ u∗
sys1)) + · · ·+ (Θ∗

n − ((u∗
1 + δ)y1n + · · ·+ u∗

sysn))

= (Θ∗
1 − U∗y1 − δy11) + · · ·+ (Θ∗

n − U∗yn − δy1n).

Because δ is bigger than zero emphasisly, and at least one positive component
of y1j (j = 1, . . . , n), so it is for at least one δy1j > 0, j ∈ {1, . . . , n}. Then
above solution will be smaller that below relation.

(Θ∗
1 − U∗y1) + · · ·+ (Θn

∗ − U∗yn) =

n∑
j=1

(Θ∗
j − U∗yj).

The fiseable solution (u∗
1 + δ, u∗

2, . . . , u
∗
s, V )t has amount of target function

smaller than amount of function of optimal solution (U∗, V ∗)t that this subject
is in contrast with optimazing of (U∗, V ∗)t. So contradiction assumption is
fault, and the said hyperplane should passing on just one DMU. then this
hyperplane will be reliance on PPS.
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Theorem 3 The correspondent hyperplane of common optimal weight set of
model (12) will be relaying on PPS.

Proof Let (U∗, V ∗)t is set of common optimal weight of model (12). So H =
{(x, y) : U∗y − V ∗x = 0} is correspondent hyperplane of it. As we said in
proof of Theorem 2, for proving relaying, it is sufficient to prove these two
conditions.

First condition: For all j ∈ {1, . . . , n}, we have U∗yj − V ∗xj ≤ 0. Second
condition: At least exit a j ∈ {1, . . . , n} that the hyperplane be passing on
DMUj . In other words

∃ j ∈ {1, . . . , n} s.t. U∗yj − V ∗xj = 0.

According to the (U∗, V ∗)t is the optimal feasible solution of model (12) so
applies to the constraints of this model. In other words

V ∗xj ≤ 1, (j = 1, . . . , n),

U∗yj − V ∗xj ≤ 0, (j = 1, . . . , n).

So the first condition is established.
For proving the second condition we should show that at least one of the

constraints U∗yj − V ∗xj ≤ 0, (j = 1, . . . , n) is equal. For this, according to
theorem of complementary slackness is sufficient the daul variable correspond-
ing to one of these constraints to be non-zero. At the first model (12) write
following

min z

s.t.

− V txj ≥ −1, j = 1, . . . , n,

− U tyj + V txj ≥ 0, j = 1, . . . , n,

z + U tyj ≥ Θ∗
j , j = 1, . . . , n,

U ≥ 1ε,

V ≥ 1ε.

(16)
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Daul of model (16) is following form

max
{
−

n∑
j=1

λj +

n∑
j=1

γjΘ
∗
j + ε(1.S+ + 1.S−)

}
s.t.

n∑
j=1

γj = 1,

n∑
j=1

λjxj +

n∑
j=1

µjxj + S− = 0,

−
n∑

j=1

µjyj +

n∑
j=1

γjyj + S+ = 0,

λj ≥ 0, j = 1, . . . , n,

µj ≥ 0, j = 1, . . . , n,

γj ≥ 0, j = 1, . . . , n,

S− ≥ 0,

S+ ≥ 0.

(17)

Model (17) has the following feasible solution

γ1 = 1, γj = 0, (j = 2, . . . , n)

µ1 = 1, µj = 0, (j = 2, . . . , n)

λ1, λj = 0, (j = 2, . . . , n)

S− = 0, S+ = 0

(18)

So this model always is feasible. Suppose (γ∗, µ∗, λ∗, S−∗
, S+∗

) is the optimal
feasible solution for model (17) where γ∗ = (γ∗

1 , . . . , γ
∗
n) and µ∗ = (µ∗

1, . . . , µ
∗
n)

and λ∗ = (λ∗
1, . . . , λ

∗
n). We will be show that exit at least that µ∗

j ̸= 0. By con-
tradiction suppose for all j ∈ {1, . . . , n}, µ∗

j = 0. Because (γ∗, µ∗, λ∗, S−∗
, S+∗

)
is a optimal feasible solution for model (17), is lied in this model. In other word

∑n
j=1 γ

∗
j = 1,

−
∑n

j=1 λ
∗
jxj +

∑n
j=1 µ

∗
jxj + S−∗

= 0,

−
∑n

j=1 µ
∗
jyj +

∑n
j=1 γ

∗yj + S+∗
= 0.

(19)

According to the contradiction assumption µ∗
j = 0 for all j ∈ {1, . . . , n}. So

the relations (18) are in form
∑n

j=1 γ
∗
j = 1,

−
∑n

j=1 λ
∗
jxj + S−∗

= 0,∑n
j=1 γ

∗yj + S+∗
= 0.

(20)
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Since
∑n

j=1 γ
∗
j yj +S+∗

= 0 then the sum of two positive terms is zero so both
of two term should be zero that means

n∑
j=1

γ∗
j yj = 0

S+∗
= 0.

And since γ∗
j ≥ 0 and yj ≥ 0 then γ∗

j yj ≥ 0. So

γ∗
j yj = 0,∀{j ∈ 1, . . . , n},

or 
γ∗
1 (y11, . . . , ys1) = 0

...
γ∗
n(y1n, . . . , ysn) = 0

Since yj ̸= 0, (j ∈ {1, . . . , n}) then we have γ∗
j for all j ∈ {1, . . . , n}. Finally∑n

j=1 γ
∗
j = 0 and this has contradiction with

∑n
j=1 γ

∗
j = 1. so the contradiction

assumption is fault and there is at least a j ∈ {1, . . . , n} that µ∗
j ̸= 0. So we

have U∗yj − V ∗xj = 0 with theorem of complementary slackness.

As proved in Theorems 2 and 3 the uniqe hyperplane of models (11) and (12)
will be ralaing on the set of production possibilities.

For full ranking of the decision units by the new method, it is sufficeint
to compute the efficeincy amount of all DMUs by using the set of common
optimal weight obtained from solving model and any units that has more
efficeincy amount, will have the more great rank than other decision units.

If the efficeincy amount of more than one DMU will be equal one and or
other words introduces more than one DMU we can rank efficeincy units by
using CSW2 by JahanShahloo and et al (2005). It is sufficeint to run this
matter on one of two models (11) and (12). for this purpose, Let A is the set
of all effoceinty units from model (12). In other words, A = {j|Θj = 1}.

For ranking of the efficeincy units model (11), the following model is im-
plemented.

min z = max{(Θ∗
j − U tyj) : j ∈ A}

s.t.

V txj ≤ 1, j = 1, . . . , n, j ̸∈ A,

(U, V ) ≥ 1ε.

(21)
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After the reduction model (19) the following model achived

min z

s.t.

V txj ≤ 1, j = 1, · · · , n, j ̸∈ A,

U tyj − V txj ≤ 0, j = 1, . . . , n, j ̸∈ A,

z + U tyj ≥ Θ∗
j , j = 1, . . . , n, j ∈ A,

(U, V ) ≥ 1ε.

(22)

With solving model (20) and computing the efficeincy units of set A by using
the common optimal weight of this model, we can rank all units of set A.

We can apply a method like this method for ranking the efficeincy units
from model (11).

6 Applied example

In this section, a numerical example is tested with the proposed models of
Sections 3 and 5 and a comparison will be made between these methods. It
is noteworthy that the data in this example are for 30 bank branches and
also these numbers are approximated to 6 decimal places. We use of GAMS
program for solving this example.

We consider 30 bank branches with 3 input and 5 output that these inputs
and outputs are shown in Table 2. The data of inputs and outputs for the 30
branches are added in Table 3. For this example, we solve only models (7) and
(12).

Table 2 Inputs and outputs using in bank evaluation

Outputs Inputs
1) Facilities 1) Personnel Score
2) Added of four deposits 2) Profit paid
3) Earnings 3) Deferred Claims
4) Fees received
5) Other sorces

The set of obtained common optimal weigth from solution of these two models
was shown in Table 4.
We show the set of common optimal weight in form of vector

(v∗1 , v
∗
2 , v

∗
3 , u

∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5)

t.

At the end, Table 6 shows the efficeinct amount of decision units for every set of
common optimal weight in Table 5 and also the obtained optimistic efficeincy
amount from CCR for every decision units. According to the efficeincy amount
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Table 3 The input and output date of Table 2
l1 l2 l3 O1 O2 O3 O4 O5

DMUs P.S P.p D.C Facilities A. of four d. Earnings F. received Other sorces
1 15.51 27461619631 975137870 2.78118E ÷ 11 2.26602E11 29915130646 164933857 532526000

2 9.91 991505052 561929018 40696009129 38767599315 324591770 106283190 74517002

3 13.48 4332302200 5725775229 53992117745 44371043380 3314233292 80642072 356818442

4 56.23 15713640424 94370216509 3.73786E ÷ 11 3.29971E ÷ 11 22330933059 2.065E ÷ 09 9.224E ÷ 09

5 20.14 11969476389 4122612602 85817742385 1.67941E ÷ 11 5412530694 1.057E ÷ 09 5.72E ÷ 09

6 19.73 4878145054 3658861942 1.3492E ÷ 11 1.08216E ÷ 11 10902382836 1.489E ÷ 09 7.9E ÷ 09

7 14.48 3925850598 6129057630 23630844303 58755027036 1595556628 62920765 209412589

8 16.31 15105382313 1425177261 3.11973E ÷ 11 2.11467E ÷ 11 35304269319 2.688E ÷ 09 1.114E ÷ 10

9 12.66 10211488400 117557801 1.05433E ÷ 11 1.24552E ÷ 11 5207072313 566729654 2.707E ÷ 09

10 6.95 4908421028 10360395201 1.09277E ÷ 11 71630484373 6515767382 570261939 6.056E ÷ 09

11 25.65 7344812371 4446919429 939645532370 1.30915E ÷ 11 8384901552 517953877 1.841E ÷ 09

12 16.29 6243794816 50371.37033 88215799891 1.49623E ÷ 11 7274414478 1.061E ÷ 09 5.651E ÷ 09

13 12.8 3995882436 2128015084 34778741074 5405238357 2583300403 710702662 4.625E ÷ 09

14 11.94 2335288900 1876765625 34154537295 37022523029 2041272350 59773518 122336681

15 8.9 2214698810 973271944 50625097597 68961263022 2723235288 60126084 317804434

16 12.47 3055503158 1059749782 24842289674 37535320501 625261710 110547176 146641359

17 15.94 3220265878 2682027091 79141589566 61208648272 5575875859 848644088 4.797E ÷ 09

18 12.95 1609044431 17843797482 18656488036 97819134599 1332095197 89855841 780188538

19 5.64 2248340462 129899484 31047346676 34789289289382 2879984210 53313979 39594661

20 19.5 7892494826 2038441141 1.33237E ÷ 11 90700401785 8235994330 370917381 1.792E ÷ 09

21 12.3 4676629110 5919986612 50132710423 71153048274 4495220591 626688651 3.104E ÷ 09

22 10.16 1829524338 369545850 35451082406 29604992659 3126282331 46631579 414595000

23 5.73 18296524338 369545850 35451082406 29604992659 3126282331 46631579 63900000

24 4.49 2402638260 1158305400 16087737307 40274801.313 1694074928 216434968 1.868E ÷ 09

25 6.2 11346458917 2471933000 54175423616 1.15507E ÷ 11 5369824111 491853212 1.126E ÷ 09

26 9.02 3372219100 432122546 57211751112 51661106637 5331207756 131135618 39493998

27 21.88 2293325158 12812985696 1.24935E ÷ 11 55229459032 4611761025 159005139 187786696

28 17.02 46422885003 296722816 74990268085 62595062008 421579993 2473844354 112706012

29 10.47 3162276806 1022023448 6901981.2605 83991224363 33751.52301 113511469 61406000

30 8.02 5681.800755 643082987 74824470248 75679843437 5844327520 1738322979 78330276

in first and second coloumns of Table 6, the ranking was done between all
units. With carefull study in obtained efficeincy amount for DMUs under set
of optimal common weight of model (7), it is seem that U06 and U07 have the
efficeincy amount 1, so the ranking couldn’t be compeleted.

Table 4 the set of the optimal models (7) and (12) for data of Table 3

Model v∗1 v∗2 v∗3 u∗
1 u∗

2 u∗
3 u∗

4 u∗
5

M(7) 1.45318 2.11866 0.341571 0.94911 1.598585 0.009145 20.061839 0.000001
M(8) 0.507969 0.859886 0.000001 0.294783 10.509082 30.051283 0.000001 0.000001

Now, with regarding to obtained efficeincy amount of Table 6 for every set of
the optimal common weight of model (12), DMUs of U08 and U15 and U18 was
obtained the efficeincy amount (1). In the other words, these three DMUs are
efficeint. For ranking these efficeint units, as we said in section 5, with placing
A = {8, 15, 18} we can solve model (19). In Table 6, all units are ranked.
The other remarkable point is that as we seen in this example, the computed
efficeincy amount with using set of optimal common weight of model (12), are
always smaller and or equal 1. But the computed efficeincy amount by the set
of common optimal weight model (7) for some decision units will be strictly
bigger than 1.
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Table 5 The amount of efficeincy units for the set of the weights of Table 5 and amount of
these efficeincy acheived from CCR

DMU Model (7) Model (12) Θ∗
j

U01 0.715899 0.609498 1

U02 0.87729 0.799105 1

U03 0.519001 0.464606 0.51

U04 0.86496 0.836305 0.92

U05 0.722773 0.599481 079

U06 1 0.869513 1

U07 0.494476 0.438864 0.49

U08 1.179109 1 1

U09 0.790943 0.65243 1

U10 1.07188 0.951038 1

U11 0.709558 0.62223 0.68

U12 1.055775 0.904841 1

U13 0.500225 0.505511 0.91

U14 0538539 0.478843 10.52

U15 1.145049 1 1

U16 0.439282 0.375139 0.45

U17 0.7698 0.670352 0.92

U18 1 1 1

U19 0.776567 0.673485 1

U20 0.69981 0.603808 0.7

U21 0.69416 0.603066 0.69

U22 0.728441 0.698207 1

U23 0.805764 0.713461 0.88

U24 0.788178 0.665989 1

U25 0.677868 0.554755 0.88

U26 0.804375 0.70544 1

U27 0.743368 0.702589 0.61

U28 0.61589 0.538624 1

U29 1.110668 0.960004 1

U30 0.863751 0.732859 0.86

Table 6 The full ranking all of units by the amount of efficeincy achieved from model (12)
and (19)

DMU ranking.ΘΘ
1 0.609488()20

2 0.733105(9)

3 0.46486(28)

4 0.466505(8)

5 0.599181(23)

6 0.833513(6)

7 0.458864(29)

8 0.837770(7)

9 0.65243(18)

10 0.953058(4)

11 0.62228(19)

12 0.904841(5)

13 0.305511(26)

14 0.478843(27)

15 0.57349(2)

16 0.375159(30)

17 0.670442(16)

18 0.294463(1)

19 0.670485(15)

20 0.600803(21)

21 0.603065(22)

22 0.638107(14)

23 0.711461(11)

24 0.655901(17)

25 0.554755(24)

26 0.70540(12)

27 0.700881(13)

28 0.51124(25)

29 0.96500(3)

30 0.732855(10)

7 Conclusion

In this paper, after referring to data envelopment analysis, we introduced the
suggesting methods of wang and et al for finding common weight. In these
methods, they find the set of common weight as the computed efficeincy with
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common weight set for all units are always smaller and or equal to the obtained
optimistic efficeincy from CCR. And in other words, the goal was obtaining the
unique hyperplane, so that the distance between all DMUs from this hyper-
plane will be minimal. In this paper, we can show that the obtained hyperplane
from suggesting methods of Wang passed from PPS. In other words, in the
presented method, the desired hyperplane order to ranking is not necessarily
reliable on PPS. Finally we presented the new method for the ranking of the
decision units that the corresponding hyperplane of the set common weights
is reliable on PPS and then this technique applied for the real data.
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