Pairs of Finite Dimensional Nilpotent and Filiform Lie Algebras

Homayoon Arabyani *·* **Elaheh Khamseh**

Received: 27 September 2021 / Accepted: 22 November 2021

Abstract Let (*N, L*) be a pair of finite dimensional nilpotent Lie algebras. If *N* admits a complement *K* in *L* such that $\dim N = n$ and $\dim K = m$, then $\dim \mathcal{M}(N, L) = \frac{1}{2}n(n + 2m - 1) - t(N, L)$, where $\mathcal{M}(N, L)$ is the Schur multiplier of the pair (N, L) and $t(N, L)$ is a non-negative integer. In this paper, we characterize the pair (N, L) for $t(N, L) = 0, 1, 2, \ldots, 23$, where N is a finite dimensional filiform Lie algebra and *N, K* are ideals of *L* such that $L = N \oplus K$. Moreover, we classify the pair (N, L) for $s'(N, L) = 3$, where $s'(N,L) = \frac{1}{2}(n-1)(n-2) + 1 + (n-1)m - \dim \mathcal{M}(N,L)$, *L* is a finite dimensional nilpotent Lie algebra and *N* is a non-abelian ideal of *L*.

Keywords Filiform Lie algebra *·* nilpotent Lie algebra *·* pair of Lie algebras *·* Schur multiplier.

Mathematics Subject Classification (2010) 17B30 *·* 17B60 *·* 17B99

1 Introduction

All Lie algebras are considered over a fixed field *Λ* and [*,*] denotes the Lie bracket. Let (*N, L*) be a pair of Lie algebras, in which *N* is an ideal in *L*. The *Schur multiplier* of (N, L) is the abelian Lie algebra $\mathcal{M}(N, L)$ appearing in the

H. Arabyani (Corresponding Author)

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: +123-45-678910 Fax: +123-45-678910

E-mail: arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir

E. Khamseh

Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University Tehran, Iran.

following natural exact sequence of Lie algebras

$$
H_3(L) \to H_3(L/N) \to \mathcal{M}(N, L) \to \mathcal{M}(L) \to
$$

$$
\mathcal{M}(L/N) \to \frac{L}{[N, L]} \to \frac{L}{L^2} \to \frac{L}{(L^2 + N)} \to 0,
$$

where $\mathcal{M}(-)$, $H_3(-)$ and L^2 denote the Schur multiplier, the third homology of a Lie algebra and the derived subalgebra of *L*, respectively. Let $0 \to R \to F \to L \to 0$ be a free presentation of L. Then $\mathcal{M}(N, L)$ is defined

to be the factor Lie algebra $(R \cap [S, F]) / [R, F]$, in which *S* is an ideal in *F* such that $N \cong S/R$ (see [1,12], for more information). In particular, if $N = L$, then $\mathcal{M}(L, L) = \mathcal{M}(L)$ is the Schur multiplier of *L*. Moneyhun [8] proved that if *L* is a Lie algebra of dimension *n*, then dim $\mathcal{M}(L) = \frac{1}{2}n(n-1) - t(L)$, where $t(L)$ is a non-negative integer. In [2,5,6], all nilpotent Lie algebras are characterized, when $t(L) = 0, 1, \ldots, 8$. Let (N, L) be a pair of finite dimensional nilpotent Lie algebras. Saeedi et al. [12] proved that if *N* admits a complement *K* say, in *L* with dim $N = n$ and dim $K = m$, then

$$
\dim \mathcal{M}(N, L) = \frac{1}{2}n(n + 2m - 1) - t(N, L),
$$
\n(1)

where $t(N, L) \geq 0$. This gives us the Moneyhun's result, if $m = 0$. The first author and colleagues [1] characterized the pair (*N, L*), for which $t(N, L) = 0, 1, 2, 3, 4$. Moreover, they determined pairs (N, L) for $t(N, L) =$ $0, 1, \ldots, 10$, when *L* is a filiform Lie algebra. Also, Niroomand and Russo [10] proved that

$$
\dim \mathcal{M}(L) \le \frac{1}{2}(n+m-2)(n-m-1)+1,
$$
\n(2)

where *L* is a non-abelian nilpotent Lie algebra with dim $L = n$ and dim $L^2 =$ *m*. The above upper bound implies that dim $\mathcal{M}(L) = \frac{1}{2}(n-1)(n-2)+1-s(L)$, where $s(L) \geq 0$. Niroomand et al. in [9–11] classified the structure of *L*, when $s(L) = 0, 1, 2, 3.$

Also in [7], using (1), all pairs (N, L) are classified, when $t(N, L) = 0, 1, \ldots, 6$. Moreover, it is proved under some conditions that

$$
\dim \mathcal{M}(N, L) = \frac{1}{2}(n-1)(n-2) + 1 + (n-1)m - s'(N, L),
$$
 (3)

where $s'(N, L) \geq 0$, dim $N = n$ and dim $K = m$. Furthermore, all pairs (N, L) are also classified for $s'(N, L) = 0, 1, 2$.

In the present paper, we continue the above works and characterize all pairs (N, L) , when *L* is a finite dimensional filiform Lie algebra and $t(N, L)$ = $0, 1, \ldots, 23$. Moreover, using (3), we classify all pairs (N, L) for $s'(N, L) = 3$.

Note that in the proof of main theorems, the upper bound (2) enables us to provide a new technique in our classification which makes the upper bound 3 smaller than the one in (1).

2 Preliminaries

In this section, we discuss some preliminary results which will be used in the main theorems. A filiform Lie algebra is an algebra with maximal nilpotency class. More precisely, an *n*-dimensional Lie algebra *L* is called filiform, if dim $L^i = n - i$, for $2 \le i \le n$, where L^i is the *i*th term of the lower central series of *L*. In [4], filiform Lie algebras are classified up to dimension 11.

The following theorem is proved by H. Darabi and M. Eshrati. Also, by using [11] and [13] we can prove it.

Theorem 1 *Suppose A is a filiform n-Lie algebra. Then*

(i) $t(A) = 1$ *if and only if A is isomorphic to* $H(n, 1)$ *; (ii)* $t(A) = 4$ *if and only if A is isomorphic to* $L_{4,3}$; *(iii)* $t(A) = 7$ *if and only if A is isomorphic to* $L_{5,6}$ *,* $L_{5,7}$ *or* $A_{3,5,2}$ *; (iv)* $t(A) = 11$ *if and only if A is isomorphic to* $A_{4,6,2}$ *;* (*v*) $t(A) = 12$ *if and only if A is isomorphic to* $L_{6,15}$ *,* $L_{6,17}$ *or* $L_{6,18}$ *; (vi)* $t(A) = 13$ *if and only if A is isomorphic to* $L_{6,14}$ *or* $L_{6,16}$ *; (vii)* $t(A) = 15$ *if and only if A is isomorphic to* $A_{3,6,6}$; *(viii)* $t(A) = 16$ *if and only if A is isomorphic to* $A_{5,7,1}$ *or* $A_{3,6,7}$; *(ix)* $t(A) = 17$ *if and only if A is isomorphic to* F_7^1 , F_7^3 , F_7^5 , F_7^6 , F_7^7 *or* F_7^8 ; (*x*) $t(A) = 18$ *if and only if A is isomorphic to* F_7^2 *or* F_7^4 ; *(xi)* $t(A) = 22$ *if and only if A is isomorphic to* $A_{6,8,2}$ *.*

There is no filiform Lie algebra for $t(A) = 2, 3, 5, 6, 8, 9, 10, 14, 19, 20, 21$ *and* 23*.*

Here $H(m)$ denotes the Heisenberg Lie algebra of dimension $2m + 1$, $A(n)$ is an *n*-dimensional abelian Lie algebra and $L(a, b, c, d)$ denotes the algebra discovered for the case $t(L) = a$, where $b = \dim L$, $c = \dim Z(L)$ and $d = t(L)$.

Lemma 1 *([1], Lemma 3.1) Let N and L be finite filiform Lie algebras. Then* $L \not\cong N \oplus A(n)$.

Theorem 2 *([10], Theorem 3.1) Let L be a non-abelian nilpotent Lie algebra* such that $\dim(L) = n$ and $\dim(L^2) = m \geq 1$. Then

$$
\dim \mathcal{M}(L) \le \frac{1}{2}(n+m-2)(n-m-1)+1.
$$

Moreover, if $m = 1$ *, then the equality holds if and only if* $L \cong H(1) \oplus A(n-3)$ *.*

The above upper bound implies that $\dim \mathcal{M}(L) \leq \frac{1}{2}(n-1)(n-2) + 1 - s(L)$, where $s(L) \geq 0$. Niroomand et al. in [9–11] classified the structure of *L*, when $s(L) = 0, 1, 2, 3$ as follows:

Lemma 2 *([11, Lemma 3.3]) Let L be an n-dimensional nilpotent Lie algebra and* $dim L^2 = 1$ *. Then for some* $m \geq 1$ *,*

$$
L \cong H(m) \oplus A(n-2m-1).
$$

Note that in the statement of the above result in [9], it is not mistakenly stated that *L* is nilpotent.

Theorem 3 *([9–11]) Let L be a non-abelian n-dimensional nilpotent Lie algebra. Then*

- (i) $s(L) = 0$ *if and only if* $L \cong H(1) \oplus A(n-3)$;
- *(ii)* $s(L) = 1$ *if and only if* $L ≅ L(4, 5, 2, 4)$;
- *(iii)* $s(L) = 2$ *if and only if* $L \cong L(3, 4, 1, 4), L(4, 5, 2, 4) ⊕ A(1)$ *or* $H(m) ⊕$ $A(n-2m-1)$ $(m \geq 2)$;
- (iv) $s(L) = 3$ if and only if $L \cong L(4, 5, 1, 6)$, $L(5, 6, 2, 7)$, $L(3, 4, 1, 4) \oplus A(1)$, $L(4, 5, 2, 4) \oplus A(2)$ *or* $L_{6,26}$.

3 Main Results

In this section, we classify finite dimensional pairs of filiform Lie algebras with $t(N, L) = 0, 1, 2, \ldots, 23$. Moreover, we characterize the structure of finite dimensional pairs (N, L) with $s'(N, L) = 3$.

Theorem 4 *Let* (*N, L*) *be a pair of finite dimensional nilpotent Lie algebras and K be an ideal of L such that* $L = N \oplus K$, $\dim N = n$, $\dim K = m$, N *be a filiform Lie algebra and* dim $\mathcal{M}(N, L) = \frac{1}{2}n(n + 2m - 1) - t(N, L)$, where $t(N, L) \geq 0$ *. Then*

- (a) *If N is an abelian Lie algebra, then* $(N, L) ≅ (A(2), A(2) ⊕ K)$ *where* $\dim K^2 = \frac{1}{2}t(N,L);$
- *(b) If N is a non-abelian Lie algebra, then:*
- *(1)* $t(N, L) = 1$ *if and only if* $(N, L) ≅ (H(1), H(1))$;
- *(2)* $t(N, L) = 4$ *if and only if* $(N, L) ≅ (L(3, 4, 1, 4), L(3, 4, 1, 4))$ *;*
- (3) $t(N, L) = 7$ if and only if $(N, L) \cong (L_{5,6}, L_{5,6}), (L_{5,7}, L_{5,7})$ or $(A_{3,5,2}, A_{3,5,2})$;
- *(4)* $t(N, L) = 11$ *if and only if* $(N, L) ≅ (A_{4,6,2}, A_{4,6,2})$ *;*
- (5) $t(N, L) = 12$ if and only if $(N, L) \cong (L_{6,15}, L_{6,15}), (L_{6,17}, L_{6,17})$ or $(L_{6,18}, L_{6,18})$;
- *(6)* $t(N, L) = 13$ *if and only if* $(N, L) ≅ (L_{6,14}, L_{6,14}), (L_{6,16}, L_{6,16})$ *;*
- *(7)* $t(N, L) = 15$ *if and only if* $(N, L) ≅ (A_{3,6,6}, A_{3,6,6})$ *;*
- *(8)* $t(N, L) = 16$ *if and only if* $(N, L) ≅ (A_{5,7,2}, A_{5,7,2})$ *or* $(A_{3,6,7}, A_{3,6,7})$ *;*
- *(9)* $t(N, L) = 17$ *if and only if* $(N, L) ≅ (L_1, L_1), (L_2, L_2), (L_4, L_4), (L_5, L_5)$ *or* (L_8, L_8) *for* $\lambda = 3$;
- *(10)* $t(N, L) = 18$ *if and only if* $(N, L) ≅ (L_3, L_3)$ *,* (L_6, L_6) *,* (L_7, L_7) *or* (L_8, L_8) *for* $\lambda \neq 3$ *;*
- *(11)* $t(N, L) = 22$ *if and only if* $(N, L) ≅ (A_{6,8,2}, A_{6,8,2})$ *;*
- *(12) There is no pair for t*(*N, L*) = 2*,* 3*,* 5*,* 6*,* 8*,* 9*,* 10*,* 14*,* 19*,* 20*,* 21 *and* 23*.*

Proof Put $l = l(N) = \frac{1}{2}n(n-1) - \dim \mathcal{M}(N)$ and

$$
t = t(N, L) = \frac{1}{2}n(n + 2m - 1) - \dim \mathcal{M}(N, L),
$$

where l and t are non-negative integers. A well-known result in [7] states that $\dim \mathcal{M}(N, L) = \dim N + \dim(N/N^2 \otimes K/K^2)$. Thus one may easily obtain that

$$
mn = (t - l) + (\dim N/N^2)(\dim K/K^2).
$$
 (4)

Now since dim $K/K^2 \le m$ and dim $N/N^2 = n - \dim N^2$, then

$$
m. \dim N^2 \le t - l,\tag{5}
$$

which implies that $l \leq t$.

(*a*) Let *N* be an abelian Lie algebra. Then by Theorem 1, $N \cong A(2)$. Therefore, $(N, L) \cong (A(2), A(2) \oplus K)$, where dim $K^2 = \frac{1}{2}t$, by (4).

(*b*) If *N* is a non-abelian Lie algebra, then we have

Case $t = 1$, By (5), $l = 1$ and $m = 0$. So, using Theorem 1 we get $(N, L) \cong (H(1), H(1)).$

Case $t = 2$. If $l = 1$, then by Theorem 1 and (5) we have $N \cong H(1)$ and $m \leq 1$. If $m = 0$, then $(N, L) \cong (H(1), H(1))$, which contradicts the case $t = 1$. Assume that $m = 1$, then $K \cong A(1)$, which is a contradiction by Lemma 1. If $l = 2$, then there is no pair by Theorem 1.

Case $t = 3$. One can easily check that Theorem 1 and Lemma 1 imply that there is no pair.

Case $t = 4$. If $l = 1$, then by (5), $m < 3$. Now if $m = 0$, then (N, L) ≃ $(H(1), H(1))$ which contradicts the case $t = 1$. If $m = 1, 2$, then there does not exist any pair by Lemma 1. Suppose that $m = 3$, then $K \cong H(1)$ or $A(3)$. If $K \cong A(3)$, then there is not any pair by Lemma 1. If $K \cong H(1)$, there is not any pair by (3.4). Assume that $l = 4$, then by (5), we get $m = 0$ and so Theorem 1 implies that

$$
(N, L) \cong (L(3, 4, 1, 4), L(3, 4, 1, 4)).
$$

Case $t = 5$. In this case $l = 1$ or 4. If $l = 1$, then $m \leq 4$. Now if $m = 3$, then by (4) we obtain a contradiction. If $m = 4$, then there is not any pair by (4) and Lemma 1. Suppose that $l = 4$, then using Theorem 1 and (5) we have $t = 4$, which is impossible.

Case $t = 6$. If $l = 1$, then $m \leq 5$. If $m = 3$, then (4) implies that $\dim K^2 = 1$. Hence, $\dim L/L^2 = 4$, which is a contradiction. If $m = 5$, then by Lemma 1 and (4), there is not any pair. Suppose that $l = 4$, then there is no pair by Lemma 1.

Case $t = 7$. If $l = 1, 4$, then by a similar manner, there does not exist any pair. If $l = 7$, then using Theorem 1, we get $N \cong L_{5,6}, L_{5,7}$ or $A_{3,5,2}$. Hence

$$
(N, L) \cong (L_{5,6}, L_{5,6}), (L_{5,7}, L_{5,7}) \quad or \quad (A_{3,5,2}, A_{3,5,2}).
$$

Cases $t = 11, 12, 13, 15, 16, 17, 18, 22$. Similar to the previous cases, we have

$$
(N, L) \cong (A_{4,6,2}, A_{4,6,2}), (A_{6,8,2}, A_{6,8,2}), (L_{6,15}, L_{6,15}), (L_{6,17}, L_{6,17}),
$$

\n
$$
(L_{6,18}, L_{6,18}), (L_{6,14}, L_{6,14}), (L_{6,16}, L_{6,16}), (A_{3,6,6}, A_{3,6,6}),
$$

\n
$$
(A_{5,7,2}, A_{5,7,2}), (A_{3,6,7}, A_{3,6,7}), (L_1, L_1), (L_2, L_2), (L_4, L_4),
$$

\n
$$
(L_5, L_5), (L_8, L_8) \text{ for } \lambda = 3, (L_3, L_3), (L_7, L_7), (L_6, L_6),
$$

\nor $(L_8, L_8) \text{ for } \lambda \neq 3.$

Finally, in the cases $t = 8, 9, 10, 19, 20, 21, 23$, by a similar manner one can easily see that there is no any pair.

Theorem 5 *Let L be a finite dimensional nilpotent Lie algebra, N and K be* i *deals of L,* dim $N = n$ *,* dim $K = m$ *,* dim $N^2 \geq 1$ *and*

$$
s' = s'(N, L) = \frac{1}{2}(n - 1)(n - 2) + 1 + (n - 1)m - \dim \mathcal{M}(N, L).
$$

Then $s' = 3$ *if and only if* (N, L) *is isomorphic to one of the following pairs:*

$$
(1) (H(1) \oplus A(1), H(1) \oplus H(r) \oplus A(m - 2r)) (r \ge 1),
$$

\n
$$
(2) (L_{5,8} \oplus A(i), L_{5,8} \oplus A(2)) (0 \le i \le 2),
$$

\n
$$
(3) (L_{4,3} \oplus A(i), L_{4,3} \oplus A(1)) (i = 0, 1),
$$

\n
$$
(4) (L_{6,22}(\epsilon), L_{6,22}),
$$

\n
$$
(5) (L_{6,26}, L_{6,26}),
$$

\n
$$
(6) (L_{5,5}, L_{5,5}).
$$

Proof Put $s = s(N) = \frac{1}{2}(n-1)(n-2) + 1 - \dim \mathcal{M}(N)$. Using again the equality dim $\mathcal{M}(N, L) = \dim N + \dim(N/N^2 \otimes K/K^2)$, we get

$$
mn - m = (s' - s) + (\dim N/N^2)(\dim K/K^2).
$$
 (6)

It is not difficult to show that $s \leq s'$, since $\dim K/K^2 \leq m$, $\dim N/N^2 =$ $n - \dim N^2$, and $\dim N^2 \ge 1$. Now, suppose that $s' = 3$, then $s = 0, 1, 2$ or 3. By using Lemma 2, Theorem 3 and similar to Theorem 4 we can prove these results.

t(A)	Filiform n-Lie algebra	t(A	Filiform n-Lie Algebra
θ	Abelian	12	$L_{6,15}, L_{6,17}, L_{6,18}$
	H(n,1)	13	$L_{6,14}, L_{6,16}$
$\overline{2}$	None	14	None
3	None	15	$A_{3,6,6}$
$\overline{4}$	$L_{4,3}$	16	$A_{5,7,2}, A_{3,6,7}$
5	None	17	L_1, L_2, L_4, L_5, L_8 for $\lambda = 3$
6	None	18	L_3, L_6, L_7, L_8 for $\lambda \neq 3$
7	$L_{5,6}, L_{5,7}, A_{3,5,2}$	19	None
8	None	20	None
9	None	20	None
10	None	22	$A_{6,8,2}$
11	$A_{4,6,2}$	23	None

Table 1

n-Lie algebra	None-zero multiplications
$L_{4,3}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4$
$A_{n,n+2,2}$	$[e_1, , e_n] = e_{n+1}, [e_2, , e_{n+1}] = e_{n+2}$
$A_{n,n+3,6}$	$ e_1,,e_n =e_{n+1}, e_2,,e_{n+1} =e_{n+2},$
	$ e_2,,e_n,e_{n+2} =e_{n+3}$
$A_{n,n+3,7}$	$[e_1, , e_n] = e_{n+1}, [e_2, , e_{n+1}] = e_{n+2},$
	$[e_2, , e_n, e_{n+2}] = [e_1, e_3, , e_{n+1}] = e_{n+3}$
$L_{6,14}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = [e_2, e_3] = e_5,$
	$ e_2, e_5 = - e_3, e_4 = e_6$
$L_{6,15}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = [e_2, e_3] = e_5$
	$ e_1, e_5 = e_2, e_4 = e_6$
$L_{6,16}$	$[e_1,e_2]=e_3, [e_1,e_3]=e_4, [e_1,e_4]=e_5, [e_2,e_5]=-[e_3,e_4]=e_6$
$L_{6,17}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4$
	$[e_1, e_4] = e_5, [e_1, e_5] = [e_2, e_3] = e_6$
$L_{6,18}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = e_5, [e_1, e_5] = e_6$
$L_1 = (123457A)$	$[e_1, e_i] = e_{i+1} (2 \leq i \leq 6)$
$L_2 = (123457B)$	$[e_1, e_i] = e_{i+1}$ $(2 \leq i \leq 6), [e_2, e_3] = e_7$
$L_3 = (123457C)$	$[e_1, e_i] = e_{i+1}$ $(2 \leq i \leq 6), [e_2, e_5] = e_7, [e_3, e_4] = -e_7$
$L_4(123457D)$	$[e_1, e_i] = e_{i+1}$ $(2 \le i \le 6), [e_2, e_4] = e_7, [e_2, e_3] = e_6$
$L_5(123457E)$	$[e_1, e_i] = e_{i+1}$ $(2 \leq i \leq 6), [e_2, e_4] = e_7, [e_2, e_3] = e_6 + e_7$
$L_6(123457F)$	$[e_1, e_i] = e_{i+1}$ $(i = 2, 3, 4, 5, 6), [e_3, e_4] = -e_7$
	$[e_2, e_3] = e_6, [e_2, e_4] = [e_2, e_5] = e_7$
$L_7(123457H)$	$[e_1, e_i] = e_{i+1}$ $(i = 2, 3, 4, 5, 6), [e_2, e_4] = e_6,$
	$[e_2, e_5] = e_7, [e_2, e_3] = e_5 + e_7$
$L_8(123457I)$	$[e_1, e_i] = e_{i+1}$ $(i = 2, 3, 4, 5, 6), [e_2, e_5] = \lambda e_7,$
	$[e_3,e_4]=(1-\lambda)e_7,[e_2,e_3]=e_5,[e_2,e_4]=e_6$

Table 2

Table 3

Lie algebra	Non-zero Multiplications
$L_{4,3}$	$ e_1, e_2 = e_3, e_1, e_3 = e_4$
$L_{\rm 5,5}$	$[e_1, e_2] = e_3, [e_1, e_3] = [e_2, \overline{e_4}] = e_5$
$L_{\rm 5,6}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = [e_2, e_3] = e_5$
$L_{5,7}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = e_5$
$L_{5,8}$	$ e_1, e_2 = e_4, e_1, e_3 = e_5$
$L_{5,9}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_2, e_3] = e_5$
$L_{6,10}$	$[e_1, e_2] = e_3, [e_1, e_3] = [e_4, e_5] = e_6$
$L_{6,11}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_1, e_4] = [e_2, e_3] = [e_2, e_5] = e_6$
$L_{6,13}$	$[e_1,e_2]=e_3, [e_1,e_3]=[e_2,e_4]=e_5, [e_1,e_5]=[e_3,e_4]=e_6$
$L_{6,20}$	$[e_1, e_2] = e_4, [e_1, e_3] = e_5, [e_1, e_5] = [e_2, e_4] = e_6$
$\overline{L_{6,23}}$	$[e_1, e_2] = e_3, [e_1, e_3] = [e_2, e_4] = e_5, [e_1, e_4] = e_6$
$L_{6,25}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_5, [e_1, e_4] = e_6$
$L_{6,26}$	$ e_1, e_2 = e_4, e_1, e_3 = e_5, e_2, e_4 = e_6$
$L_{6,27}$	$[e_1, e_2] = e_3, [e_1, e_3] = e_5, [e_2, e_4] = e_6$
$L_{6,19}(\epsilon)$	$[e_1,e_2]=e_4, [e_1,e_3]=e_5, [e_1,e_5]=[e_2,e_4]=e_6, [e_3,e_5]=\epsilon e_6$
$L_{6,22}(\epsilon)$	$[e_1, e_2] = [e_3, e_4] = e_5, [e_1, e_3] = e_6, [e_2, e_4] = \epsilon e_6$
$L_{6,24}(\epsilon)$	$[e_1,e_2]=e_3, [e_1,e_3]=[e_2,e_4]=e_5, [e_2,e_3]=e_6, [e_1,e_4]=\epsilon e_6$
37A	$ e_1, e_2 = e_5, e_2, e_3 = e_6, e_2, e_4 = e_7$
37B	$ e_1, e_2 = e_5, e_2, e_3 = e_6, e_3, e_4 = e_7$
37D	$[e_1, e_2] = [e_3, e_4] = e_5, [e_1, e_3] = e_6, [e_2, e_4] = e_7$

References

- 1. H. Arabyani, F. Saeedi, M. R. R. Moghaddam and E. Khamseh, Characterization of nilpotent Lie algebras pair by their Schur multipliers, Commun. Algebra, 42, 5474–5483 (2014).
- 2. P. Batten, K. Moneyhun, E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Commun. Algebra, 24, 4319–4330 (1996).
- 3. G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Struct., 6, 355–371 (1998).
- 4. J. R. Gomez, A. Jimenez-Merchan, Y. Khakimdjanov, Low-dimensional filiform Lie algebras, J. Pure Appl. Algebra, 130, 133–158 (1998).
- 5. P. Hardy, On characterizing nilpotent Lie algebras by their multipliers III, Commun. Algebra, 33, 4205–4210 (2005).
- 6. P. Hardy, E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, *t*(*L*) = 3*,* 4*,* 5*,* 6, Commun. Algebra, 26, 3527–3539 (1998).
- 7. E. Khamseh, S. A. Niri, Classification of pair of nilpotent Lie algebras by their Schur multipliers, Math. Reports, 20, 177–185(2018).
- 8. K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom., 11, 9–22 (1994).
- 9. P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras, Cent. Eur. J. Math, 9, 57–64 (2011).
- 10. P. Niroomand, F. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Commun. Algebra, 39, 1293–1297 (2011).
- 11. F. Saeedi, H. Arabyani, P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebras II, Asian-Eur. J. Math, 10, 1750076 (8 pages) (2017).
- 12. F. Saeedi, A. R. Salemkar, B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras, J. Lie Theory, 21, 491–498 (2011).
- 13. A. Shamsaki, P. Niroomand, The Schur multipliers of Lie algebras of maximal class, Internat. J. Algebra. Comput, 29, 795–801 (2019).