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Abstract Let (N,L) be a pair of finite dimensional nilpotent Lie algebras.
If N admits a complement K in L such that dimN = n and dimK = m,
then dimM(N,L) = 1

2n(n+ 2m− 1)− t(N,L), where M(N,L) is the Schur
multiplier of the pair (N,L) and t(N,L) is a non-negative integer. In this
paper, we characterize the pair (N,L) for t(N,L) = 0, 1, 2, . . . , 23, where N
is a finite dimensional filiform Lie algebra and N,K are ideals of L such that
L = N ⊕ K. Moreover, we classify the pair (N,L) for s

′
(N,L) = 3, where

s
′
(N,L) = 1

2 (n − 1)(n − 2) + 1 + (n − 1)m − dimM(N,L), L is a finite
dimensional nilpotent Lie algebra and N is a non-abelian ideal of L.

Keywords Filiform Lie algebra · nilpotent Lie algebra · pair of Lie algebras ·
Schur multiplier.

Mathematics Subject Classification (2010) 17B30 · 17B60 · 17B99

1 Introduction

All Lie algebras are considered over a fixed field Λ and [, ] denotes the Lie
bracket. Let (N,L) be a pair of Lie algebras, in which N is an ideal in L. The
Schur multiplier of (N,L) is the abelian Lie algebra M(N,L) appearing in the

H. Arabyani (Corresponding Author)
Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir

E. Khamseh
Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University Tehran, Iran.



180 Homayoon Arabyani, Elaheh Khamseh

following natural exact sequence of Lie algebras

H3(L) → H3(L/N) → M(N,L) → M(L) →

M(L/N) → L

[N,L]
→ L

L2
→ L

(L2 +N)
→ 0,

where M(−), H3(−) and L2 denote the Schur multiplier, the third homology
of a Lie algebra and the derived subalgebra of L, respectively.
Let 0 → R → F → L → 0 be a free presentation of L. Then M(N,L) is defined
to be the factor Lie algebra (R∩ [S, F ])/[R,F ], in which S is an ideal in F such
that N ∼= S/R (see [1,12], for more information). In particular, if N = L, then
M(L,L) = M(L) is the Schur multiplier of L. Moneyhun [8] proved that if L is
a Lie algebra of dimension n, then dimM(L) = 1

2n(n−1)−t(L), where t(L) is
a non-negative integer. In [2,5,6], all nilpotent Lie algebras are characterized,
when t(L) = 0, 1, . . . , 8. Let (N,L) be a pair of finite dimensional nilpotent
Lie algebras. Saeedi et al. [12] proved that if N admits a complement K say,
in L with dimN = n and dimK = m, then

dimM(N,L) =
1

2
n(n+ 2m− 1)− t(N,L), (1)

where t(N,L) ≥ 0. This gives us the Moneyhun’s result, if m = 0.
The first author and colleagues [1] characterized the pair (N,L), for which
t(N,L) = 0, 1, 2, 3, 4. Moreover, they determined pairs (N,L) for t(N,L) =
0, 1, . . . , 10, when L is a filiform Lie algebra. Also, Niroomand and Russo [10]
proved that

dimM(L) ≤ 1

2
(n+m− 2)(n−m− 1) + 1, (2)

where L is a non-abelian nilpotent Lie algebra with dimL = n and dimL2 =
m. The above upper bound implies that dimM(L) = 1

2 (n−1)(n−2)+1−s(L),
where s(L) ≥ 0. Niroomand et al. in [9–11] classified the structure of L, when
s(L) = 0, 1, 2, 3.

Also in [7], using (1), all pairs (N,L) are classified, when t(N,L) = 0, 1, . . . , 6.
Moreover, it is proved under some conditions that

dimM(N,L) =
1

2
(n− 1)(n− 2) + 1 + (n− 1)m− s′(N,L), (3)

where s′(N,L) ≥ 0, dimN = n and dimK = m. Furthermore, all pairs (N,L)
are also classified for s′(N,L) = 0, 1, 2.

In the present paper, we continue the above works and characterize all
pairs (N,L), when L is a finite dimensional filiform Lie algebra and t(N,L) =
0, 1, . . . , 23. Moreover, using (3), we classify all pairs (N,L) for s′(N,L) = 3.

Note that in the proof of main theorems, the upper bound (2) enables us
to provide a new technique in our classification which makes the upper bound
3 smaller than the one in (1).
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2 Preliminaries

In this section, we discuss some preliminary results which will be used in
the main theorems. A filiform Lie algebra is an algebra with maximal nilpo-
tency class. More precisely, an n-dimensional Lie algebra L is called filiform,
if dimLi = n− i, for 2 ≤ i ≤ n, where Li is the ith term of the lower central
series of L. In [4], filiform Lie algebras are classified up to dimension 11.

The following theorem is proved by H. Darabi and M. Eshrati. Also, by
using [11] and [13] we can prove it.

Theorem 1 Suppose A is a filiform n-Lie algebra. Then

(i) t(A) = 1 if and only if A is isomorphic to H(n, 1);
(ii) t(A) = 4 if and only if A is isomorphic to L4,3 ;

(iii) t(A) = 7 if and only if A is isomorphic to L5,6, L5,7 or A3,5,2 ;
(iv) t(A) = 11 if and only if A is isomorphic to A4,6,2;
(v) t(A) = 12 if and only if A is isomorphic to L6,15, L6,17 or L6,18 ;

(vi) t(A) = 13 if and only if A is isomorphic to L6,14 or L6,16;
(vii) t(A) = 15 if and only if A is isomorphic to A3,6,6;

(viii) t(A) = 16 if and only if A is isomorphic to A5,7,1 or A3,6,7;
(ix) t(A) = 17 if and only if A is isomorphic to F 1

7 , F 3
7 , F 5

7 , F 6
7 , F 7

7 or F 8
7 ;

(x) t(A) = 18 if and only if A is isomorphic to F 2
7 or F 4

7 ;
(xi) t(A) = 22 if and only if A is isomorphic to A6,8,2.

There is no filiform Lie algebra for t(A) = 2, 3, 5, 6, 8, 9, 10, 14, 19, 20, 21
and 23.

Here H(m) denotes the Heisenberg Lie algebra of dimension 2m + 1, A(n)
is an n-dimensional abelian Lie algebra and L(a, b, c, d) denotes the algebra
discovered for the case t(L) = a, where b = dimL, c = dimZ(L) and d = t(L).

Lemma 1 ([1], Lemma 3.1) Let N and L be finite filiform Lie algebras. Then
L ≇ N ⊕A(n).

Theorem 2 ([10], Theorem 3.1) Let L be a non-abelian nilpotent Lie algebra
such that dim(L) = n and dim(L2) = m ≥ 1. Then

dimM(L) ≤ 1

2
(n+m− 2)(n−m− 1) + 1.

Moreover, if m = 1, then the equality holds if and only if L ∼= H(1)⊕A(n−3).

The above upper bound implies that dimM(L) ≤ 1
2 (n− 1)(n− 2) + 1− s(L),

where s(L) ≥ 0. Niroomand et al. in [9–11] classified the structure of L, when
s(L) = 0, 1, 2, 3 as follows:

Lemma 2 ([11, Lemma 3.3]) Let L be an n-dimensional nilpotent Lie algebra
and dimL2 = 1. Then for some m ≥ 1,

L ∼= H(m)⊕A(n− 2m− 1).
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Note that in the statement of the above result in [9], it is not mistakenly stated
that L is nilpotent.

Theorem 3 ([9–11]) Let L be a non-abelian n-dimensional nilpotent Lie al-
gebra. Then

(i) s(L) = 0 if and only if L ∼= H(1)⊕A(n− 3);
(ii) s(L) = 1 if and only if L ∼= L(4, 5, 2, 4);

(iii) s(L) = 2 if and only if L ∼= L(3, 4, 1, 4), L(4, 5, 2, 4) ⊕ A(1) or H(m) ⊕
A(n− 2m− 1) (m ≥ 2);

(iv) s(L) = 3 if and only if L ∼= L(4, 5, 1, 6), L(5, 6, 2, 7), L(3, 4, 1, 4)⊕A(1),
L(4, 5, 2, 4)⊕A(2) or L6,26.

3 Main Results

In this section, we classify finite dimensional pairs of filiform Lie algebras
with t(N,L) = 0, 1, 2, . . . , 23. Moreover, we characterize the structure of finite
dimensional pairs (N,L) with s′(N,L) = 3.

Theorem 4 Let (N,L) be a pair of finite dimensional nilpotent Lie algebras
and K be an ideal of L such that L = N ⊕K, dimN = n, dimK = m, N be
a filiform Lie algebra and dimM(N,L) = 1

2n(n + 2m − 1) − t(N,L), where
t(N,L) ≥ 0. Then

(a) If N is an abelian Lie algebra, then (N,L) ∼= (A(2), A(2) ⊕ K) where
dimK2 = 1

2 t(N,L);
(b) If N is a non-abelian Lie algebra, then:
(1) t(N,L) = 1 if and only if (N,L) ∼= (H(1),H(1));
(2) t(N,L) = 4 if and only if (N,L) ∼= (L(3, 4, 1, 4), L(3, 4, 1, 4));
(3) t(N,L) = 7 if and only if (N,L) ∼= (L5,6, L5,6), (L5,7, L5,7) or (A3,5,2, A3,5,2);
(4) t(N,L) = 11 if and only if (N,L) ∼= (A4,6,2, A4,6,2);
(5) t(N,L) = 12 if and only if (N,L) ∼= (L6,15, L6,15), (L6,17, L6,17) or (L6,18, L6,18);
(6) t(N,L) = 13 if and only if (N,L) ∼= (L6,14, L6,14), (L6,16, L6,16);
(7) t(N,L) = 15 if and only if (N,L) ∼= (A3,6,6, A3,6,6);
(8) t(N,L) = 16 if and only if (N,L) ∼= (A5,7,2, A5,7,2) or (A3,6,7, A3,6,7);
(9) t(N,L) = 17 if and only if (N,L) ∼= (L1, L1), (L2, L2), (L4, L4), (L5, L5) or

(L8, L8) for λ = 3;
(10) t(N,L) = 18 if and only if (N,L) ∼= (L3, L3), (L6, L6), (L7, L7) or (L8, L8)

for λ ̸= 3 ;
(11) t(N,L) = 22 if and only if (N,L) ∼= (A6,8,2, A6,8,2);
(12) There is no pair for t(N,L) = 2, 3, 5, 6, 8, 9, 10, 14, 19, 20, 21 and 23.

Proof Put l = l(N) = 1
2n(n− 1)− dimM(N) and

t = t(N,L) =
1

2
n(n+ 2m− 1)− dimM(N,L),
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where l and t are non-negative integers. A well-known result in [7] states that
dimM(N,L) = dimN + dim(N/N2 ⊗ K/K2). Thus one may easily obtain
that

mn = (t− l) + (dimN/N2)(dimK/K2). (4)
Now since dimK/K2 ≤ m and dimN/N2 = n− dimN2, then

m. dimN2 ≤ t− l, (5)

which implies that l ≤ t.

(a) Let N be an abelian Lie algebra. Then by Theorem 1, N ∼= A(2).
Therefore, (N,L) ∼= (A(2), A(2)⊕K), where dimK2 = 1

2 t, by (4).

(b) If N is a non-abelian Lie algebra, then we have

Case t = 1. By (5), l = 1 and m = 0. So, using Theorem 1 we get
(N,L) ∼= (H(1),H(1)).

Case t = 2. If l = 1, then by Theorem 1 and (5) we have N ∼= H(1) and
m ≤ 1. If m = 0, then (N,L) ∼= (H(1),H(1)), which contradicts the case t = 1.
Assume that m = 1, then K ∼= A(1), which is a contradiction by Lemma 1. If
l = 2, then there is no pair by Theorem 1.

Case t = 3. One can easily check that Theorem 1 and Lemma 1 imply that
there is no pair.

Case t = 4. If l = 1, then by (5), m ≤ 3. Now if m = 0, then (N,L) ∼=
(H(1),H(1)) which contradicts the case t = 1. If m = 1, 2, then there does
not exist any pair by Lemma 1. Suppose that m = 3, then K ∼= H(1) or A(3).
If K ∼= A(3), then there is not any pair by Lemma 1. If K ∼= H(1), there is
not any pair by (3.4). Assume that l = 4, then by (5), we get m = 0 and so
Theorem 1 implies that

(N,L) ∼= (L(3, 4, 1, 4), L(3, 4, 1, 4)).

Case t = 5. In this case l = 1 or 4. If l = 1, then m ≤ 4. Now if m = 3,
then by (4) we obtain a contradiction. If m = 4, then there is not any pair by
(4) and Lemma 1. Suppose that l = 4, then using Theorem 1 and (5) we have
t = 4, which is impossible.

Case t = 6. If l = 1, then m ≤ 5. If m = 3, then (4) implies that
dimK2 = 1. Hence, dimL/L2 = 4, which is a contradiction. If m = 5, then
by Lemma 1 and (4), there is not any pair. Suppose that l = 4, then there is
no pair by Lemma 1.

Case t = 7. If l = 1, 4, then by a similar manner, there does not exist any
pair. If l = 7, then using Theorem 1, we get N ∼= L5,6, L5,7 or A3,5,2. Hence

(N,L) ∼= (L5,6, L5,6), (L5,7, L5,7) or (A3,5,2, A3,5,2).
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Cases t = 11, 12, 13, 15, 16, 17, 18, 22. Similar to the previous cases, we have
(N,L) ∼= (A4,6,2, A4,6,2), (A6,8,2, A6,8,2), (L6,15, L6,15), (L6,17, L6,17),

(L6,18, L6,18), (L6,14, L6,14), (L6,16, L6,16), (A3,6,6, A3,6,6),

(A5,7,2, A5,7,2), (A3,6,7, A3,6,7), (L1, L1), (L2, L2), (L4, L4),

(L5, L5), (L8, L8) for λ = 3, (L3, L3), (L7, L7), (L6, L6),

or(L8, L8) for λ ̸= 3.

Finally, in the cases t = 8, 9, 10, 19, 20, 21, 23, by a similar manner one can
easily see that there is no any pair.
Theorem 5 Let L be a finite dimensional nilpotent Lie algebra, N and K be
ideals of L, dimN = n, dimK = m, dimN2 ≥ 1 and

s′ = s′(N,L) =
1

2
(n− 1)(n− 2) + 1 + (n− 1)m− dimM(N,L).

Then s′ = 3 if and only if (N,L) is isomorphic to one of the following pairs:
(1) (H(1)⊕A(1),H(1)⊕H(r)⊕A(m− 2r)) (r ≥ 1),

(2) (L5,8 ⊕A(i), L5,8 ⊕A(2)) (0 ≤ i ≤ 2),

(3) (L4,3 ⊕A(i), L4,3 ⊕A(1)) (i = 0, 1),

(4) (L6,22(ϵ), L6,22),

(5) (L6,26, L6,26),

(6) (L5,5, L5,5).

Proof Put s = s(N) = 1
2 (n − 1)(n − 2) + 1 − dimM(N). Using again the

equality dimM(N,L) = dimN + dim(N/N2 ⊗K/K2), we get
mn−m = (s′ − s) + (dimN/N2)(dimK/K2). (6)

It is not difficult to show that s ≤ s′, since dimK/K2 ≤ m, dimN/N2 =
n− dimN2, and dimN2 ≥ 1. Now, suppose that s′ = 3, then s = 0, 1, 2 or 3.
By using Lemma 2, Theorem 3 and similar to Theorem 4 we can prove these
results.

Table 1

t(A) Filiform n-Lie algebra t(A) Filiform n-Lie Algebra
0 Abelian 12 L6,15, L6,17, L6,18

1 H(n, 1) 13 L6,14, L6,16

2 None 14 None
3 None 15 A3,6,6

4 L4,3 16 A5,7,2, A3,6,7

5 None 17 L1, L2, L4, L5, L8 for λ = 3
6 None 18 L3, L6, L7, L8 for λ ̸= 3
7 L5,6, L5,7, A3,5,2 19 None
8 None 20 None
9 None 20 None
10 None 22 A6,8,2

11 A4,6,2 23 None
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Table 2

n-Lie algebra None-zero multiplications
L4,3 [e1, e2] = e3, [e1, e3] = e4

An,n+2,2 [e1, ..., en] = en+1, [e2, ..., en+1 = en+2

An,n+3,6 [e1, ..., en] = en+1, [e2, ..., en+1] = en+2,
[e2, ..., en, en+2] = en+3

An,n+3,7 [e1, ..., en] = en+1, [e2, ..., en+1] = en+2,
[e2, ..., en, en+2] = [e1, e3, ..., en+1] = en+3

L6,14 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = [e2, e3] = e5,
[e2, e5] = −[e3, e4] = e6

L6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = [e2, e3] = e5
[e1, e5] = [e2, e4] = e6

L6,16 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = −[e3, e4] = e6
L6,17 [e1, e2] = e3, [e1, e3] = e4

[e1, e4] = e5, [e1, e5] = [e2, e3] = e6
L6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6

L1 = (123457A) [e1, ei] = ei+1 (2 ≤ i ≤ 6)
L2 = (123457B) [e1, ei] = ei+1 (2 ≤ i ≤ 6), [e2, e3] = e7
L3 = (123457C) [e1, ei] = ei+1 (2 ≤ i ≤ 6), [e2, e5] = e7, [e3, e4] = −e7
L4(123457D) [e1, ei] = ei+1 (2 ≤ i ≤ 6), [e2, e4] = e7, [e2, e3] = e6
L5(123457E) [e1, ei] = ei+1 (2 ≤ i ≤ 6), [e2, e4] = e7, [e2, e3] = e6 + e7
L6(123457F ) [e1, ei] = ei+1 (i = 2, 3, 4, 5, 6), [e3, e4] = −e7,

[e2, e3] = e6, [e2, e4] = [e2, e5] = e7
L7(123457H) [e1, ei] = ei+1 (i = 2, 3, 4, 5, 6), [e2, e4] = e6,

[e2, e5] = e7, [e2, e3] = e5 + e7
L8(123457I) [e1, ei] = ei+1 (i = 2, 3, 4, 5, 6), [e2, e5] = λe7,

[e3, e4] = (1− λ)e7, [e2, e3] = e5, [e2, e4] = e6

Table 3

Lie algebra Non-zero Multiplications
L4,3 [e1, e2] = e3, [e1, e3] = e4
L5,5 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5
L5,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = [e2, e3] = e5
L5,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L5,8 [e1, e2] = e4, [e1, e3] = e5
L5,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5
L6,10 [e1, e2] = e3, [e1, e3] = [e4, e5] = e6
L6,11 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = [e2, e3] = [e2, e5] = e6
L6,13 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5, [e1, e5] = [e3, e4] = e6
L6,20 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = [e2, e4] = e6
L6,23 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5, [e1, e4] = e6
L6,25 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6
L6,26 [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6
L6,27 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e6

L6,19(ϵ) [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = [e2, e4] = e6, [e3, e5] = ϵe6
L6,22(ϵ) [e1, e2] = [e3, e4] = e5, [e1, e3] = e6, [e2, e4] = ϵe6
L6,24(ϵ) [e1, e2] = e3, [e1, e3] = [e2, e4] = e5, [e2, e3] = e6, [e1, e4] = ϵe6
37A [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7
37B [e1, e2] = e5, [e2, e3] = e6, [e3, e4] = e7
37D [e1, e2] = [e3, e4] = e5, [e1, e3] = e6, [e2, e4] = e7
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