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Abstract In this paper, the fuzzy regression model is considered with crisp
inputs and symmetric triangular fuzzy output. This study aims to formulate
the fuzzy inference system based on the Sugeno inference model for the fuzzy
regression function prediction by the fuzzy least-squares problem-based on Di-
amond’s distance. In this study, the fuzzy least-squares problem is used to op-
timize consequent parameters, and the results are derived based on the V-fold
crossvalidation, so that the validity and quality of the proposed method can be
guaranteed. The proposed method is used to reduce the bias and the bound-
ary effect of the estimated underlying regression function. Also, a comparative
study of the fuzzy nonparametric regression function prediction is carried out
between the proposed model and smoothing methods, such as k-nearest neigh-
bor (k-NN), kernel smoothing (KS), and local linear smoothing (LLS). Differ-
ent approaches are illustrated by some examples and the results are compared.
Comparing the results indicates that, among the various prediction models,
the proposed model is the best, decreasing the boundary effect significantly.
Also, in comparison with different methods, in both one-dimensional and two-
dimensional inputs, it may be considered the best candidate for the prediction.
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1 Introduction

The fuzzy logic and fuzzy systems are one of the ways available to address
uncertainty in engineering and manufacturing applications [7]. Tanaka, Ue-
jima ,and Asia [48] suggested fuzzy regression analysis. Many different fuzzy
regression approaches have been proposed by different researchers. In general,
there are two approaches in fuzzy regression analysis: linear programming-
based method (see, e.g. [26,29,33,35]) and fuzzy least squares method (see,
e.g. [1,27,36–38,47]). The first method is based on minimizing fuzziness as
an optimization criterion. The second method uses least-squares of errors as
a fitting criterion. The advantages of the first approach are its simplicity in
programming and computations, while that the degree of fuzziness between
the observed values and the predicted values is minimized by using a fuzzy
least-squares method. Tanaka et al [26,49,50] regarded fuzzy data as a pos-
sibility distribution, and the deviations between the observed values and the
estimated values are supposed to be due to the fuzziness of the system struc-
ture. Nadaraya [31] claimed that there exist wellknown methods for regression
parameters estimation from empirical data. It is an approximation to the re-
gression line on the basis of sampling when the sample size increase unbound-
edly. Nadaraya [32] examined some properties of the multivariate empirical
probability density with kernels of arbitrary form in the case where the true
probability density has a Taylor expansion in arguments about each point of
independent variables. Epanechnikov [10] claimed that some non-parametric
estimations of a true multivariate probability density can be applied to solve
various problems involving the statistical tests of hypotheses. Kim and Chen
[25] have addressed conceptual, mythological characteristics of fuzzy and non-
parametric regression methods and assessed their relative performances under
various conditions. They have also proposed a guideline for selecting the appro-
priate prediction methods among fuzzy regression, nonparametric regression,
and least square regression with compression of these methods for descriptive
and predictive purposes. Also, statistical nonparametric smoothing techniques
have achieved significant development in recent years. For instance, Loftsgaar-
den, and Quesesberry [27] introduced the k-NN weight sequence. Cheng et al
[2] and Wang et al [51] fuzzified the k-nearest neighbor and the kernel smooth-
ing methods, and the local linear smoothing technique respectively to predict
the fuzzy nonparametric regression function. Also, Razaghnia, and Danesh [39]
predicted the fuzzy nonparametric regression function for trapezoidal data,
and Farnoosh et al [12] proposed fuzzy ridge regression method for the fuzzy
nonparametric regression function prediction. In recent years, the prediction
of the regression parameters has gained great attention among the researchers
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of neural networks. Ishibushi, and Tanaka [18,19] have suggested several fuzzy
nonparametric regression methods by using traditional backpropagation net-
works. Fausett [13] has proposed the fundamental concepts of neural networks
such as architectures, algorithms, and applications. Also, Ishibuchi, Kwon,
and Tanaka [17] have introduced a learning algorithm of fuzzy neural networks
with triangular fuzzy weights. Fuzzy neural networks have been applied for the
fuzzy regression (see, e.g. [3,4,30,34]). Fuzzy reasoning system was proposed
by Takagi and Sugeno [44]. Jang [20] proposed an adaptive network-based on
fuzzy inference system (ANFIS). Some new soft computing techniques, such as
artificial neural networks, fuzzy inference systems, evolutionary computation,
and their hybrids have been successfully employed for developing predictive
models to estimate the needed parameters. These techniques have more at-
traction in many research fields. For example, Tamer, Kamel, and Hassan [46]
have introduced the application of the ANFIS approach for fault classification
in transmission lines. In medical field, Kenar Koohi, Soleimanjahi, and Falahi
[23] have applied the ANFIS method to predict human Papillomavirus and in
the geography field, Talei, Chua, and Wong [45] have used the ANFIS method
in evaluating rainfall and discharge inputs. In industry, the ANFIS method has
been applied to predict by Zarandi et al. [14] and Rizal et al [40]. So, Cheng,
and Lee [3] formulated the ANFIS model for fuzzy regression analysis using
linear programming. Dalkilic & Apaydin [5,6] used the ANFIS model to an-
alyze the switching regression, and estimate the fuzzy regression parameters
Danesh and Khalili developed an optimized adaptive neuro-fuzzy inference
system model to fuse the surface image, motor current, strain and vibration
signal features for tool wear monitoring [8]. In this paper, the ANFIS model is
formulated for analyzing fuzzy regression using the fuzzy least squares based
on Diamond’s distance, also, stability of the proposed method is shown by
V-fold cross-validation technique. This paper aims to obtain the consequence
parameters using the fuzzy least-squares Problembased on Diamond’s distance
in the training algorithm of the ANFIS method and, then, applying the pro-
posed method for the fuzzy regression function prediction with crisp inputs
and fuzzy output to increase efficiency and decrease boundary effect of the
estimated underlying regression function, and finally, comparing the obtained
results with different smoothing methods, such as k-NN, KS and LLS methods.
In this work, it is presented that the boundary effect of the proposed method
is significantly less than smoothing methods. Also, the proposed method has
more efficiency compared with smoothing methods and decreases error values
of GOF and BIAS simultaneously. In the proposed approach, to obtain the
premise parameters, the center of the observed fuzzy outputs are trained using
the gradient descent method. The obtained premise parameters are applied in
the consequence section and the consequence parameters are obtained using
the fuzzy least squares method. Hence, the ANFIS method is fuzzified using
this method. Also, V-fold cross-validation technique is used as a validation
method.

The advantage of the paper is used V-fold Cross Validation technique for
training ANFIS network. The proposed method and the three smoothing meth-
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ods are compared with the CV scale. The conducted simulation experiments
are shown that the performance of the proposed method is better than the
smoothing methods, which reduces the CV. in the proposed approach when
the observation numbers are increased, the accuracy is increased, in compar-
ison with the existing smoothing methods. Generally, the proposed method
(V-fold cross-validation technique with triangular data) is reduced the fuzzi-
ness of the system and has faster adaptation. Also, the proposed method has
reduced the bias and the boundary effect of the predicted underlying regression
function.

The organization of this paper is as follows:
In the next section, the concepts and formulations of the k-nearest neighbor

smoothing, the kernel smoothing, the local linear smoothing, and the ANFIS
methods are explained. In the following, the ANFIS method is expanded for
the fuzzy nonparametric regression function prediction and the consequence
parameters are obtained by using the fuzzy least-squares based on Diamond’s
distance. Then three different examples are described for fitting fuzzy non-
parametric regression functions by using different approaches. Error-values
are used to numerically evaluate the performance of each method. Finally,
these models are compared together to discover the most suitable one and the
results are annualized.

2 Preliminaries

In this section, the concepts and formulations of the various models will be
explained.

Definition 1 Suppose that X = (lX , aX , rX) is a L−R fuzzy number so that
aX , lX and rX are the center, the lower and the upper limits being this fuzzy
number, respectively. The membership function of X = (lX , aX , rX) is

µX(z) =


L

(
aX − z

ax − lX

)
, lX < z < ax

R

(
z − aX
rx − aX

)
, aX < z < rx

0 otherwise.

(1)

Let A = (lA, aA, rA) and B = (lB , aB , rB) be any two L − R fuzzy numbers.
If L(X) = R(X)1− |X|, we have triangular fuzzy number.

So, the distance between A and B can be expressed as [9]:

d2(A,B) = (lB − lA)
2 + (aB − aA)

2 + (rB − rA)
2 (2)

This distance measures the closeness between the membership functions of two
triangular fuzzy numbers. When d2(A,B) = 0, it means that the membership
functions A and B are equal. Also, the result of a fuzzy addition of triangular
fuzzy numbers is a triangular fuzzy number again.
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Definition 2 The function f(x) is a mapping from x to Y where x = (x0, x1, . . . , xp)
is a p-dimentional vector crisp independent variable. Domain is assumed to be
D ⊆ Rp Consider the following the fuzzy regression model:

Y = f(x){+}ϵ (3)

where Y has the fuzzy structure and ϵ is an observed error with conditional
mean zero and variance σ2(x) given x. Yj is jth the response variable. The
response variable Yj can also be represented as a triangular fuzzy number. The
space of all triangular fuzzy numbers are denoted by TN(R), i.e, TN(R) =
{Yjj : Yj = (aj , αj , βj)} with αj as the center, αj = aj − lj and βj = αj − rj
as the left and the right spread of triangular fuzzy number Yj where lj and rj
are lower and upper limits being this fuzzy number. A symmetric triangular
fuzzy number Yj can be written as TN(R) = {Yj : Yj = (αj , βj)} where
αj and βj are the center, and the spread of a symmetric triangular fuzzy
number respectively and βj = rj − aj = aj − lj . However, in many practical
situations, the relationship between the input and output variable is frequently
unknown. Thus, nonparametric regression is needed where the functional form
is unknown. In this study, a fuzzy regression model is considered with crisp
inputs and triangular fuzzy output that the functional form is unknown.

2.1 Forecasting methods

In the kinds of literature and practical applications, smoothing methods are
widely used as the forecasting methods for nonparametric regression. In this
section, for facilitating our comparison, the fuzzy k-nearest neighbor smooth-
ing (k-NN), the fuzzy kernel smoothing (KS) and the local linear smoothing
(LLS) procedures are briefly described for fitting the fuzzy nonparametric re-
gression function respectively.

2.2 k-Nearest neighbor smoothing method (k-NN)

Consider the fuzzy nonparametric regression model as, in Eq. (3). The k-
nearest neighbor smoothing method is described for the regression function
estimation f(x) at x ∈ D The estimation of a regression function f(x) is
defined as [27]:

f̂(x) =
(
l̂(x), â(x), r̂(x)

)
=

 n∑
j=1

ωj(x)lyj
,

n∑
j=1

ωj(x)ayj
,

n∑
j=1

ωj(x)ryj

 , (4)

where ayj
, lyj

and ryj
are the lower, the center and the upper limits of the

observed NT (R) fuzzy output Yj and ωj(x) (j = 1, . . . , n) is a weight sequence
at x. Also, ωj(x) is expressed as:

ωj(x) =

{
1

k
, j ∈ J(x) , j = 1, . . .

0 otherwise,
(5)
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where J(x) is a set of j and xj (j = 1, . . . , n) is one of the k-nearest observations
to x So, by substituting ωj(x) in Eq. (4), it can be written as follows:

f̂(x) =
(
l̂(x), â(x), r̂(x)

)
=

1

k

n∑
j=1

lyj
,
1

k

n∑
j=1

(x)ayj
,
1

k

n∑
j=1

(x)ryj

 . (6)

Also, the inclusion condition, which was proposed by Tanaka et al [47] for the
fuzzy regression, can be approximated in selecting the appropriate k value.

2.3 Kernel smoothing method (KS)

In this method, the kernel estimation is still presented by Eq. (4), but the
weight sequence ωj(x) is generated by [27]:

ωj(x) =
Kh(x− xj)
n∑

h=1

Kh(x− xj)

=

K

(
x− xj

h

)
n∑

h=1

K

(
x− xj

h

) , j = 1, . . . , n (7)

where kh(·) is a kernel function. By substituting Eq. (7) in Eq. (4), f̂(x) for
x ∈ D can be expressed as:

f̂(x) =
(
l̂(x), â(x), r̂(x)

)

=


n∑

h=1

Kh((x− xj)lyj )

n∑
h=1

Kh(x− xj)

,

n∑
h=1

Kh((x− xj)ayj )

n∑
h=1

Kh(x− xj)

,

n∑
h=1

Kh((x− xj)ryj )

n∑
h=1

Kh(x− xj)

 .

(8)

Also, for multidimensional case with variables xj = (xj1, . . . , xjp) (j = 1, . . . , n),
the following the kernel weights can be used:

ωj(x) =

p∏
i=1

Kh(xi − xji)

n∑
h=1

Kh(x− xj)

(9)
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2.4 Local linear smoothing method (LLS)

The same above discussions, consider the fuzzy nonparametric regression model
in Eq. (3). We shall estimate l(x), a(x) and r(x) in f(x) = (l(x), a(x), r(x)).
So, the estimation f(x) in x0 can be expressed as:

f̂(x0) =
(
l̂(x0), â(x0), r̂(x0)

)
(10)

Moreover, suppose l(x), a(x) and r(x) have continuous partial derivatives to
each element xi in domain D. Then for a given x0 = (x01, x02, . . . , x0p) ∈ D
and with Taylor’s expansion, l(x), a(x) and r(x) can be locally estimated in a
neighborhood of x0, respectively, by the following linear functions:

l(x) ∼= l̃(x) = l(x0) + l(x1)(x0)(x1 − x01) + · · ·+ l(xp)(x0)(xp − x0p) (11)
a(x) ∼= ã(x) = a(x0) + a(x1)(x0)(x1 − x01) + · · ·+ a(xp)(x0)(xp − x0p) (12)
r(x) ∼= r̃(x) = r(x0) + r(x1)(x0)(x1 − x01) + · · ·+ r(xp)(x0)(xp − x0p) (13)

where l(xi)(x0), a(xi)(x0) and r(xi)(x0) are partial derivatives of l(x), a(x)
and r(x) with respect to each element xi at x0 (i = 1, . . . , p). Based on Di-
amond’s distance Eq. (2) and with the observed data (xj , Yj) (j = 1, . . . , n),
the following locally weighted least-squares problem is obtained for estimating
f(x0) =

(
l(x0), a(x0), r(x0)

)
in the local linear smoothing technique. That is,

minimize
n∑

j=1

d2(fj , f̂j) =

n∑
j=1

d2
(
(lyj , ayj , ryj ), (l̂(xj), â(xj), r̂(xj))

)
Kh(∥xj − x0∥)

=

n∑
j=1

(
lyj − l(x0)

p∑
i=1

l(xi)(x0)(xji − x0i)

)2

Kh(∥xj − x0∥)

+

n∑
j=1

(
ayj − a(x0)

p∑
i=1

a(xi)(x0)(xji − x0i)

)2

Kh(∥xj − x0∥)

+

n∑
j=1

(
ryj − r(x0)

p∑
i=1

r(xi)(x0)(xji − x0i)

)2

Kh(∥xj − x0∥)

(14)

with respect to l(x0), a(x0) and r(x0) and l(xi)(x0), a(xi)(x0) and r(xi)(x0)
(i = 1, . . . , p). kh(·) is kernel function with the smoothing parameter h, where

Kh(∥xj − x0∥) =
K

(
∥xj − x0∥

h

)
h

, j = 1, . . . , n (15)

is a sequence of weights at x0 and ∥xj − x0∥ is Euclidean distance between xj

and x0. Between many types of kernel functions, Epanechnikov’s kernel (k1)
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and Gaussion kernel (k2) have been used more. These kernels can be defined,
respectively, by the following:

k1(x) =

{
0.75(1− x2) , if |x| ≤ 1,
0 otherwise,

(16)

and
k2(x) = (2π)−

1
2 exp

(
−x2

2

)
. (17)

The degree of smoothness can be improved to estimate â(x), l̂(x) and r̂(x)

by using the role of smoothing parameter h in function kh(·). So, f̂(x0) =(
l̂(x0), â(x0), r̂(x0)

)
can be obtained by solving weighted least-squares prob-

lem (14). Therefore, taking the partial derivatives of the objective function (14)
with respect to these unknown parameters to be zero, these linear equations
can be separately solved to obtain the estimates of these parameters. Accord-
ing to the principle of the weighted leastsquares and using matrix notations,
can be obtained:(

l̂(x0), l
(x1)(x0), . . . , l

(xp)(x0)
)T

=
(
XT (x0)W (x0;h)X(x0)

)−1

XT (x0)W (x0;h)LY , (18)(
â(x0), a

(x1)(x0), . . . , a
(xp)(x0)

)T
=
(
XT (x0)W (x0;h)X(x0)

)−1

XT (x0)W (x0;h)AY , (19)(
r̂(x0), r

(x1)(x0), . . . , r
(xp)(x0)

)T
=
(
XT (x0)W (x0;h)X(x0)

)−1

XT (x0)W (x0;h)RY , (20)

X(x0) =


1 x11 − x01 − · · · − x1p − x0p

1 x21 − x01 − · · · − x2p − x0p

...
1 xn1 − x01 − · · · − xnp − x0p

(21)

LY =


ly1

ly2

...
lyn

 , AY =


ay1

ay2

...
ayn

 , RY =


ry1

ry2

...
ryn

 (22)

and

W (x0;h) = Diag
(
Kh(∥x1 − x0∥),Kh(∥x2 − x0∥), . . . ,Kh(∥xn − x0∥)

)
(23)

Therefore, W (x0;h) is a diagonal matrix with its diagonal elements being
Kh(∥xj −x0∥) (j = 1, . . . , n). So, the estimated regression function f̂(x) in x0
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can be expressed by:

f̂(x0) =
(
l̂(x0), â(x0), r̂(x0)

)
=
(
eT1 H(x0;h)LY , e

T
1 H(x0;h)AY , e

T
1 H(x0;h)RY

)
(24)

where

eT1 = (1, 0, . . . , 0)T ,

and

H(x0;h) =
(
XT (x0)W (x0;h)X(x0)

)−1

XT (x0)W (x0;h). (25)

In addition, the symbol ”T“ indicates the transpose of a matrix. More details
are provided in [2].

2.5 Smoothing parameter selection

There are a few approaches for selecting the optimal value of smoothing pa-
rameter (see, e.g. [11,15,16]). For selecting the optimal value of smoothing
parameter, fuzzified cross-validation method is used [43]. The fuzzified cross-
validation method is expressed as:

CV (h) =
1

n

n∑
j=1

d2
(
Yj , f̂(j)(xj ;h)

)
=

1

n

n∑
j=1

(
lyj , l̂(j)(xj ;h)

)2
+
(
ayj , â(j)(xj ;h)

)2
+
(
ryj , r̂(j)(xj ;h)

)2
(26)

so that

f̂(j)(xj ;h) =
(
l̂(j)(xj ;h), â(j)(xj ;h), r̂(j)(xj ;h)

)
(27)

be the predicted fuzzy regression function at input xj with the smoothing
parameter h. In which, the jth observation (xj , Yj) is omitted in the process of
performing the fitting procedure and is computed f̂(j)(xj ;h) for each element
xj (j = 1, . . . , n). Choose as the optimal value such that

CV (h) = min
h>0

CV (h). (28)

In practice, we may compute CV (h) for a series of values of h to search for.
For more details, see [12].
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Fig. 1: Fuzzy inference system.

Fig. 2: The reasoning scheme.

2.6 Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS method is a famous hybrid neuro-fuzzy network for modeling com-
plex systems [20,21]. It is one of the best tradeoffs between neural and fuzzy
systems that provides smoothness due to the fuzzy logic (FL) interpolation
and adaptability due to the NN backpropagation. Hence, the advantages of a
fuzzy system can be combined with a learning algorithm. The fuzzy inference
system forms useful computing based on concepts of fuzzy if-then rules. A fuzzy
inference system consists of three components that are shown in Fig. 1 [42].
Firstly, a rule base contains a selection of fuzzy rules. Secondly, a database
defines the membership functions used in the rules and, finally, a reasoning
mechanism to carry out the inference procedure on the rules and given facts.
fig 2 shows reasoning procedures of derive conclusion based on information ag-
gregation from all the rules. The steps of fuzzy reasoning performed by fuzzy
inference systems are:

The first step is called fuzzification. The input variables compare with the
membership functions on the premise part to obtain the membership values
of each linguistic label.

The second step combines the membership values on the premise part to
get firing. To present ANFIS architecture, two fuzzy if-then rules based on
Takagi and Sugeno model are considered with two input variables and one
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Fig. 3: ANFIS architecture.

output y.

Rule 1 : IF x1 is A1 and x2 is A3 then f1 = p10 + p11x1 + p12x2. (29)
Rule 1 : IF x1 is A2 and x2 is A4 then f2 = p20 + p21x1 + p22x2. (30)

The ANFIS model has five levels that the layers’ architecture are shown in Fig
3, in which a circle indicates a fixed node without parameters and a square
indicates an adaptive node with parameters. where x1, x2 and y ∈ R are input
and output variables, respectively. Ar’s are fuzzy sets and fk represents system
output due to rule Rk (k = 1, 2, r = 1, . . . , 4). In the following, the five layers
of the system are explained that have two-dimensional input and one output.
In the first layer, all the nodes are adaptive nodes. They generate membership
grades of the inputs. The node functions are given by:

o1,k = µAr (x1) , k, r = 1, 2, (31)
o1,k = µAr (x2) , k, r = 3, 4, (32)

where x1, x2 are inputs and µAr ’s are appropriate membership functions. ol,k
is the output of the kth node of the layer l. In the second layer, the nodes
are also fixed which multiply the base of the inputs on incoming the output
of the first layer and send the product out. The outputs of this layer can be
calculated as:

o2,k = wk = µAr
(x1) · µAr

(x2) , r = 1, . . . , 4. (33)

In the third layer, the nodes are fixed nodes. It calculates the ratio of a rule’s
firing of all the rules. Of the output of this layer can be calculated as:

o3,k = wk =
wk

w1 + w2
, k = 1, 2. (34)

This is called normalized firing strength.
In the fourth layer, node is an adaptive node. The node function associated

in the level 4 is a linear function. The output of this layer can be represented
as below:

o4,k = wkfk = wk(p
k
0 + pk1x1 + pk2x2) , k = 1, 2, (35)
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In this work, pki will be assumed to be a triangular fuzzy number for k = 1, 2
and i = 0, 1, 2.

In the fifth layer, the single node carries out the sum of inputs of all the
layers. The overall output of the structure is expressed as:

o5,k =

n∑
k=1

wkfk = w1f1 + w2f2. (36)

By substituting the fuzzy if-then rules in to Eq. (36), the following can be
obtained:

o5,k = Y = w1(p
1
0 + p11x1 + p12x2) + w2(p

2
0 + p21x1 + p22x2)

=

2∑
k=1

(wkp
k
0) +

2∑
k=1

2∑
i=1

(wkp
k
i )xi. (37)

This equation is the same form as the following linear equation:
Y = p0 + p1x1 + p2x2, (38)

that the parameters pi (i = 0, 1, 2) are fuzzy numbers. Therefore, the esti-
mated output value Y is the fuzzy number. What should be understood when
reviewing the above layers are mainly three different types of components that
can be adapted as follows [22]:
1. Premise parameters are nonlinear parameters in the input membership

functions.
2. Consequent parameters are as linear parameters in the rules of consequents

(output weights).
3. Rule structure needs to be optimized to achieve a better linguistic inter-

pretability.
In the following, the ANFIS method is extended with applications to fuzzy
nonparametric regression.

3 Extension of the ANFIS method in fuzzy regression

In Eq. (37), assume that consequence parameter pki is a symmetric triangular
fuzzy number and is represented by pki = (bki , α

k
i ), i = 0, . . . , p, k = 1, . . . ,m.

Also, Yj and Ŷj .. are symmetric triangular fuzzy numbers. They are repre-
sented by Yj = (aj , βj) and Ŷj = (âj , β̂j), j = 1, . . . , n, where n is the number
of data points, aj is the center value and βj is the spread value of Yj , and âj is
the center value and β̂j is the spread value of Ŷj . From the above definitions,
using fuzzy arithmetic and by substituting pki into Eq. (37), the output Ŷ , for
two inputs x1 and x2, can be expressed as:

Ŷ = (b10, α
1
0)w1 + (b11, α

1
1)w1x1 + (b12, α

1
2)w1x2

+(b20, α
2
0)w2 + (b21, α

2
1)w2x1 + (b22, α

2
2)w2x2

=

2∑
k=1

2∑
i=0

bkiwkxi +

2∑
k=1

2∑
i=0

αk
i wkxi. (39)
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where wk is known.
Consider the following the fuzzy regression model as:

Yj = p0 + p1xj1 + p2xj2 + · · ·+ ppxjp = PXj , j = 1, . . . , n, (40)

where n is the number of data points, xj = (1, xj1, xj2, . . . , xjp) is an p-
dimensional input vector of values of the independent variables at the jth

observations, also, P = (p0, p1, . . . , pp) is vector of unknown fuzzy parameters
and Yj is the jth observed value of the dependent variables. P can be denoted in
vector form as P = {b, α} where b = (bk0 , b

k
1 , . . . , b

k
p) and α = (αk

0 , α
k
1 , . . . , α

k
p),

k = 1, . . . ,m where bki is the center value, and αk
i is the spread value of pi,

i = 0, . . . , p. So, from the above definitions, by using fuzzy arithmetic and with
Eq. (39), âj and β̂j can be expressed as:

âj

m∑
k=1

p∑
i=0

bkiwkxji, (41)

and

β̂j

m∑
k=1

p∑
i=0

αk
i wkxji. (42)

3.1 Methodology of the proposed method

The learning algorithm of the ANFIS method is a hybrid algorithm. It com-
bines Least-squares method (forward pass) and the gradient descent method
(backward pass) to reduce error (For more details, see [20,21]). In this paper,
the fuzzy Least-squares method is used to optimize the consequent parameters
and the gradient descent method is used to compute the hider layers (2, 3, 4).

3.2 Premise parameters

By using the back propagation, the training algorithm of the premise parame-
ters is updated. The purpose of training the premise parameters is to optimize
the adjustment of the position and the shape of the associated membership
function. The center of the observed fuzzy outputs are trained and

e =

n∑
j=1

e2j =

n∑
j=1

(aj − âj)
2, (43)

is used for calculating the back propagation error. The influences of the spread
are ignored. The obtained optimal premise parameters are applied to obtain
a consequence parameters using the fuzzy least squares problem based on
Diamond’s distance that will explain in the following.



156 Mahdi Danesh et al.

So, the back propagation error for each layer is [3,20]:

el,k =

Ml+1∑
r=1

el+1,r
∂Al+1,r

∂ol,k
(44)

el,k is the back propagation error of the kth node of the layer l. Al+1,r, is the
node function of the rth node of (l+ 1)th layer, ol,k represents the output kth

node of the layer l and Ml+1 is the total number of nodes in the (l+1)th layer.
So, error of the final output node is calculated as:

e5,1 =
e2j
∂ŷj

= −(aj − âj). (45)

So, the gradient vector is defined as the error measure derivatives with respect
to each parameter. The derivative of the overall error measure e with respect
to parameter δ is:

∂e

∂δ
=

1

n

n∑
j=1

∂e2j
∂δ

=

n∑
j=1

el,k
∂ol,k
∂δ

. (46)

Therefore, the updating formula for δ is:

δ = ϑ
∂e

∂δ
, (47)

where ϑ is the learning rate.

3.3 Consequence parameters

In this section, consequence parameters are derived using the fuzzy least
squares problem. First, they are derived for the bivariate fuzzy nonparamet-
ric regression model. Then, the derivations are extended to a multiple fuzzy
nonparametric regression model.

3.4 Bivariate fuzzy nonparametric regression model

In the fuzzy regression model Eq. (3), the error measure is defined as:

ej = Yj{−}Ŷj , (48)

where Yj is the jth output, Ŷj is the network output of the jth input, x =
(1, x1, x2, . . . , xn) and {−} is an operator, whose definition depends on the
fuzzy ranking method used. This performance measure is based on the cal-
culation of the distance or difference between two fuzzy numbers. Kim and
Bishu [51] pointed out that the membership function of an estimated fuzzy
output must be close to the observed output as possible. There are various
distances for obtaining the closeness between fuzzy numbers. The individual



Prediction of Fuzzy Nonparametric Regression Function . . . 157

difference ej can be obtained using Diamond’s distance as a measure of the
fit. In this paper, we optimize the consequent parameters for crisp inputs and
symmetric fuzzy outputs using the fuzzy least squares based on Diamond’s
distance. Let the observed values Yj = (lyj , ayj , ryj ) and the predicted values
Ŷj = (l̂yj , âyj , r̂yj ) are asymmetric triangular fuzzy numbers (j = 1, . . . , n).
Where lyj

, ayj
and ryj

are the lower, the center, and the upper limits of the
observed fuzzy outputs. Also, l̂yj

, âyj
and r̂yj

are the lower, the center, and
the upper limits of the predicted fuzzy outputs. In the following, the fuzzy
leastsquares problem based on Diamond ’distance is formulated. That is, min-
imize

n∑
j=1

(Yj − Ŷj)
2 =

n∑
j=1

(
(lyj

− l̂yj
)2 + (ayj

− âyj
)2 + (ryj

− r̂yj
)2
)

(49)

with respect l̂yj
, âyj

and r̂yj
Suppose Yj = (ayj

, βyj
) and Yj = (âyj

, β̂yj
)

are two symmetric fuzzy numbers, where ayj
and βyj

are the center, and the
spread of the observed fuzzy outputs, âyj

and β̂yj
are the estimated center,

and spread of the predicted fuzzy outputs, lyj
= ayj

− βyj
, ryj

= ayj
+ βyj

,
l̂yj

= âyj
− β̂yj

, and r̂yj
= âyj

+ β̂yj
. By substituting l̂yj

, âyj
and r̂yj

in Eq.
(49), the fuzzy least squares problem can be rewritten as:

ERROR =

n∑
j=1

(Yj − Ŷj)
2

=

n∑
j=1

(
(ayj

− βyj
)(âyj

− β̂yj
)
)2

+ (ayj
− âyj

)2 +
(
(ayj

+ βyj
)(âyj

+ β̂yj
)
)2

=

n∑
j=1

(
(ayj

+ âyj
)2 + 2(βyj

+ β̂yj
)2
)

=

n∑
j=1

3

(
ayj −

m∑
k=1

1∑
i=0

bkiwjkxji

)2

+ 2

(
βyj

−
m∑

k=1

1∑
i=0

αk
i wjkxji

)2
 (50)

where, xj0 = 1.
It is observed that the objective function in Eq. (50) is the summation of

two parts with two different groups of unknown parameters. The consequent
parameters can be determined by minimizing error function with respect to
the unknown parameters bki and αk

i . In order to derive the error function with
respect to the unknown parameters set the derivations to zero, and solve for
the unknown parameters.
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In the following, we derive Eq. (50) with respect bki and αk
i respectively.

∂ERROR

∂b10
=

n∑
j=1

6wj1

(
ayj

−
m∑

k=1

1∑
i=0

bkiwjkxji

)
= 0 (51)

∂ERROR

∂b11
=

n∑
j=1

6wj1xj1

(
ayj

−
m∑

k=1

1∑
i=0

bkiwjkxji

)
= 0 (52)

...
∂ERROR

∂bm0
=

n∑
j=1

6wjm

(
ayj −

m∑
k=1

1∑
i=0

bkiwjkxji

)
= 0 (53)

∂ERROR

∂bm1
=

n∑
j=1

6wjmxj1

(
ayj −

m∑
k=1

1∑
i=0

bkiwjkxji

)
= 0 (54)

After rearranging the terms of the equations, Eqs. (51), (52), (53) and (54)
can be written as follows:

n∑
j=1

m∑
k=1

1∑
i=0

wk1b
k
iwjkxji =

n∑
j=1

wj1ayj
(55)

n∑
j=1

m∑
k=1

1∑
i=0

wj1xj1b
k
iwjkxji =

n∑
j=1

wj1xj1ayj
(56)

...
n∑

j=1

m∑
k=1

1∑
i=0

wjmbkiwjkxji =

n∑
j=1

wjmayj
(57)

n∑
j=1

m∑
k=1

1∑
i=0

wjmxj1b
k
iwjkxji =

n∑
j=1

wjmxj1ayj
(58)
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Eqs. (55), (56), (57) and (58) can be written as the following matrix:

[b10 b20 · · · bm0 b11 b21 · · · bn1 ]



w11 w21 · · · wn1

w12 w22 · · · wn2

...
w1m w2m · · · wnm

w11x11 w21x21 · · · wn1xn1

w12x11 w22x21 · · · wn2x21

...
w1mx11 w2mx21 · · · wnmxn1



×


w11w12 · · ·w1mw11x11 · · ·w1mx11

w21w22 · · ·w2mw21x21 · · ·w2mx21

...
wn1wn2 · · ·wnmwn1xn1 · · ·wnmxn1



=



w11 w21 · · · wn1

w12 w22 · · · wn2

...
w1m w2m · · · wnm

w11x11 w21x21 · · · wn1xn1

w12x11 w22x21 · · · wn2x21

...
w1mx11 w2mx21 · · · wnmxn1




ay1

ay2

...
ayn

 (59)

Also,

∂ERROR

∂α1
0

=

n∑
j=1

4wj1

(
βyj

−
m∑

k=1

1∑
i=0

αk
i wjkxji

)
= 0 (60)

∂ERROR

∂α1
1

=

n∑
j=1

4wj1xj1

(
βyj

−
m∑

k=1

1∑
i=0

αk
i wjkxji

)
= 0 (61)

...
∂ERROR

∂αm
0

=

n∑
j=1

4wjm

(
βyj

−
m∑

k=1

1∑
i=0

αk
i wjkxji

)
= 0 (62)

∂ERROR

∂αm
1

=

n∑
j=1

4wjmxj1

(
βyj

−
m∑

k=1

1∑
i=0

αk
i wjkxji

)
= 0 (63)
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After rearranging the terms of the equations, Eqs. (60), (61), (62) and (63)
can be written as follows:

n∑
j=1

m∑
k=1

1∑
i=0

wk1α
k
i wjkxji =

n∑
j=1

wj1βyj (64)

n∑
j=1

m∑
k=1

1∑
i=0

wj1xj1α
k
i wjkxji =

n∑
j=1

wj1xj1βyj
(65)

...
n∑

j=1

m∑
k=1

1∑
i=0

wjmαk
i wjkxji =

n∑
j=1

wjmβyj
(66)

n∑
j=1

m∑
k=1

1∑
i=0

wjmxj1α
k
i wjkxji =

n∑
j=1

wjmxj1βyj (67)

Eqs. (64), (65), (66) and (67) can be written as the following matrix:

[α1
0 α2

0 · · · αm
0 α1

1 α2
1 · · · αn

1 ]



w11 w21 · · · wn1

w12 w22 · · · wn2

...
w1m w2m · · · wnm

w11x11 w21x21 · · · wn1xn1

w12x11 w22x21 · · · wn2x21

...
w1mx11 w2mx21 · · · wnmxn1



×


w11w12 · · ·w1mw11x11 · · ·w1mx11

w21w22 · · ·w2mw21x21 · · ·w2mx21

...
wn1wn2 · · ·wnmwn1xn1 · · ·wnmxn1



=



w11 w21 · · · wn1

w12 w22 · · · wn2

...
w1m w2m · · · wnm

w11x11 w21x21 · · · wn1xn1

w12x11 w22x21 · · · wn2x21

...
w1mx11 w2mx21 · · · wnmxn1




βy1

βy2

...
βyn

 (68)

By solving these two groups of linear equations, these parameters estimation
can be obtained for the fuzzy regression model as follows:

(b̂ki )
T = (XTX)−1XTAY , (69)

(α̂k
i )

T = (XTX)−1XTβY . (70)
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where,

X =


w11w12 · · ·w1mw11x11 · · ·w1mx11

w21w22 · · ·w2mw21x21 · · ·w2mx21

...
wn1wn2 · · ·wnmwn1xn1 · · ·wnmxn1



AY =


ay1

ay2

...
ayn

 , αY =


βy1

βy2

...
βyn

 , (b̂ki )
T =


b̂10
b̂m0
...
b̂11
b̂m1

 , (α̂k
i )

T =


α̂1
0

α̂m
0
...
α̂1
1

α̂m
1

 (71)

And xj0 = 1, the symbol ”T“ is the mean transpose of a matrix.
In the proposed method, the consequence parameters are obtained by Eqs.

(69) and (70). So, Ishibushi and Tanaka [19] have suggested that the support
of the estimated values from the regression model includes the support of the
observed values in α-level (0 ≤ α ≤ 1).

Also, for this propose, one of the following two constraints must be estab-
lished:

m∑
k=1

1∑
i=0

bkiwjkxji − (1− α)

m∑
k=1

1∑
i=0

αk
i wjkxji ≤ ayj

+ (1− α)βyj
, (72)

or

m∑
k=1

1∑
i=0

bkiwjkxji − (1− α)

m∑
k=1

1∑
i=0

αk
i wjkxji ≤ ayj

− (1− α)βyj
,

and

m∑
k=1

αk
i wjk ≥ 0 , i = 0, 1 , j = 1, . . . , n

The aforementioned constraints are applied for the model parameters estima-
tion in the learning algorithm of the proposed model.

After obtaining the premise and consequence parameters Ŷj can be ob-
tained as follows:

Ŷj = (âj , β̂j) =

m∑
k=1

bk0wjk +

(
m∑

k=1

bk1wjk

)
xj1 +

m∑
k=1

αk
0wjk +

(
m∑

k=1

αk
1wjk

)
xj1.

(73)
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3.5 Extension to multivariate input

The above discussions only focus on the case of univariate input. It is straight-
forward to the extent the proposed method to the case of multivariate input.
In fact, let xj = (1, xj1, xj2, . . . , xjp) is the jth input vector and Yj = (ayj

, βyj
)

and Ŷj = (âyj
, β̂yj

) are symmetric triangular fuzzy output. Based on Diamond
distance and by using Eq. refeq50, the following weighted least-squares prob-
lem is formulated. That is, minimize

ERROR =

n∑
j=1

(Yj − Ŷj)
2

=

n∑
j=1

3

(
ayj

−
m∑

k=1

p∑
i=0

bkiwjkxji

)2

+ 2

(
βyj

−
m∑

k=1

p∑
i=0

αk
i wjkxji

)2

(74)

with respect to the unknown parameters bki and αk
i . In order to derive the error

function with respect to the unknown parameters, set the derivations to zero
and solve for the unknown parameters. The unknown parameters estimation
bki and αk

i can be expressed by the same expressions in Eqs. (69) and (70) with
X, (b̂ki )T and (α̂k

i )
T in (69) and (70), respectively replaced by:

X =


w11w12 · · ·w1mw11x11 · · ·w1mx11 · · ·w11x1p · · ·w1mx1p

w21w22 · · ·w2mw21x21 · · ·w2mx21 · · ·w21x2p · · ·w2mx2p

...
wn1wn2 · · ·wnmwn1xn1 · · ·wnmxn1 · · ·wn1xnp · · ·wnmxnp


and

(b̂ki )
T =


b̂10
b̂m0
...
b̂1p
b̂mp

 , (α̂k
i )

T =


α̂1
0

α̂m
0
...
α̂1
p

α̂m
p

 (75)

So, one of the following two constraints must be established:

m∑
k=1

1∑
i=0

bkiwjkxji − (1− α)

m∑
k=1

p∑
i=0

αk
i wjkxji ≤ ayj

+ (1− α)βyj
, (76)

or
m∑

k=1

p∑
i=0

bkiwjkxji − (1− α)

m∑
k=1

p∑
i=0

αk
i wjkxji ≤ ayj

− (1− α)βyj
,
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and
m∑

k=1

αk
i wjk ≥ 0 , i = 0, 1, . . . , p , j = 1, . . . , n

After obtaining the premise and consequence parameters, Ŷj = (âj , β̂j) can be
calculated as follows:

Ŷj = (âj , β̂j)

=

m∑
k=1

bk0wjk +

(
m∑

k=1

bk1wjk

)
xj1 + · · ·+

(
m∑

k=1

bkpwjk

)
xjp +

m∑
k=1

αk
0wjk

+ · · ·+

(
m∑

k=1

αk
1wjk

)
xj1 + · · ·+

(
m∑

k=1

αk
pwjk

)
xjp

=

m∑
k=1

p∑
i=0

bkpwjkxji +

m∑
k=1

p∑
i=0

bkpwjkxji , xj0 = 1. (77)

Thus, by using the Diamond’s distance, the final error function is defined as:

ERROR =
1

n

n∑
j=1

(
3(aj − âj)

2 + 2(βj − β̂j)
2
)

(78)

where n number is the pairs of training data.
The proposed method for the fuzzy regression function prediction may be

summarized in Fig. 4. MATLAB software is used for codding.

3.6 V -fold cross validation technique

V -fold cross-validation technique is used to estimate the quality of the pro-
posed method [41,43,52]. This technique divides all the samples into V equal-
size groups (if possible), called folds. V-1 folds are used for training, and the
fold left out is used for testing. After training V folds, the average errors of
test across all V training are calculated and the results of the best net will
be shown in the output. V -fold validation technique reduces variability by
averaging over V different partitions.

3.7 Modelling Performance Criterion

A quantity is defined to measure bias between the observed values, Yj =

(lj , aj , rj), and the predicted values, Ŷj = (l̂j , âj , r̂j), for all Xjs (j = 1, . . . , n)
where lj , aj , rj , l̂j , âj and r̂j are the lower, the center, and the upper limits
of the observed fuzzy outputs and the lower, the center, and the upper limits
of the estimated fuzzy regression function. Therefore, the goodness of fit error
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(GOF) rate based on Diamond’s distance (2), that is the same error function
ERROR, can be defined as [51]:

GOF =
1

n

n∑
j=1

d2(Yj , f̂j(xj)) =
1

n

n∑
j=1

(
(lj− l̂j)

2+(aj− âj)
2+(rj− r̂j)

2
)

(79)

where n is the number of pairs of observations. The large value of this quan-
tity indicates lack-of-fit and too small value reflects over-fit for the observed
fuzzy outputs. However, GOF value cannot efficiently reflect the closeness be-
tween the underlying fuzzy nonparametric regression function f(x) and its
estimate because of the error term in model Eq. (3). Thus, a quantity is used
for measuring the bias between the underlying fuzzy regression function and
its estimate which is called BIAS. It can be expressed as [2]:

BIAS =
1

n

n∑
j=1

d2(f(x), f̂j(x))

=
1

n

n∑
j=1

(
(l(x)− l̂(x))2 + (a(x)− â(x))2 + (r(x)− r̂(x))2

)
(80)

In practical applications, BIAS is not computable because the function f(x)
is certainly unknown. This quantity will be reported for the performance eval-
uation of the different methods in our simulations.

In the V -fold cross-validation method, the dataset is divided into v roughly
equal parts. Each time one of the v subsets is used as the test dataset (TED)
and, the other v − 1 subsets are considered as a train dataset (TRD). For
each V = 1, . . . , v, TRD is trained by using the methodology of ANFIS and
different membership functions. The membership function with the least errors
in testing is selected as initial membership. After training V folds, the average
errors of test across all V training is computed and results of the best net will
be shown in output. The most common values for number of folds are 5 or
10. In our work, we assume V = 5. So, we showed V = 5 in flow chart. In
V = 5, terminate the training of network and Report results of net with the
least errors in output. In flow chart, I = 1, . . . , 4 shows different memberships
such as Triangular, Trapezoidal, Gaussian and Gbell. Data training has been
performed up to 4 times for different functions and we have reported the results
obtained with the membership function that has the least error. In this paper,
Gaussian function is selected as the initial membership function with number
of MF equal 5 for input where parameters τ and σ represent the center and
the width, respectively.

4 Examples

To illustrate the proposed technique and smoothing methods, the following
examples are analyzed. The fuzzy nonparametric regression function is esti-
mated and the results are compared. For this purpose, error values of GOF
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Fig. 4: Flow chart of the fuzzy regression function prediction by the proposed
method
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and BIAS, and their charts are used. In our simulations, two datasets are gen-
erated in the same way as that in Cheng and Lee [2] except that error exerted
on the spread of fuzzy is taken on the interval [−0.25, 0.25] instead of [0, 1].
In this paper, Gaussian function is selected as the initial membership function
with number of MF equal 5 for input where parameters .. and .. represent the
center and the width, respectively.

Example 1 Consider the following function:

f(x) =
1

5
x2 + 2 exp

( x

10

)
,

and xj = 0.1j (j = 1, 2, . . . , 100) is uniformly generated within interval [0, 10].
100 pairs of sample data are generated for function f(x). Let Yj = (aj , βj) is
symmetric triangular fuzzy output so that{

aj = f(xj) + rand[−0.5, 0.5]
βj = (1/4)f(xj) + rand[−0.25, 0.25]

j = 1, . . . , 100

where rand [a, b] denotes a random number between a and b for each j. The
proposed method with 5-fold cross-validation technique and smoothing meth-
ods, such as the local linear smoothing, the kernel smoothing and the k-nearest
neighbor methods, are applied to fit the regression model. The performance
of these methods is compared by using error values of GOF and BIAS. The
obtained results from different methods are summarized in Table 2. The ob-
tained premise and consequence parameters of the fifth fold (V = 5) that has
the least error in the proposed method test are shown in Table 1. For making
a graphical comparison, the observed values and the predicted values of the
fifth fold (V = 5) in the proposed method are depicted for train and test data
in Figs. 5 and 6. So, the results of KS, k-NN and LLS methods are shown in
Figs. 7, 8 and 9. These results can be compared by using Figures and Table 2.
Results show that the proposed method works quite well not only in producing
a satisfactory estimate of the fuzzy regression function, but also in reducing
the boundary effect significantly. The convergence behavior of the training of
this method is plotted in Fig. 15 that ERROR is defined in Eq. 78 and an
’epoch’ means a complete presentation of the entire set of the training data.

Example 2 Consider the following function:

g(x) = 10 + 5 sin(0.25π(1− x)2),

and xj = 0.1 (j = 1, 2, . . . , 100) is uniformly generated on interval [0, 10]. 100
pairs of sample data are generated for function g(x). Let the observed fuzzy
outputs are symmetric triangular fuzzy numbers as Yj = (aj , βj), where{

aj = g(xj) + rand[−0.5, 0.5]
βj = (1/3)g(xj) + rand[−0.25, 0.25]

j = 1, . . . , 100
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Table 1: The obtained premise and consequence parameters of the proposed
method for Example 1.

V (τr, σr) (bk0 , α
k
0) (bk1 , α

k
1)

1 (0.4508, 2.4816) (2.7231, 0.8732) (-0.4052,- 0.1040)
2 (2.3666, 2.2040) (1.8143, 0.6716) (1.5509, 0.3836)
3 (5.3432, 2.1505) (0.4792, 0.3274) (1.2556, 0.3090)
4 (7.8415, 2.3521) (0.2105, 0.2710) (1.4341, 0.3518)
5 (9.1400, 3.0563) (-0.3051, 0.2649) (3.5011, 0.8655)

Table 2: The obtained results of the proposed method using 5-fold cross vali-
dation technique and the different smoothing methods for Example 1.

proposed method

Number of GOF test GOF train GOF total BIAS test BIAS train BIAS total
folds

1 3.9e-08 6.23e-08 5.8e-08 7.8e-07 7.2e-08 6.8e-08
2 1.78e-07 6.1e-08 8.4e-08 7.87e-07 7.2e-08 6.1e-08
3 1.7e-07 5.98e-08 8.19e-08 7.9e-07 7.3e-08 5.1e-08
4 6.97e-08 6.18e-08 6.3e-08 6.6e-07 6.8e-08 5.3e-08
5* 7.71e-08 6.056e-08 6.4e-08 5.9e-07 7.9e-08 5.5e-08

average 1.1e-07 6.1e-08 7.03e-08 7.2e-07 7.3e-08 5.8e-08
errors

Smoothing methods

Methods kernel Smoothing parameter GOF BIAS

LLS Gauss 0.51 0.2544 0.0317
Epanechnikov 1.2 0.2607 0.0328

LLS Gauss 0.19 0.2212 0.0628
Epanechnikov 1.4 0.2302 0.0606

k-NN 5 0.2547 0.0928

The smoothing methods and the proposed method with 5-fold cross validation
technique are applied to fit a regression model. The obtained premise and
consequence parameters of the fifth fold (V = 5) that has the least error
in the test are shown in Table 3. The convergence behavior of the training
of this method is plotted in Figure 16. The error values of GOF and BIAS
are numerically used to evaluate the performance of different methods. The
smoothing parameter value, in k-NN, KS and LLS methods, is determined
by cross-validation method. For numerical comparison, the obtained results
from different smoothing methods in Table 4. Also, the regression results are
depicted for different methods in Figs. 10-14. Table 4 can be used to compare
these results. Like the previous example, it can be observed from Table 4,
GOF and BIAS error values of the proposed method are lower than the other
methods, which point to the accuracy of the proposed method. As it is seen,
the proposed approach reduces the boundary effect significantly.
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Table 3: The obtained premise and consequence parameters of the proposed
method for Example 2.

V (τr, σr) (bk0 , α
k
0) (bk1 , α

k
1)

1 (0.4482, 1.8077) (11.6014, 3.7736) (-1.3374, -0.4469)
2 (2.2061, 1.8813) (6.7824, 2.1771) (2.0249, 0.6736)
3 (5.7465, 1.5239) (1.0712, 0.2686) (2.9498, 0.9830)
4 (8.3850, 1.7026) (4.8607, 1.5305) (-0.6883, -0.2295)
5 (11.1514, 1.2760) (1.3321, 0.3492) (1.9486, 0.6500)

Table 4: The obtained results from the proposed method using 5-fold cross
validation technique and the different smoothing methods for Example 2.

proposed method

Number of GOF test GOF train GOF total BIAS test BIAS train BIAS total
folds

1 1.81e-05 1.44e-05 1.5e-05 1.49e-04 1.84e-05 1.26e-05
2 5.51e-05 8.93e-06 1.8e-05 9.46e-05 1.15e-05 1.03e-05
3 3.25e-05 1.25e-05 1.7e-05 1.67e-04 1.48e-05 1.08e-05
4 2.16e-05 1.36e-05 1.5e-05 1.31e-04 1.57e-05 1.25e-05
5* 8.99e-06 1.55e-05 1.4e-05 6.7e-05 1.87e-05 1.18e-05

average 2.73e-05 1.29e-05 1.58e-05 1.22e-04 1.58e-05 1.16e-05
errors

Smoothing methods

Methods kernel Smoothing parameter GOF BIAS

LLS Gauss 0.21 0.2252 0.0520
Epanechnikov 0.52 0.2544 0.0552

LLS Gauss 0.15 0.2080 0.0821
Epanechnikov 0.34 0.2337 0.0848

k-NN 5 0.2997 0.01489

Fig. 5: The obtained regression results of fold V = 5 by the proposed method
for Example 1 with train data.
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Fig. 6: The obtained regression results of fold V=5 by the proposed method
for Example 1 with test data.

Fig. 7: The obtained regression results for Example 1 by using the fuzzy KS
method with = 0.19.

Fig. 8: The obtained regression results for Example 1 by using the fuzzy k-NN
method with k = 5.
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Fig. 9: The obtained regression results by the LLS method for Example 1 with
= 0.51.

Fig. 10: The obtained regression results for Example 2 by using the KS method
with = 0.15.

Fig. 11: The obtained regression results for Example 2 by using the fuzzy k-NN
method with k=5.



Prediction of Fuzzy Nonparametric Regression Function . . . 171

Fig. 12: The obtained regression results by the LLS method for Example 2
with =0.21.

Fig. 13: The obtained regression results fold V=5 by the proposed method for
Example 2 with train data.

Fig. 14: The obtained regression results fold V=5 by the proposed method for
Example 2 with test data.



172 Mahdi Danesh et al.

Fig. 15: Convergence behavior for Example 1.

Fig. 16: Convergence behavior for Example 2.

Example 3 Consider the following function:a(x1, x2) = 5,
l(x1, x2) =

4
625 (25− (5− x1)

2)(25− (5− x2)
2),

r(x1, x2) = 10− l(x1, x2),

where the domain of X = (x1, x2) is D = [0, 10]2. This function is depicted
in Fig. 18. A set of data is generated the same way as that in [51] and in the
following manner.

The crisp inputs of the independent variables x1 and x2 are equidistantly taken
from 0 to 10 with increment 0.5. These values form the lattice points of size
n = 441. These lattice points are ordered in such a way that their Cartesian
coordinates can be expressed as:

(xj1, xj2) = (0.5mod(j − 1, 21), 0.5int(j − 1, 21)) , j = 1, 2, . . . , n,

where mod(a, b) is the remainder and int(a, b) is the integer part of a divided
by b. Let output Yj = (aj , βj) (j = 1, 2, . . . , n) is a symmetric fuzzy number
and it is generated by:{

aj = a(xj1, xj2) + ϵj ,
βj = a(xj1, xj2)− l(xj1, xj2) + αj ,

j = 1, 2, . . . , n,
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Table 5: The obtained regression results from the proposed method using 5-fold
cross validation technique and the smoothing methods for Example 3.

proposed method

Number of GOF test GOF train GOF total BIAS total
folds

1 0.3121 0.1189 0.1575 0.0028
2* 0.3411 0.1114 0.1572 0.00027
3 0.2341 0.1253 0.1471 0.0202
4 0.2670 0.1231 0.1518 0.0010
5 0.5296 0.1189 0.2009 0.0105

average 0.3337 0.1195 0.1622 0.0070
errors

Smoothing methods

Methods kernel Smoothing parameter GOF BIAS

LLS Gauss 0.7 0.7360 0.0654
KS Gauss 0.55 0.7007 0.1037

where ϵ1, ϵ2, . . . , ϵn and α1, α2, . . . , αn, are the observation errors of the centers
and the spreads of the observed fuzzy outputs, respectively. Also, they are inde-
pendently generated from the normal distributions N(0, 0.52) and N(0, 0.252),
respectively. The dataset (xj1, xj2, Yj) (j = 1, 2, . . . , n) is used to obtain the
fuzzy regression function. Moreover, the proposed method with 5-fold cross
validation technique, the fuzzy kernel smoothing and the local linear smooth-
ing methods with Gaussian kernel are applied to fit the simulated dataset
and the obtained regression results are shown in Table 3. Gaussian function
is selected as the initial membership function with number of MF equal 5
for each input variable. The obtained premise and consequence parameters
are not reported here in consideration of the limited space. The convergence
behavior of the proposed method is plotted in Fig. 19. The estimated fuzzy
nonparametric regression function of the proposed method is depicted in Fig.
18. By using Figs. 17, 18 and Table 5, it is observed that the proposed method
still produces a quite satisfactory estimate of the underlying fuzzy regression
function in the case of two-dimensional input. In the following, the results of
different methods are compared with each other.

It can be seen from Tables 2, IV and V that the fuzzy k-NN method
produces a less satisfactory estimates of the fuzzy regression function. So, the
fuzzy k-NN method has the values of both GOF and BIAS larger than the cor-
responding values of the other smoothing methods and the proposed method.
Also, the value of GOF in the kernel smoothing method is always less than
that in the local linear smoothing method that indicates the kernel smoothing
method tends to produce such estimates that are closer to their respective
observations. In contrast, the value of BIAS in the local linear smoothing
method is always smaller than the value of BIAS in the kernel smoothing
method, which indicates that the local linear smoothing method gives less bi-
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Fig. 17: The center, the lower and the upper limit lines of the real function for
Example 3.

Fig. 18: The estimated ones by the proposed method for Example 3.

ased estimates of the center, the lower and upper limits of the underlying fuzzy
regression function. Also, from Figs. 6-14, we see that, the kernel smoothing
and k-NN methods produce more fluctuating estimates and suffer from more
serious boundary effects. In contrast, the LLS method not only gives quite
smooth estimates of the centerline, the lower and upper limit lines of the un-
derlying regression function but also reduce the boundary effect significantly.
So, it can be seen from Tables 2, 4 and 5 that, in each case, the error values of
the proposed method are always smaller than that in the smoothing methods
and this method decreases the values of both GOF and BIAS, simultaneously.
In summary, these results show that the proposed method works quite well
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Fig. 19: Convergence behavior of Example 3.

not only in producing a satisfactory estimate of the fuzzy regression function
but also in reducing the boundary effect significantly.

5 Conclusions

In this paper, the fuzzy nonparametric regression function is considered with
crisp inputs and triangular fuzzy output. The adaptive neuro-fuzzy inference
system method is formulated by the fuzzy least-squares based on Diamond’s
distance in section consequence parameters. So, the ANFIS method is fuzzified
to fit the fuzzy regression function. V-fold cross-validation technique is used to
estimate the quality and stability of the proposed method and avoid overfit-
ting. It can be seen that convergence behaviors of the performance for datasets
of the three examples are stable. Also, other forecasting techniques, such as
LLS, KS and k-NN methods are used to fit the fuzzy regression function. The
effectiveness of various methods is demonstrated by different simulation ex-
amples. By considering the obtained results of different methods and figures,
it can be determined that the boundary effect for k-NN and KS methods have
more severity than both the proposed and the LLS methods, and the perfor-
mance of the proposed method is evidently better than the various smoothing
methods. Based on Example 3, it should be pointed out that the performance
of the fuzzy nonparametric regression function prediction can be significantly
enhanced by using the proposed method in case twodimensional input. The
proposed method is especially useful for practical problems, which involve un-
certainty in the output observed data. Using the results, the conducted sim-
ulation experiments are shown that the performance of the proposed method
is better than the smoothing methods, which reduces the CV. In the pro-
posed approach, when the observation numbers are increased, the accuracy is
increased, in comparison with the existing smoothing methods. These advan-
tages would make our algorithm an acceptable one to generate nonparametric
regression functions. Thus current proposed method has reduced the fuzziness
of the system and it has faster adaptation.
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