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Abstract The perfect m-coloring with matrix A = [ai;]; je{1,....m} of a graph
G = (V,E) with {1,...,m} color is a vertices coloring of G with m-color so
that number of vertex in color j adjacent to a fixed vertex in color i is a;,
independent of the choice of vertex in color i. The matrix A = [ai;]; jeq1,....m}
is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order 10, that
is, we determine a list of all color parameter matrices corresponding to perfect
colorings of 3-regular graphs of order 10.
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1 Introduction

The concept of a perfect m-coloring plays an important role in graph theory,
algebraic combinatorics, and coding theory (Completely regular codes). There
is another term for this concept in the literature as ”equitable partition” (see
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The existence of completely regular codes in graphs is a historical problem
in mathematics. Completely regular codes are a generalization of perfect codes.
In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson
graphs. Therefore, some effort has been done on enumerating the parameter
matrices of some Johnson graphs, including J(6,3), J(7,3), J(8,3), J(8,4),
and J(n,3) (n odd) (see [3,4,8]).

Fon-Der-Flaass enumerated the parameter matrices of n-dimensional hy-
percube @, for n < 24. He also obtained some constructions and a necessary
condition for the existence of perfect 2-colorings of the n-dimensional hyper-
cube with a given parameter matrix (see [5-7]).

In [2] all perfect 3-colorings of the cubic graphs of order 10 were described
and in [10] all Perfect 4-colorings of the 3-regular graphs of order at most 8
were described.

In this paper we enumerate the parameter matrices of all perfect 4-colorings
of the 3-regular graphs of order 10.

2 Preliminaries

In this section we use the following definition.

Definition 1 For each graph G and each integer m, a mapping T : V(G) —
{1,...,m} is called a perfect m-coloring with matrix A = [ai;]; jeq1,....m}, if
it is surjective and for all i, j for every vertex of color i , the number of its
neighbors of color j is equal to a;;. The matrix A is called the parameter
matrix of a perfect coloring.

The spectrum of a matrix A, denoted by o(A) is the set of all eigenvalues
of A. The set of eigenvalues of the adjacency matrix of graph G is called the
spectrum of G.

We denoted M,.(4) for all parameter matrices of the perfect 4-colorings of
r-regular graphs. Note that if A € M,.(4), then the total number of entries for
each row is equal to r.

If A = [a;j]lnxn is a perfect 4-colorings matrix for a 3-regular graph G =

4
(V,E), then Y a;; =3 for all 1 <4 < 4. So there are 20 different models for
j=1
each row of matrices. Hence there are 20* matrices.
Let A = [aijlaxa be a 4-color parameter matrix for a graph G = (V, E).
The first observation says A must possess a weak form of symmetry, described
in the following lemma:

Lemma 1 Suppose A = [a;jlnxn @S a parameter matriz for a graph G =
(V,E). Then, a;; =0 if and only if a;; =0 for 1 <i,j < n.

Definition 2 Let A and B are two parameter matrices of the perfect 4-
colorings of graph G. We define A and B are equivalent if A transformed
to B by a permutation on colors.
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We have the obvious lemmas:

Lemma 2 Let A = [a;jlaxa and A € M3(4) and 0 € Sy (where Sy is the
symmetric group of degree 4). Then [aijlaxa ~ [Gio(j)]axa.

Lemma 3 Let A = [a;j]axa € M3(4). Then the following cases do not happen:

1) a14 = O, a13 = 0, a1 = O,’
2) a4 =0, azz =0, az; = 0;
3) as4 = 0, a3z = 0, asz; = 0,'
4) 43 = O, Ay = 0, 41 = 0.

Lemma 4 Suppose A € M3(4). Then there is not o € Sy such that [a;s(j)] =
* %00
* %00
00 * %
00 *x x

Proof It is clear with connectivity.

Remark 1 Suppose A € M3(4) is a parameter matrix for a 3-regular graph G.
00 * %
00 * %
x% 00
x %00

If there is o € Sy such that A = [a,(;)] = , then G is bipartite.

To see this V is the set of vertices of G. Divided V in to two independent
sets V7 and V5 with color numbers 3, 4 and 1, 2 respective. Therefore G is a
bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an equitable
partition. So, we have the following lemma.

Lemma 5 Suppose A € M3(4) is a coloring matriz for graph G. Then the
spectrum of A is a subset of the spectrum of G.

Lemma 6 If A € M3(4), then all of the eigenvalues of A are real.
Proof By symmetry of adjancy matrices of G is obvious.

abed
e fgh
i jkl
mmnop
connected graph G = (V, E), and suppose that |v| denote the number of vertices
of G and v; denote color i; (1 <i<4).

1) Ifb#0, c#0 and d # 0, then

Proposition 1 Let A = be a color incidence matrix of some

B R
! b ¢ d’ % e ec ed’
1+*+*+E 5+1+F+%



134 Zeinab Vahedi et al.

) W o
’ E+&+1+£’4 T+ﬂb+@+1
c ce cm d de di
2) Ifb#0, c#0 and h # 0, then
A I
1= b ¢ bh’ % e ec h’
14 -+~ +— ol =+
e 1 en b bi n
S I
T ibh V4= me m _ mec :
LA L) — -+ +1
e e e hb " h ' hbi
3) Ifb#0,c#0 and ! # 0, then
AR TR o
! b ¢ d’? e ec ecl’
I+ —+-+— B e
i 10 b bi  bio
, ol o
3T b AT %0 oib o
SR +o— o +1
c ce le 1 l
4) Ifb#£0,d#0 and g # 0, then
N - I
a b b d’ < d’
142+ 245 14242
ej  m b b
e o . o
je J jed’ m  mb  mbg
A AT Al e 1
b+g+ +gbm d de+dej+
5) Ifb#£0,d+#0 andl # 0, then
I R o
P b do A7 e | edo  ed?
e Il m b bml  bm
o o I
Pobm tmb TR m mb o
od  ode d de l
6) Ifb#£0, g #£0 and h # 0, then
N I
b b bh’ ’
4o+ 22 e
e e b j n
N R I
je g g b it



Perfect 4-Colorings of the 3-Regular Graphs of Order 10

135

7) If b£0, g #0 and | # 0, then

S I
o b b bgl > "= L’
14—+ 22 Sh1+94 5
e ej ejo b j  jo
I U [v]
vs = je g 1" T oje o o )
CAMNIE A | <~ +-+1
R e
8) Ifb#0, h #0 and l # 0, then
S I [
! b bho bh' T e ho R’
14— +— +— Sl — 4=
e enl en b l
S N
" lne In [>T nhe no o
me im0t — -t +1
ohb Ton 1T Wb h
9) If c#£0,d#0 and g # 0, then
U I
- I - T
1+2 4542 AR Lk
ig i m cj j o jem
R o
5T id> "t T m mej  me
—FZ 414 o
c g cm d dig di
10) If c#0, d # 0 and h # 0, then
I o
! 1+di+c i’2 hm hme E’
mh m d ndi n
e o eI
) idn id ’ m n . mc ’
v 14 —+ -+ +1
c+cmh+ +cm d h di
11) If ¢ #0, g 20 and h # 0, then
S I
- - i - - h’
1+ 242432 A
ig i ign je j n
. o o
o ih’ ngi non
LA L oA



136

Zeinab Vahedi et al.

12) If c#0, g £0 and |l #£ 0, then

|v]
v = g , Vg = - )
T P99
ig i o je i jo
_ [l _ vl
BT T % oj o
T B —+ - +1
c g 0 lec lg 1
13) If c#0, h # 0 and [ # 0, then
S R 4
! cdn ¢ ' hoi ho R’
1+ —+= - — +14+ =+ -
ioh 1 o nlc nl
. o, o
BT
c oh l h 1
14) Ifd#0, g # 0 and h # 0, then
" o . o
d d d”’ h h’
14— 4 29 2 UL
mh ~ mhj m nd j
el . o
Jhm j Jh’ m,n., ng
EASL NI A + -+ -—=+1
gnd+g+ Jrgn d h  hj
15) If d#0, g 20 and | # 0, then
o o ) o
! doj do d’°%* glm g gl’
mlg  ml  m jod j  jo
ol o
BT Im LT T 0f o
SN S|
at Tt It
16) If d#0, h # 0 and 1 # 0, then
. o ) v
! dn  do d’? hm ho h’
b — +— +— — 1t — -
mh ~ml m nd nl
S o
Im In [’ m n o
m ot — o+
od+0h+ + d h 1



Perfect 4-Colorings of the 3-Regular Graphs of Order 10

137

By using above proposition and lemmas, for n=10 we only have the fol-

lowing matrices, which we have shown with My, ...

M,y =

M;

5
I

M7 =

Moy =

Mys =

0111
1101
3000
1101

0021
0030
1101
1011

0021
0003
2001
1110

[0021]
0111
1200

[1101]

[0021]
0210
1101

12010]

[0021]
0201
1020

1101}

0021
0021
1110
2100

7M2:

7M6:

7M10 =

, My =

7M18 =

aM22 =

, Mo =

1002
0102
0012
1110

0021
0003
3000
1200

0021
0111
1110
1101

[0021]
0120
1110

(100 2]

[0021]
0210
2100

13000]

[0021]
0201
1002

[1110]

0021
0021
1101
1110

7M3:

7M7:

aMll =

7M19 =

2001
0111
0300
1101

0021
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1110

0021
0111
1110
2100

[(0021]
0120
1101

[1011]

[0021]
0012
2100

1101]

[0021]
0201
2010

11200]

0021
0021
2100
1101

, Mog.

7M4:

aMSZ

7M12

s Moy =

7M24:

s Mog =

2001
0201
0003
1110

0021
0003
2010]”
1101

0021
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1101
1110

(002 1]
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1101
11020
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0021
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0021
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Fig. 1: Connected 3-regular graphs of order 10

3 Main Results

A cubic graph is a 3-regular graph and there are 19 none isomorphic cubic
graphs of order 10 as shown below in Fig. 1.
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Table 1

Graph Matrix

Gy My M7 Mg | Mag | Mag

Ga M, Mo M~ My Mg | Mag | Mag

G3 Mis

Gy Mas | Mag

Gs Moz | Mag

Ge M, M~ Mg | May | Mog

Gs Ms

Gy Mo My M7 Mg My Mig | Mao

Gio My Mz My Me M~ Mg Mys | Mag | May | Mag | Mag

Gi2 Mys | Mis

Gi3 My

G1s Mg

G17 Mio | Mig

Gis M, Mo M~ My Mg | Mag | Mag

Note: By using Lemma 6 there are no perfect 4-colorings with the matrices

My, ..., Msg for graphs G7, G11, G14, G1s, and My, ..., Msg can be parameter

matrices of order 10 for graphs Gy, Ga, G3, G4, G5, Gg, Gs, Gg, G19, G2,
G13, G15, G17, G187 Glg are listed in Table 1.

Theorem 1 The parameter matrices of 3-reqular graphs of order 10 are listed
in the Table 2. (Checkmark(v') means having perfect 4-colorings and cross(x)
means not having perfect 4-colorings.)

Table 2: The parameter matrices of 3-regular graphs of order 10

Graph Matrix

1 2 4 5 7 8 9 10 15 16 18 19 | 20 | 23 | 24 | 26 | 28
Gy X X X N N
Go2 X X X X X X X
Gg X
Gy X N
G5 X X
Gg X X v v X
Gs X
Gog X v X X X v X
Gio X X X X X X X X X X
Glg X X
G13 v
G15 X
Gi7 X X
G1s X X X X X v X
Gig v v

Proof With consideration of 3-regular graphs eigenvalues and using Proposi-
tion 1, and Lemmas 5 and 6, it can be seen that the connected 3-regular graphs
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with 10 vertices can have perfect 4-colorings with matrices My, Mo, My, Ms,
Ms, M7, Mg, My, Mg, M1s, Mg, M1g, M1g, Mag, Ma3, Moy, Mag and Mg
which are represented by Table 2.

Now we introduce the mappings of all graphs that have perfect 4-colorings
with the parameter matrices. The graph Gg has perfect 4-colorings with the
matrices Mg and Moy.

Consider two mappings 17 and T5 as follows :

Tl(al) = Tl(ag) = 1, Tl(ag) = Tl(a4) = 2,

Tl(ag) = T1((l5) = Tl(a7) = Tl(ag) = 37 Tl(a(;) = Tl((llo) =4.

Tg(a5) = Tz(ag) = 1, Tz(ag) = Tg(a7) = 2,

Tg(al) = TQ(GG) = Tg(ag) = Tg(alo) = 3, Tg(a3) = Tg(a4) =4.

Can be seen that 77 and T, are perfect 4-colorings with the matrices Mg
and Moy, respectively.

The graph Gg has perfect 4-colorings with the matrices M4 and M;. Con-
sider two mappings 77 and 75 as follows:

T1(a8) T (ag) = Ti(a10) =1, Ti(az) = Ti(az) = T1(as) = 2,

(aﬁ) = 3, Tl(al) = Tl(a5) = Tl(a7) =4.

Tg(ag) Tg(ag) = 1, TQ((LG) = TQ(O/]) = 2,

Tg(al) Tg(ag) = Tg(a5) = TQ(ag) = 37 TQ(CL4) = Tg(alo) =4.

Can be seen that 17 and T» are perfect 4-colorings with the matrices My
and Mg, respectively.

The graph Gi3 has perfect 4-colorings with the matrix Mg. Consider the
mapping T as follows:

T(a1) =T(as) =T(a7) =4, T(az) = T(a4) = T(ag) = 1,

T(ag) = T(CLg) = T(alo) = 3, T(CL@) =2.

Can be seen that T is a perfect 4-colorings with the matrix My.

The graph G1g has perfect 4-colorings with the matrix Ms,. Consider the
mapping T as follows:

T(ag) =T(as) =1, T(a7) = T(a19) = 2,

T(ag) = T(a4) = T(ag) = T(ag) = 3, T(al) = T(a6) =4.

Can be seen that T is a perfect 4-colorings with the matrix May.

The graph G119 has perfect 4-colorings with the matrices My and My. Con-
sider two mappings T} and T3 as follows:

Tl(ag) Tl(a7) = 1, Tl(al) = T1 (ag) = 2,

(04) Tl(a5) = 3, Tl(ag) = Tl(a(;) = Tl(ag) = Tl(alo) =4.

Ty(a1) = Ta(as) = Ta(a1o) = 4, Ta(ag) = 2,

Tg(ag) Tz(a4) = TQ(CLG) = 3, Tz(ag) = Tg(ag,) = TQ((Z’?) =1.

Can be seen that 17 and T» are perfect 4-colorings with the matrices My
and Mg, respectively.

Here, we prove that other cases are not feasible. Some examples are as
follows. The rest of the graphs in Table 2 will be demonstrated in the some
order.

We show that the graph G has no perfect 4-colorings with the matrices
My, M7, Mg, Moy and Msg. For example we claim that Msg has no perfect
4-colorings for graph G;. Contrary to our claim, suppose that T is a perfect
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4-colorings with the matrix Mg for graph G;. Then according to the matrix
Msg, by symmetry we have five cases for the color of number 1 as follows:

1.

If T(a;) = 1, because mgz = 0, thus none two vertices with color 3
shouldn’t be adjacent. Therefore T'(as) = 3, T(az) = 3 or T(az) = 3.
If T(az) = 3 then T'(az) = 4 therefore T'(ay) = 2 so T'(ag) = 4 but
T(a7) =1 or T(a10) = 1, which is a contradiction because we must colored
two vertices adjacent with color 3. If T'(a3) = 3, T'(a2) = 4, T(as) = 2 so
T(ag) = 4, which is a contradiction with above.

T(az) = 1, it follows that T(a;) = T(aq) = 3 then T'(a3) = 4 because
myz = 1, which is a contradiction with the fourth row of the matrix Mog.
If T(as) = 1, it follows that T(a1) = T'(as) = 3 so T'(az) = 4 because
my3 = 1, which is a contradiction.

If T(as) = 1 then T(a3z) = T(as) = 3. It follows that T'(az) = 4 then
T(a1) = 2 and T'(ag) = 4, which is a contradiction with the first case.

If T'(a5) = 1 then we have 2 cases;

T(a1) = T(as) = 3, it follows that T(as) = 4 therefore T'(ay) = 3 so
T(as) = 2 and T(az) = 4 or T(as) = 4 and T'(az) = 3, in both cases
because my3 = 1; which is a contradiction. Therefore the graph G has no
perfect 4-colorings with matrix Mag.

Now we show that the graph G15 has no perfect 4-colorings with the matrix

Mig. Contorary to our claim, suppose that T is a perfect 4-colorings with
matrix Mg for the graph G15. According to the matrix Mg, by symmetry we
have three cases for the color of number 3 as follows:

1.

If T(a1) = 3, according to the matrix Mjg, there are two situations;
T(az) = T(ag) = 1 or T(az) = T(a19) = 1. For first case if T'(az) =
T(ag) = 1, then T'(aq19) = 2 therefore T'(a7) = T'(ag) = 4 then T'(ag) = 2.
It follows that T'(as) = 3 and T'(as) = 3, which is a contradiction with the
ms3 = 0 and for the second case, if T'(az) = T'(a19) = 1 then T'(ag) = 2. It
follows that T'(as) = T'(ay) = 4 because T'(az) = 1 so T(az) = 3, similarly
T(ag) = 3, which is a contradiction with the mgs = 0 of the matrix M.

. If T(a2) = 3, according to the matrix Mig, there are three situations;

T(a1) = T(a3) =1 or T(a1) = T(as) =1 or T'(a3z) = T'(a5) = 1. For first
case if T'(a1) = T(a3) = 1, then T'(a5) = 2 therefore T'(as) = T'(as) = 4,
which is a contradiction with the my4 = 1 of the matrix Mig.

For the second case, if T'(a1) = T'(a5) = 1 then T'(a3) = 2 therefore T'(ay) =
4 and T'(ag) = 4. It follows that T'(ag) = 4, which is a contradiction with
the maq = 1 of the matrix Mig.

For the third case, if T'(a3) = T(as) = 1, then T'(a1) = 2 therefore T'(ag) =
T(a19) = 4. It follows that T(a7) = 4, which is a contradiction with the
mgyq = 1 of the matrix Mlg.

If T(a3) = 3, according to the matrix Mig, there are three situations:
T(a2) =T(ag) =1 or T(az) =T(ag) =1 or T(ag) = T(ag) = 1.

For first case if T(az) = T(aq) = 1, then T'(ag) = 2 therefore T(ag) =
T(a19) = 4. It follows that T'(a7) = 4, which is a contradiction with the
fourth row of the matrix Mig.
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For the second case if T(ag) = T(ag) = 1, then T(as) = 2 therefore,
T(as) = T(ag) = 4, on the otherhand T'(a7) = 4. It follows that T'(ag) = 4,
which is a contradiction as above.

For the third case, if T'(as) = T'(ag) = 1, then T'(az) = 2, therefore T'(as) =
T(a1) = 4. It follows that T'(ag) = 4, which is a contradiction as above.
Therefore the graph G5 has no perfect 4-colorings with matrix Mig. As it
is stated, the graph G15 has no perfect 4-colorings with matrix Mig.

About the other graphs of order 10, similarly we can get the same result

as in Table 2 in Theorem 1.
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