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Abstract The perfect m-coloring with matrix A = [aij ]i,j∈{1,...,m} of a graph
G = (V,E) with {1, . . . ,m} color is a vertices coloring of G with m-color so
that number of vertex in color j adjacent to a fixed vertex in color i is aij ,
independent of the choice of vertex in color i. The matrix A = [aij ]i,j∈{1,...,m}
is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order 10, that
is, we determine a list of all color parameter matrices corresponding to perfect
colorings of 3-regular graphs of order 10.

Keywords Perfect coloring · Parameter matrices · Cubic graph · Equitable
partition
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1 Introduction

The concept of a perfect m-coloring plays an important role in graph theory,
algebraic combinatorics, and coding theory (Completely regular codes). There
is another term for this concept in the literature as ”equitable partition” (see
[9]).
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The existence of completely regular codes in graphs is a historical problem
in mathematics. Completely regular codes are a generalization of perfect codes.
In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson
graphs. Therefore, some effort has been done on enumerating the parameter
matrices of some Johnson graphs, including J(6, 3), J(7, 3), J(8, 3), J(8, 4),
and J(n, 3) (n odd) (see [3,4,8]).

Fon-Der-Flaass enumerated the parameter matrices of n-dimensional hy-
percube Qn for n < 24. He also obtained some constructions and a necessary
condition for the existence of perfect 2-colorings of the n-dimensional hyper-
cube with a given parameter matrix (see [5–7]).

In [2] all perfect 3-colorings of the cubic graphs of order 10 were described
and in [10] all Perfect 4-colorings of the 3-regular graphs of order at most 8
were described.

In this paper we enumerate the parameter matrices of all perfect 4-colorings
of the 3-regular graphs of order 10.

2 Preliminaries

In this section we use the following definition.

Definition 1 For each graph G and each integer m, a mapping T : V (G) →
{1, . . . ,m} is called a perfect m-coloring with matrix A = [aij ]i,j∈{1,...,m}, if
it is surjective and for all i, j for every vertex of color i , the number of its
neighbors of color j is equal to aij . The matrix A is called the parameter
matrix of a perfect coloring.

The spectrum of a matrix A, denoted by σ(A) is the set of all eigenvalues
of A. The set of eigenvalues of the adjacency matrix of graph G is called the
spectrum of G.

We denoted Mr(4) for all parameter matrices of the perfect 4-colorings of
r-regular graphs. Note that if A ∈ Mr(4), then the total number of entries for
each row is equal to r.

If A = [aij ]n×n is a perfect 4-colorings matrix for a 3-regular graph G =

(V,E), then
4∑

j=1

aij = 3 for all 1 ≤ i ≤ 4. So there are 20 different models for

each row of matrices. Hence there are 204 matrices.
Let A = [aij ]4×4 be a 4-color parameter matrix for a graph G = (V,E).

The first observation says A must possess a weak form of symmetry, described
in the following lemma:

Lemma 1 Suppose A = [aij ]n×n is a parameter matrix for a graph G =
(V,E). Then, aij = 0 if and only if aji = 0 for 1 ≤ i, j ≤ n.

Definition 2 Let A and B are two parameter matrices of the perfect 4-
colorings of graph G. We define A and B are equivalent if A transformed
to B by a permutation on colors.
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We have the obvious lemmas:

Lemma 2 Let A = [aij ]4×4 and A ∈ M3(4) and σ ∈ S4 (where S4 is the
symmetric group of degree 4). Then [aij ]4×4 ∼ [aiσ(j)]4×4.

Lemma 3 Let A = [aij ]4×4 ∈ M3(4). Then the following cases do not happen:

1) a14 = 0, a13 = 0, a12 = 0;
2) a24 = 0, a23 = 0, a21 = 0;
3) a34 = 0, a32 = 0, a31 = 0;
4) a43 = 0, a42 = 0, a41 = 0.

Lemma 4 Suppose A ∈ M3(4). Then there is not σ ∈ S4 such that [aiσ(j)] =
∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗


Proof It is clear with connectivity.

Remark 1 Suppose A ∈ M3(4) is a parameter matrix for a 3-regular graph G.

If there is σ ∈ S4 such that A = [aiσ(j)] =


0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

 , then G is bipartite.

To see this V is the set of vertices of G. Divided V in to two independent
sets V1 and V2 with color numbers 3, 4 and 1, 2 respective. Therefore G is a
bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an equitable
partition. So, we have the following lemma.

Lemma 5 Suppose A ∈ M3(4) is a coloring matrix for graph G. Then the
spectrum of A is a subset of the spectrum of G.

Lemma 6 If A ∈ M3(4), then all of the eigenvalues of A are real.

Proof By symmetry of adjancy matrices of G is obvious.

Proposition 1 Let A =


a b c d
e f g h
i j k l
m n o p

 be a color incidence matrix of some

connected graph G = (V,E), and suppose that |v| denote the number of vertices
of G and vi denote color i; (1 ≤ i ≤ 4).
1) If b ̸= 0, c ̸= 0 and d ̸= 0, then

v1 =
|v|

1 +
b

e
+

c

i
+

d

m

, v2 =
|v|

e

b
+ 1 +

ec

bi
+

ed

bm

,
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v3 =
|v|

i

c
+

ib

ce
+ 1 +

id

cm

, v4 =
|v|

m

d
+

mb

de
+

mc

di
+ 1

.

2) If b ̸= 0, c ̸= 0 and h ̸= 0, then

v1 =
|v|

1 +
b

e
+

c

i
+

bh

en

, v2 =
|v|

e

b
+ 1 +

ec

bi
+

h

n

,

v3 =
|v|

i

c
+

ib

ce
+ 1 +

ibh

cen

, v4 =
|v|

ne

hb
+

n

h
+

nec

hbi
+ 1

.

3) If b ̸= 0, c ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
b

e
+

c

i
+

cl

io

, v2 =
|v|

e

b
+ 1 +

ec

bi
+

ecl

bio

,

v3 =
|v|

i

c
+

ib

ce
+ 1 +

l

o

, v4 =
|v|

oi

lc
+

oib

lce
+

o

l
+ 1

.

4) If b ̸= 0, d ̸= 0 and g ̸= 0, then

v1 =
|v|

1 +
b

e
+

bg

ej
+

d

m

, v2 =
|v|

e

b
+ 1 +

g

j
+

ed

bm

,

v3 =
|v|

je

gb
+

j

g
+ 1 +

jed

gbm

, v4 =
|v|

m

d
+

mb

de
+

mbg

dej
+ 1

.

5) If b ̸= 0, d ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
b

e
+

do

ml
+

d

m

, v2 =
|v|

e

b
+ 1 +

edo

bml
+

ed

bm

,

v3 =
|v|

lm

od
+

lmb

ode
+ 1 +

l

o

, v4 =
|v|

m

d
+

mb

de
+

o

l
+ 1

.

6) If b ̸= 0, g ̸= 0 and h ̸= 0, then

v1 =
|v|

1 +
b

e
+

bg

ej
+

bh

en

, v2 =
|v|

e

b
+ 1 +

g

j
+

h

n

,

v3 =
|v|

je

gb
+

j

g
+ 1 +

jh

gn

, v4 =
|v|

ne

hb
+

n

h
+

ng

hj
+ 1

.
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7) If b ̸= 0, g ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
b

e
+

bg

ej
+

bgl

ejo

, v2 =
|v|

e

b
+ 1 +

g

j
+

gl

jo

,

v3 =
|v|

je

gb
+

j

g
+ 1 +

l

o

, v4 =
|v|

oje

lgb
+

oj

lg
+

o

l
+ 1

.

8) If b ̸= 0, h ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
b

e
+

bho

enl
+

bh

en

, v2 =
|v|

e

b
+ 1 +

ho

nl
+

h

n

,

v3 =
|v|

lne

ohb
+

ln

oh
+ 1 +

l

o

, v4 =
|v|

ne

hb
+

n

h
+

o

l
+ 1

.

9) If c ̸= 0, d ̸= 0 and g ̸= 0, then

v1 =
|v|

1 +
cj

ig
+

c

i
+

d

m

, v2 =
|v|

gi

cj
+ 1 +

g

j
+

gid

jcm

,

v3 =
|v|

i

c
+

j

g
+ 1 +

id

cm

, v4 =
|v|

m

d
+

mcj

dig
+

mc

di
+ 1

.

10) If c ̸= 0, d ̸= 0 and h ̸= 0, then

v1 =
|v|

1 +
dn

mh
+

c

i
+

d

m

, v2 =
|v|

hm

dn
+ 1 +

hmc

ndi
+

h

n

,

v3 =
|v|

i

c
+

idn

cmh
+ 1 +

id

cm

, v4 =
|v|

m

d
+

n

h
+

mc

di
+ 1

.

11) If c ̸= 0, g ̸= 0 and h ̸= 0, then

v1 =
|v|

1 +
cj

ig
+

c

i
+

cjh

ign

, v2 =
|v|

gi

jc
+ 1 +

g

j
+

h

n

,

v3 =
|v|

i

c
+

j

g
+ 1 +

jh

gn

, v4 =
|v|

ngi

hjc
+

n

h
+

ng

hj
+ 1

.
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12) If c ̸= 0, g ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
cj

ig
+

c

i
+

cl

io

, v2 =
|v|

gi

jc
+ 1 +

g

j
+

gl

jo

,

v3 =
|v|

i

c
+

j

g
+ 1 +

l

o

, v4 =
|v|

oi

lc
+

oj

lg
+

o

l
+ 1

.

13) If c ̸= 0, h ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
cln

ioh
+

c

i
+

cl

io

, v2 =
|v|

hoi

nlc
+ 1 +

ho

nl
+

h

n

,

v3 =
|v|

i

c
+

ln

oh
+ 1 +

l

o

, v4 =
|v|

oi

lc
+

n

h
+

o

l
+ 1

.

14) If d ̸= 0, g ̸= 0 and h ̸= 0, then

v1 =
|v|

1 +
dn

mh
+

dng

mhj
+

d

m

, v2 =
|v|

hm

nd
+ 1 +

g

j
+

h

n

,

v3 =
|v|

jhm

gnd
+

j

g
+ 1 +

jh

gn

, v4 =
|v|

m

d
+

n

h
+

ng

hj
+ 1

.

15) If d ̸= 0, g ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
doj

mlg
+

do

ml
+

d

m

, v2 =
|v|

glm

jod
+ 1 +

g

j
+

gl

jo

,

v3 =
|v|

lm

od
+

j

g
+ 1 +

l

o

, v4 =
|v|

m

d
+

oj

lg
+

o

l
+ 1

.

16) If d ̸= 0, h ̸= 0 and l ̸= 0, then

v1 =
|v|

1 +
dn

mh
+

do

ml
+

d

m

, v2 =
|v|

hm

nd
+ 1 +

ho

nl
+

h

n

,

v3 =
|v|

lm

od
+

ln

oh
+ 1 +

l

o

, v4 =
|v|

m

d
+

n

h
+

o

l
+ 1

.
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By using above proposition and lemmas, for n=10 we only have the fol-
lowing matrices, which we have shown with M1, . . . ,M28.

M1 =


0 1 1 1
1 1 0 1
3 0 0 0
1 1 0 1

 ,M2 =


1 0 0 2
0 1 0 2
0 0 1 2
1 1 1 0

 ,M3 =


2 0 0 1
0 1 1 1
0 3 0 0
1 1 0 1

 ,M4 =


2 0 0 1
0 2 0 1
0 0 0 3
1 1 1 0

 ,

M5 =


0 0 2 1
0 0 3 0
1 1 0 1
1 0 1 1

 ,M6 =


0 0 2 1
0 0 0 3
3 0 0 0
1 2 0 0

 ,M7 =


0 0 2 1
0 0 0 3
1 0 1 1
1 1 1 0

 ,M8 =


0 0 2 1
0 0 0 3
2 0 1 0
1 1 0 1

 ,

M9 =


0 0 2 1
0 0 0 3
2 0 0 1
1 1 1 0

 ,M10 =


0 0 2 1
0 1 1 1
1 1 1 0
1 1 0 1

 ,M11 =


0 0 2 1
0 1 1 1
1 1 1 0
2 1 0 0

 ,M12 =


0 0 2 1
0 1 1 1
1 1 0 1
1 1 1 0

 ,

M13 =


0 0 2 1
0 1 1 1
1 2 0 0
1 1 0 1

 ,M14 =


0 0 2 1
0 1 2 0
1 1 1 0
1 0 0 2

 ,M15 =


0 0 2 1
0 1 2 0
1 1 0 1
1 0 1 1

 ,M16 =


0 0 2 1
0 1 2 0
1 1 0 1
1 0 2 0

 ,

M17 =


0 0 2 1
0 2 1 0
1 1 0 1
2 0 1 0

 ,M18 =


0 0 2 1
0 2 1 0
2 1 0 0
3 0 0 0

 ,M19 =


0 0 2 1
0 0 1 2
2 1 0 0
1 1 0 1

 ,M20 =


0 0 2 1
0 2 0 1
1 0 1 1
1 1 1 0

 ,

M21 =


0 0 2 1
0 2 0 1
1 0 2 0
1 1 0 1

 ,M22 =


0 0 2 1
0 2 0 1
1 0 0 2
1 1 1 0

 ,M23 =


0 0 2 1
0 2 0 1
2 0 1 0
1 2 0 0

 ,M24 =


0 0 2 1
0 0 2 1
1 1 1 0
1 1 0 1

 ,

M25 =


0 0 2 1
0 0 2 1
1 1 1 0
2 1 0 0

 ,M26 =


0 0 2 1
0 0 2 1
1 1 0 1
1 1 1 0

 ,M27 =


0 0 2 1
0 0 2 1
2 1 0 0
1 1 0 1

 ,M28 =


0 0 2 1
0 0 2 1
2 1 0 0
1 2 0 0

 ,
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Fig. 1: Connected 3-regular graphs of order 10

3 Main Results

A cubic graph is a 3-regular graph and there are 19 none isomorphic cubic
graphs of order 10 as shown below in Fig. 1.
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Table 1

Graph Matrix
G1 M1 M7 M16 M24 M26

G2 M1 M2 M7 M9 M16 M24 M26

G3 M15

G4 M23 M26

G5 M23 M26

G6 M1 M7 M16 M24 M26

G8 M5

G9 M2 M4 M7 M8 M9 M16 M20

G10 M1 M2 M4 M6 M7 M8 M15 M20 M24 M26 M28

G12 M15 M18

G13 M9

G15 M19

G17 M10 M19

G18 M1 M2 M7 M9 M16 M24 M26

G19 M2 M9

Note: By using Lemma 6 there are no perfect 4-colorings with the matrices
M1, . . ., M28 for graphs G7, G11, G14, G16, and M1, . . ., M28 can be parameter
matrices of order 10 for graphs G1, G2, G3, G4, G5, G6, G8, G9, G10, G12,
G13, G15, G17, G18, G19 are listed in Table 1.

Theorem 1 The parameter matrices of 3-regular graphs of order 10 are listed
in the Table 2. (Checkmark(✓) means having perfect 4-colorings and cross(×)
means not having perfect 4-colorings.)

Table 2: The parameter matrices of 3-regular graphs of order 10

Graph Matrix
1 2 4 5 6 7 8 9 10 15 16 18 19 20 23 24 26 28

G1 × × × × ×
G2 × × × × × × ×
G3 ×
G4 × ×
G5 × ×
G6 × × ✓ ✓ ×
G8 ×
G9 × ✓ × × × ✓ ×
G10 × × × × × × × × × × ×
G12 × ×
G13 ✓
G15 ×
G17 × ×
G18 × × × × × ✓ ×
G19 ✓ ✓

Proof With consideration of 3-regular graphs eigenvalues and using Proposi-
tion 1, and Lemmas 5 and 6, it can be seen that the connected 3-regular graphs
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with 10 vertices can have perfect 4-colorings with matrices M1, M2, M4, M5,
M6, M7, M8, M9, M10, M15, M16, M18, M19, M20, M23, M24, M26 and M28

which are represented by Table 2.

Now we introduce the mappings of all graphs that have perfect 4-colorings
with the parameter matrices. The graph G6 has perfect 4-colorings with the
matrices M16 and M24.

Consider two mappings T1 and T2 as follows :
T1(a1) = T1(a8) = 1, T1(a3) = T1(a4) = 2,
T1(a2) = T1(a5) = T1(a7) = T1(a9) = 3, T1(a6) = T1(a10) = 4.
T2(a5) = T2(a9) = 1, T2(a2) = T2(a7) = 2,
T2(a1) = T2(a6) = T2(a8) = T2(a10) = 3, T2(a3) = T2(a4) = 4.
Can be seen that T1 and T2 are perfect 4-colorings with the matrices M16

and M24, respectively.
The graph G9 has perfect 4-colorings with the matrices M4 and M16. Con-

sider two mappings T1 and T2 as follows:
T1(a8) = T1(a9) = T1(a10) = 1, T1(a2) = T1(a3) = T1(a4) = 2,
T1(a6) = 3, T1(a1) = T1(a5) = T1(a7) = 4.
T2(a2) = T2(a9) = 1, T2(a6) = T2(a7) = 2,
T2(a1) = T2(a3) = T2(a5) = T2(a8) = 3, T2(a4) = T2(a10) = 4.
Can be seen that T1 and T2 are perfect 4-colorings with the matrices M4

and M16, respectively.
The graph G13 has perfect 4-colorings with the matrix M9. Consider the

mapping T as follows:
T (a1) = T (a5) = T (a7) = 4, T (a2) = T (a4) = T (a9) = 1,
T (a3) = T (a8) = T (a10) = 3, T (a6) = 2.
Can be seen that T is a perfect 4-colorings with the matrix M9.
The graph G18 has perfect 4-colorings with the matrix M24. Consider the

mapping T as follows:
T (a2) = T (a5) = 1, T (a7) = T (a10) = 2,
T (a3) = T (a4) = T (a8) = T (a9) = 3, T (a1) = T (a6) = 4.
Can be seen that T is a perfect 4-colorings with the matrix M24.
The graph G19 has perfect 4-colorings with the matrices M2 and M9. Con-

sider two mappings T1 and T2 as follows:
T1(a2) = T1(a7) = 1, T1(a1) = T1(a9) = 2,
T1(a4) = T1(a5) = 3, T1(a3) = T1(a6) = T1(a8) = T1(a10) = 4.
T2(a1) = T2(a8) = T2(a10) = 4, T2(a9) = 2,
T2(a2) = T2(a4) = T2(a6) = 3, T2(a3) = T2(a5) = T2(a7) = 1.
Can be seen that T1 and T2 are perfect 4-colorings with the matrices M2

and M9, respectively.
Here, we prove that other cases are not feasible. Some examples are as

follows. The rest of the graphs in Table 2 will be demonstrated in the some
order.

We show that the graph G1 has no perfect 4-colorings with the matrices
M1, M7, M16, M24 and M26. For example we claim that M26 has no perfect
4-colorings for graph G1. Contrary to our claim, suppose that T is a perfect
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4-colorings with the matrix M26 for graph G1. Then according to the matrix
M26, by symmetry we have five cases for the color of number 1 as follows:
1. If T (a1) = 1 , because m33 = 0, thus none two vertices with color 3

shouldn’t be adjacent. Therefore T (a5) = 3, T (a2) = 3 or T (a3) = 3.
If T (a2) = 3 then T (a3) = 4 therefore T (a4) = 2 so T (a6) = 4 but
T (a7) = 1 or T (a10) = 1, which is a contradiction because we must colored
two vertices adjacent with color 3. If T (a3) = 3, T (a2) = 4, T (a4) = 2 so
T (a6) = 4, which is a contradiction with above.

2. T (a2) = 1, it follows that T (a1) = T (a4) = 3 then T (a3) = 4 because
m43 = 1, which is a contradiction with the fourth row of the matrix M26.

3. If T (a3) = 1, it follows that T (a1) = T (a4) = 3 so T (a2) = 4 because
m43 = 1, which is a contradiction.

4. If T (a4) = 1 then T (a3) = T (a5) = 3. It follows that T (a2) = 4 then
T (a1) = 2 and T (a6) = 4, which is a contradiction with the first case.

5. If T (a5) = 1 then we have 2 cases;
T (a1) = T (a4) = 3, it follows that T (a6) = 4 therefore T (a4) = 3 so
T (a3) = 2 and T (a2) = 4 or T (a4) = 4 and T (a2) = 3, in both cases
because m43 = 1; which is a contradiction. Therefore the graph G1 has no
perfect 4-colorings with matrix M26.
Now we show that the graph G15 has no perfect 4-colorings with the matrix

M19. Contorary to our claim, suppose that T is a perfect 4-colorings with
matrix M19 for the graph G15. According to the matrix M19, by symmetry we
have three cases for the color of number 3 as follows:
1. If T (a1) = 3, according to the matrix M19, there are two situations;

T (a2) = T (a6) = 1 or T (a2) = T (a10) = 1. For first case if T (a2) =
T (a6) = 1, then T (a10) = 2 therefore T (a7) = T (a9) = 4 then T (a8) = 2.
It follows that T (a4) = 3 and T (a5) = 3, which is a contradiction with the
m33 = 0 and for the second case, if T (a2) = T (a10) = 1 then T (a6) = 2. It
follows that T (a5) = T (a7) = 4 because T (a2) = 1 so T (a3) = 3, similarly
T (a9) = 3, which is a contradiction with the m33 = 0 of the matrix M19.

2. If T (a2) = 3, according to the matrix M19, there are three situations;
T (a1) = T (a3) = 1 or T (a1) = T (a5) = 1 or T (a3) = T (a5) = 1. For first
case if T (a1) = T (a3) = 1, then T (a5) = 2 therefore T (a4) = T (a8) = 4,
which is a contradiction with the m44 = 1 of the matrix M19.
For the second case, if T (a1) = T (a5) = 1 then T (a3) = 2 therefore T (a4) =
4 and T (a9) = 4. It follows that T (a8) = 4, which is a contradiction with
the m44 = 1 of the matrix M19.
For the third case, if T (a3) = T (a5) = 1, then T (a1) = 2 therefore T (a6) =
T (a10) = 4. It follows that T (a7) = 4, which is a contradiction with the
m44 = 1 of the matrix M19.

3. If T (a3) = 3, according to the matrix M19, there are three situations:
T (a2) = T (a4) = 1 or T (a2) = T (a9) = 1 or T (a4) = T (a9) = 1.
For first case if T (a2) = T (a4) = 1, then T (a9) = 2 therefore T (a8) =
T (a10) = 4. It follows that T (a7) = 4, which is a contradiction with the
fourth row of the matrix M19.
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For the second case if T (a2) = T (a9) = 1, then T (a4) = 2 therefore,
T (a5) = T (a8) = 4, on the otherhand T (a7) = 4. It follows that T (a6) = 4,
which is a contradiction as above.
For the third case, if T (a4) = T (a9) = 1, then T (a2) = 2, therefore T (a5) =
T (a1) = 4. It follows that T (a6) = 4, which is a contradiction as above.
Therefore the graph G15 has no perfect 4-colorings with matrix M19. As it
is stated, the graph G15 has no perfect 4-colorings with matrix M19.

About the other graphs of order 10, similarly we can get the same result
as in Table 2 in Theorem 1.
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