Perfect 4-Colorings of the 3-Regular Graphs of Order 10

Zeinab Vahedi *·* **Mohammad Maghasedi** *·* **Mehdi Alaeiyan**

Received: 26 July 2021 / Accepted: 3 October 2021

Abstract The perfect *m*-coloring with matrix $A = [a_{ij}]_{i,j \in \{1,...,m\}}$ of a graph $G = (V, E)$ with $\{1, \ldots, m\}$ color is a vertices coloring of G with *m*-color so that number of vertex in color j adjacent to a fixed vertex in color i is a_{ij} , independent of the choice of vertex in color i. The matrix $A = [a_{ij}]_{i,j \in \{1,...,m\}}$ is called the parameter matrix.

We study the perfect 4-colorings of the 3-regular graphs of order 10, that is, we determine a list of all color parameter matrices corresponding to perfect colorings of 3-regular graphs of order 10.

Keywords Perfect coloring *·* Parameter matrices *·* Cubic graph *·* Equitable partition

Mathematics Subject Classification (2010) 03E02 *·* 05C15 *·* 68R05

1 Introduction

The concept of a perfect *m*-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (Completely regular codes). There is another term for this concept in the literature as "equitable partition" (see [9]).

Z. Vahedi

M. Maghasedi (Corresponding author) Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. E-mail: maghasedi@kiau.ac.ir

M. Alaeiyan School of Mathematics, Iran University of Science and Technology, Narmak 16846, Tehran, Iran. E-mail: alaeiyan@iust.ac.ir

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. E-mail: zeinab.vahedi20@gmail.com

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson graphs. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including $J(6,3)$, $J(7,3)$, $J(8,3)$, $J(8,4)$, and $J(n,3)$ (*n* odd) (see [3,4,8]).

Fon-Der-Flaass enumerated the parameter matrices of *n*-dimensional hypercube Q_n for $n < 24$. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the *n*-dimensional hypercube with a given parameter matrix (see [5–7]).

In [2] all perfect 3-colorings of the cubic graphs of order 10 were described and in [10] all Perfect 4-colorings of the 3-regular graphs of order at most 8 were described.

In this paper we enumerate the parameter matrices of all perfect 4-colorings of the 3-regular graphs of order 10.

2 Preliminaries

In this section we use the following definition.

Definition 1 For each graph *G* and each integer *m*, a mapping $T: V(G) \rightarrow$ $\{1, \ldots, m\}$ is called a perfect *m*-coloring with matrix $A = [a_{ij}]_{i,j \in \{1, \ldots, m\}}$, if it is surjective and for all i, j for every vertex of color i , the number of its neighbors of color *j* is equal to a_{ij} . The matrix *A* is called the parameter matrix of a perfect coloring.

The spectrum of a matrix A, denoted by $\sigma(A)$ is the set of all eigenvalues of A. The set of eigenvalues of the adjacency matrix of graph G is called the spectrum of G.

We denoted $M_r(4)$ for all parameter matrices of the perfect 4-colorings of r-regular graphs. Note that if $A \in M_r(4)$, then the total number of entries for each row is equal to r.

If $A = [a_{ij}]_{n \times n}$ is a perfect 4-colorings matrix for a 3-regular graph $G =$ (V, E) , then $\sum_{i=1}^{4}$ $\sum_{j=1} a_{ij} = 3$ for all $1 \leq i \leq 4$. So there are 20 different models for

each row of matrices. Hence there are $20⁴$ matrices.

Let $A = [a_{ij}]_{4\times4}$ be a 4-color parameter matrix for a graph $G = (V, E)$. The first observation says A must possess a weak form of symmetry, described in the following lemma:

Lemma 1 *Suppose* $A = [a_{ij}]_{n \times n}$ *is a parameter matrix for a graph* $G =$ (V, E) *. Then,* $a_{ij} = 0$ *if and only if* $a_{ji} = 0$ *for* $1 \le i, j \le n$ *.*

Definition 2 Let A and B are two parameter matrices of the perfect 4 colorings of graph G. We define A and B are equivalent if A transformed to B by a permutation on colors.

We have the obvious lemmas:

Lemma 2 Let $A = [a_{ij}]_{4 \times 4}$ and $A \in M_3(4)$ and $\sigma \in S_4$ (where S_4 is the *symmetric group of degree 4). Then* $[a_{ij}]_{4\times 4} \sim [a_{i\sigma(j)}]_{4\times 4}$.

Lemma 3 *Let* $A = [a_{ij}]_{4 \times 4} \in M_3(4)$ *. Then the following cases do not happen:*

1) $a_{14} = 0$, $a_{13} = 0$, $a_{12} = 0$; $2)$ $a_{24} = 0, a_{23} = 0, a_{21} = 0;$ *3*) $a_{34} = 0$, $a_{32} = 0$, $a_{31} = 0$; $4)$ $a_{43} = 0$, $a_{42} = 0$, $a_{41} = 0$.

Lemma 4 *Suppose* $A \in M_3(4)$ *. Then there is not* $\sigma \in S_4$ *such that* $[a_{i\sigma(j)}] =$ *∗ ∗* 0 0

 $\Big\}$ *∗ ∗* 0 0 0 0 *∗ ∗* $\begin{matrix} \end{matrix}$

0 0 *∗ ∗*

Proof It is clear with connectivity.

Remark 1 Suppose $A \in M_3(4)$ is a parameter matrix for a 3-regular graph G. If there is $\sigma \in S_4$ such that $A = [a_{i\sigma(j)}] =$ $\sqrt{ }$ $\Big\}$ 0 0 *∗ ∗* 0 0 *∗ ∗ ∗ ∗* 0 0 *∗ ∗* 0 0 1 $\begin{matrix} \end{matrix}$, then G is bipartite.

To see this V is the set of vertices of G. Divided V in to two independent sets V_1 and V_2 with color numbers 3, 4 and 1, 2 respective. Therefore G is a bipartite graph.

It is easy to see that each perfect coloring on a graph G, create an equitable partition. So, we have the following lemma.

Lemma 5 *Suppose* $A \in M_3(4)$ *is a coloring matrix for graph G. Then the spectrum of A is a subset of the spectrum of G.*

Lemma 6 *If* $A \in M_3(4)$ *, then all of the eigenvalues of A are real.*

Proof By symmetry of adjancy matrices of G is obvious.

Proposition 1 *Let A* = $\sqrt{ }$ $\Big\}$ *a b c d e f g h i j k l m n o p* Ī. $\overline{}$ *be a color incidence matrix of some*

connected graph $G = (V, E)$ *, and suppose that* $|v|$ *denote the number of vertices of G* and v_i denote color i; $(1 \leq i \leq 4)$.

1) If $b \neq 0$ *,* $c \neq 0$ *and* $d \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{ed}{bm}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{id}{cm}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{mb}{de} + \frac{mc}{di} + 1}.
$$

2) If $b \neq 0$ *,* $c \neq 0$ *and* $h \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{bh}{en}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{ibh}{cen}}, v_4 = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{nec}{hbi} + 1}.
$$

$$
v_4 = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{nec}{hbi} + 1}.
$$

3) If $b \neq 0$ *,* $c \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{c}{i} + \frac{cl}{io}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{ec}{bi} + \frac{ecl}{bio}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{ib}{ce} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{oi}{lc} + \frac{oib}{lec} + \frac{o}{l} + 1}.
$$

4) If $b \neq 0$ *,* $d \neq 0$ *and* $g \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{ed}{bm}},
$$

$$
v_3 = \frac{|v|}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{jed}{gbm}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{mb}{de} + \frac{mbg}{def} + 1}.
$$

5) If $b \neq 0$, $d \neq 0$ and $l \neq 0$, then

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{do}{ml} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{edo}{bml} + \frac{ed}{bm}},
$$

$$
v_3 = \frac{|v|}{\frac{lm}{od} + \frac{lmb}{ode} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{mb}{de} + \frac{o}{l} + 1}.
$$

6) If $b \neq 0$, $g \neq 0$ and $h \neq 0$, then

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{bh}{en}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_4 = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{ng}{hj} + 1}.
$$

7) If $b \neq 0$ *,* $g \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bg}{ej} + \frac{bgl}{ejo}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{g}{j} + \frac{gl}{jo}},
$$

$$
v_3 = \frac{|v|}{\frac{je}{gb} + \frac{j}{g} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{oje}{lgb} + \frac{oj}{lg} + \frac{o}{l} + 1}.
$$

8) If $b \neq 0$ *,* $h \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{b}{e} + \frac{bho}{enl} + \frac{bh}{en}}, v_2 = \frac{|v|}{\frac{e}{b} + 1 + \frac{ho}{nl} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{ine}{ohb} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{ne}{hb} + \frac{n}{h} + \frac{o}{l} + 1}.
$$

9) If $c \neq 0$ *,* $d \neq 0$ *and* $g \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{gi}{cj} + 1 + \frac{g}{j} + \frac{gid}{jcm}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{id}{cm}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{mcj}{dig} + \frac{mc}{di} + 1}.
$$

10) If $c \neq 0$ *,* $d \neq 0$ *and* $h \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{dn}{mh} + \frac{c}{i} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{hm}{dn} + 1 + \frac{hmc}{ndi} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{idn}{cm} + 1 + \frac{id}{cm}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{mc}{di} + 1}.
$$

11) If $c \neq 0$ *,* $g \neq 0$ *and* $h \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{cjh}{ign}}, v_2 = \frac{|v|}{\frac{gi}{jc} + 1 + \frac{g}{j} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_4 = \frac{|v|}{\frac{ngi}{hjc} + \frac{n}{h} + \frac{ng}{hj} + 1}.
$$

gn

12) If $c \neq 0$ *,* $g \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{cj}{ig} + \frac{c}{i} + \frac{cl}{io}}, v_2 = \frac{|v|}{\frac{gi}{jc} + 1 + \frac{g}{j} + \frac{gl}{jo}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{j}{g} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{oi}{lc} + \frac{oj}{lg} + \frac{o}{l} + 1}.
$$

13) If $c \neq 0$ *,* $h \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{cln}{ioh} + \frac{c}{i} + \frac{cl}{io}}, v_2 = \frac{|v|}{\frac{hoi}{nlc} + 1 + \frac{ho}{nl} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{i}{c} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{oi}{lc} + \frac{n}{h} + \frac{o}{l} + 1}.
$$

14) If $d \neq 0$ *,* $g \neq 0$ *and* $h \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{dn}{mh} + \frac{dng}{mhj} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{hm}{nd} + 1 + \frac{g}{j} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{jhm}{gnd} + \frac{j}{g} + 1 + \frac{jh}{gn}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{ng}{hj} + 1}.
$$

15) If $d \neq 0$ *,* $g \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{doj}{mlg} + \frac{do}{ml} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{glm}{jod} + 1 + \frac{g}{j} + \frac{gl}{jo}},
$$

$$
v_3 = \frac{|v|}{\frac{lm}{od} + \frac{j}{g} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{oj}{lg} + \frac{o}{l} + 1}.
$$

16) If $d \neq 0$ *,* $h \neq 0$ *and* $l \neq 0$ *, then*

$$
v_1 = \frac{|v|}{1 + \frac{dn}{mh} + \frac{do}{ml} + \frac{d}{m}}, v_2 = \frac{|v|}{\frac{hm}{nd} + 1 + \frac{ho}{nl} + \frac{h}{n}},
$$

$$
v_3 = \frac{|v|}{\frac{lm}{od} + \frac{ln}{oh} + 1 + \frac{l}{o}}, v_4 = \frac{|v|}{\frac{m}{d} + \frac{n}{h} + \frac{o}{l} + 1}.
$$

By using above proposition and lemmas, for n=10 we only have the following matrices, which we have shown with M_1, \ldots, M_{28} .

$$
M_1 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 3 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_2 = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 3 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_4 = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix},
$$

$$
M_5 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, M_6 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_7 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_8 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix},
$$

$$
M_9 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 2 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{10} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{11} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}, M_{12} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},
$$

$$
M_{13} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{14} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}, M_{15} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, M_{16} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{bmatrix},
$$

$$
M_{17} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{bmatrix}, M_{18} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}, M_{19} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{20} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},
$$

$$
M_{21} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{22} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{23} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}, M_{24} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix},
$$

$$
M_{25} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}, M_{26} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{27} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, M_{28} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix},
$$

Fig. 1: Connected 3-regular graphs of order 10

3 Main Results

A cubic graph is a 3-regular graph and there are 19 none isomorphic cubic graphs of order 10 as shown below in Fig. 1.

Table 1

Note: By using Lemma 6 there are no perfect 4-colorings with the matrices M_1, \ldots, M_{28} for graphs $G_7, G_{11}, G_{14}, G_{16}$, and M_1, \ldots, M_{28} can be parameter matrices of order 10 for graphs *G*1, *G*2, *G*3, *G*4, *G*5, *G*6, *G*8, *G*9, *G*10, *G*12, *G*13, *G*15, *G*17, *G*18, *G*¹⁹ are listed in Table 1.

Theorem 1 *The parameter matrices of 3-regular graphs of order* 10 *are listed in the Table 2. (Checkmark(* \checkmark *) means having perfect 4-colorings and cross(* \times *) means not having perfect 4-colorings.)*

Table 2: The parameter matrices of 3-regular graphs of order 10

Proof With consideration of 3-regular graphs eigenvalues and using Proposition 1, and Lemmas 5 and 6, it can be seen that the connected 3-regular graphs with 10 vertices can have perfect 4-colorings with matrices M_1 , M_2 , M_4 , M_5 , *M*6, *M*7, *M*8, *M*9, *M*10, *M*15, *M*16, *M*18, *M*19, *M*20, *M*23, *M*24, *M*²⁶ and *M*²⁸ which are represented by Table 2.

Now we introduce the mappings of all graphs that have perfect 4-colorings with the parameter matrices. The graph G_6 has perfect 4-colorings with the matrices M_{16} and M_{24} .

Consider two mappings T_1 and T_2 as follows :

 $T_1(a_1) = T_1(a_8) = 1, T_1(a_3) = T_1(a_4) = 2,$

 $T_1(a_2) = T_1(a_5) = T_1(a_7) = T_1(a_9) = 3, T_1(a_6) = T_1(a_{10}) = 4.$

 $T_2(a_5) = T_2(a_9) = 1, T_2(a_2) = T_2(a_7) = 2,$

 $T_2(a_1) = T_2(a_6) = T_2(a_8) = T_2(a_{10}) = 3, T_2(a_3) = T_2(a_4) = 4.$

Can be seen that T_1 and T_2 are perfect 4-colorings with the matrices M_{16} and *M*24, respectively.

The graph G_9 has perfect 4-colorings with the matrices M_4 and M_{16} . Consider two mappings T_1 and T_2 as follows:

 $T_1(a_8) = T_1(a_9) = T_1(a_{10}) = 1, T_1(a_2) = T_1(a_3) = T_1(a_4) = 2,$

 $T_1(a_6) = 3, T_1(a_1) = T_1(a_5) = T_1(a_7) = 4.$ $T_2(a_2) = T_2(a_9) = 1, T_2(a_6) = T_2(a_7) = 2,$

 $T_2(a_1) = T_2(a_3) = T_2(a_5) = T_2(a_8) = 3, T_2(a_4) = T_2(a_{10}) = 4.$

Can be seen that T_1 and T_2 are perfect 4-colorings with the matrices M_4 and *M*16, respectively.

The graph *G*¹³ has perfect 4-colorings with the matrix *M*9. Consider the mapping T as follows:

 $T(a_1) = T(a_5) = T(a_7) = 4, T(a_2) = T(a_4) = T(a_9) = 1,$

 $T(a_3) = T(a_8) = T(a_{10}) = 3, T(a_6) = 2.$

Can be seen that T is a perfect 4-colorings with the matrix *M*9.

The graph G_{18} has perfect 4-colorings with the matrix M_{24} . Consider the mapping T as follows:

 $T(a_2) = T(a_5) = 1, T(a_7) = T(a_{10}) = 2,$

 $T(a_3) = T(a_4) = T(a_8) = T(a_9) = 3, T(a_1) = T(a_6) = 4.$

Can be seen that T is a perfect 4-colorings with the matrix M_{24} .

The graph G_{19} has perfect 4-colorings with the matrices M_2 and M_9 . Consider two mappings T_1 and T_2 as follows:

 $T_1(a_2) = T_1(a_7) = 1, T_1(a_1) = T_1(a_9) = 2,$ $T_1(a_4) = T_1(a_5) = 3, T_1(a_3) = T_1(a_6) = T_1(a_8) = T_1(a_{10}) = 4.$ $T_2(a_1) = T_2(a_8) = T_2(a_{10}) = 4, T_2(a_9) = 2,$ $T_2(a_2) = T_2(a_4) = T_2(a_6) = 3, T_2(a_3) = T_2(a_5) = T_2(a_7) = 1.$ Can be seen that T_1 and T_2 are perfect 4-colorings with the matrices M_2

and *M*9, respectively.

Here, we prove that other cases are not feasible. Some examples are as follows. The rest of the graphs in Table 2 will be demonstrated in the some order.

We show that the graph G_1 has no perfect 4-colorings with the matrices M_1 , M_7 , M_{16} , M_{24} and M_{26} . For example we claim that M_{26} has no perfect 4-colorings for graph *G*1. Contrary to our claim, suppose that T is a perfect 4-colorings with the matrix M_{26} for graph G_1 . Then according to the matrix M_{26} , by symmetry we have five cases for the color of number 1 as follows:

- 1. If $T(a_1) = 1$, because $m_{33} = 0$, thus none two vertices with color 3 shouldn't be adjacent. Therefore $T(a_5) = 3$, $T(a_2) = 3$ or $T(a_3) = 3$. If $T(a_2) = 3$ then $T(a_3) = 4$ therefore $T(a_4) = 2$ so $T(a_6) = 4$ but $T(a_7) = 1$ or $T(a_{10}) = 1$, which is a contradiction because we must colored two vertices adjacent with color 3. If $T(a_3) = 3$, $T(a_2) = 4$, $T(a_4) = 2$ so $T(a_6) = 4$, which is a contradiction with above.
- 2. $T(a_2) = 1$, it follows that $T(a_1) = T(a_4) = 3$ then $T(a_3) = 4$ because $m_{43} = 1$, which is a contradiction with the fourth row of the matrix M_{26} .
- 3. If $T(a_3) = 1$, it follows that $T(a_1) = T(a_4) = 3$ so $T(a_2) = 4$ because $m_{43} = 1$, which is a contradiction.
- 4. If $T(a_4) = 1$ then $T(a_3) = T(a_5) = 3$. It follows that $T(a_2) = 4$ then $T(a_1) = 2$ and $T(a_6) = 4$, which is a contradiction with the first case.
- 5. If $T(a_5) = 1$ then we have 2 cases; $T(a_1) = T(a_4) = 3$, it follows that $T(a_6) = 4$ therefore $T(a_4) = 3$ so $T(a_3) = 2$ and $T(a_2) = 4$ or $T(a_4) = 4$ and $T(a_2) = 3$, in both cases because $m_{43} = 1$; which is a contradiction. Therefore the graph G_1 has no perfect 4-colorings with matrix *M*26.

Now we show that the graph *G*¹⁵ has no perfect 4-colorings with the matrix M_{19} . Contorary to our claim, suppose that T is a perfect 4-colorings with matrix M_{19} for the graph G_{15} . According to the matrix M_{19} , by symmetry we have three cases for the color of number 3 as follows:

- 1. If $T(a_1) = 3$, according to the matrix M_{19} , there are two situations; $T(a_2) = T(a_6) = 1$ or $T(a_2) = T(a_{10}) = 1$. For first case if $T(a_2) =$ $T(a_6) = 1$, then $T(a_{10}) = 2$ therefore $T(a_7) = T(a_9) = 4$ then $T(a_8) = 2$. It follows that $T(a_4) = 3$ and $T(a_5) = 3$, which is a contradiction with the $m_{33} = 0$ and for the second case, if $T(a_2) = T(a_{10}) = 1$ then $T(a_6) = 2$. It follows that $T(a_5) = T(a_7) = 4$ because $T(a_2) = 1$ so $T(a_3) = 3$, similarly $T(a_9) = 3$, which is a contradiction with the $m_{33} = 0$ of the matrix M_{19} .
- 2. If $T(a_2) = 3$, according to the matrix M_{19} , there are three situations; $T(a_1) = T(a_3) = 1$ or $T(a_1) = T(a_5) = 1$ or $T(a_3) = T(a_5) = 1$. For first case if $T(a_1) = T(a_3) = 1$, then $T(a_5) = 2$ therefore $T(a_4) = T(a_8) = 4$, which is a contradiction with the $m_{44} = 1$ of the matrix M_{19} .

For the second case, if $T(a_1) = T(a_5) = 1$ then $T(a_3) = 2$ therefore $T(a_4) =$ 4 and $T(a_9) = 4$. It follows that $T(a_8) = 4$, which is a contradiction with the $m_{44} = 1$ of the matrix M_{19} .

For the third case, if $T(a_3) = T(a_5) = 1$, then $T(a_1) = 2$ therefore $T(a_6) =$ $T(a_{10}) = 4$. It follows that $T(a_7) = 4$, which is a contradiction with the $m_{44} = 1$ of the matrix M_{19} .

3. If $T(a_3) = 3$, according to the matrix M_{19} , there are three situations: $T(a_2) = T(a_4) = 1$ or $T(a_2) = T(a_9) = 1$ or $T(a_4) = T(a_9) = 1$.

For first case if $T(a_2) = T(a_4) = 1$, then $T(a_9) = 2$ therefore $T(a_8) =$ $T(a_{10}) = 4$. It follows that $T(a_7) = 4$, which is a contradiction with the fourth row of the matrix *M*19.

For the second case if $T(a_2) = T(a_9) = 1$, then $T(a_4) = 2$ therefore, $T(a_5) = T(a_8) = 4$, on the otherhand $T(a_7) = 4$. It follows that $T(a_6) = 4$, which is a contradiction as above.

For the third case, if $T(a_4) = T(a_9) = 1$, then $T(a_2) = 2$, therefore $T(a_5) =$ $T(a_1) = 4$. It follows that $T(a_6) = 4$, which is a contradiction as above. Therefore the graph G_{15} has no perfect 4-colorings with matrix M_{19} . As it is stated, the graph G_{15} has no perfect 4-colorings with matrix M_{19} .

About the other graphs of order 10, similarly we can get the same result as in Table 2 in Theorem 1.

References

- 1. M. Alaeiyan, H. Karami, Perfect 2-colorings of the generalized Petersen graph, Proceedings Mathematical Sciences, 126, 1-6 (2016).
- 2. M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10, Electronic Journal of Graph Theory and Applications (EJGTA), 5, 194-206 (2017).
- 3. S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6,3) and J(7,3), Lecture Notes in Computer Science, 5228, 11-19 (2008).
- 4. S. V. Avgustinovich, I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs J(8,3) and J(8,4) with two colors, Journal of Applied and Industrial Mathematics, 5, 19-30 (2011).
- 5. D. G. Fon-Der-Flaass,A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal, 4, 133-135 (2007).
- 6. D. G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal, 4, 923-930 (2007).
- 7. D. G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, Siberian Mathematical Journal, 4, 292-295 (2007).
- 8. A. L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs $J(v,3)$, Journal of Combinatorial Designs, 21, 232-252 (2013).
- 9. C. Godsil, Compact graphs and equitable partitions, Linear Algebra and Its Application, 255, 259-266 (1997).
- 10. Z. Vahedi, M. Alaeiyan and M. Maghasedi, Perfect 4-colorings of the 3-regular graphs of order at most 8, Journal of Mathhematical Extension, Accepted (2021).