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Abstract Let V be a variety of groups defined by a set V of laws. Let (N,G)
be a pair of groups in which N is a normal subgroup of G. We define the
lower and upper V-marginal series of the pair (N,G) and prove some results
on V-nilpotent pairs of groups. Moreover, we extend some properties of the
Baer-invariant and isologism of a pair of groups.
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1 Introduction and Preliminaries

Let F be a free group on a set {x1, x2, . . .}, V be a non-empty subset of F
and V be a variety of groups defined by a set V of laws. For a pair of groups
(N,G) in which N is a normal subgroup of G, we define

V (N,G) = ⟨v(g1, . . . , gin, . . . , gr)v(g1, . . . , gr)−1 : v ∈ V, n ∈ N, gi ∈ G, 1 ≤ i ≤ r⟩,

and

V ∗(N,G) = {n ∈ N : v(g1, . . . , gin, . . . , gr) = v(g1, . . . , gr), ∀v ∈ V, gi ∈ G, 1 ≤ i ≤ r}.

In particular, if N = G, then V (N,G) = V (G) and V ∗(N,G) = V ∗(G) are
ordinary verbal and marginal subgroups of G (see [5,10,15]).

If V is the variety of nilpotent groups of class at most n, then

V ∗(N,G) = Zn(N,G) and V (N,G) = γn+1(N,G),
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where γ1(N,G) = N and γn+1(N,G) = [γn(N,G), G] for all n ≥ 1. Moreover,
Z0(N,G) = 1 and for all n ≥ 1,

Zn(N,G)

Zn−1(N,G)
= Z(

N

Zn−1(N,G)
,

G

Zn−1(N,G)
). (1)

Let V and W be two arbitrary varieties of groups defined by the sets of laws
V and W , respectively, and G a group with a free presentation

1 → R → F → G → 1.

Then, we define the Baer-invariant of G with respect to two varieties V and
W as follows

WVM(G) =

(
R ∩W (F )

)(
R ∩ V (F )

)(
R ∩W (F )

)
[RV ∗F ]

,

where [RV ∗F ] is the least normal subgroup T say, of F contained in R so that
R/T ⊆ V ∗(F/T ) (see [9] for more information). In this paper, we are going to
generalize some results of [3,7,14,15].

2 Some inequalities on the Baer-invariant of a pair of groups

In this section, we extend some results of [3,14,15]. To this end, we define the
lower and the upper V-marginal series of a pair (N,G). Moreover, we prove
some results on nilpotent pairs of groups with respect to a variety of groups.
Also, we prove some properties on the Baer-invariant of a pair of groups.

For a pair of groups (N,G) put V0(N,G) = N and define

Vi(N,G) = V (Vi−1(N,G), G).

Then
N = V0(N,G) ⊇ V1(N,G) ⊇ . . . ⊇ Vn(N,G) ⊇ . . .

is the called the lower V-marginal series of N in G. Similarly, we define the
upper V-marginal series of N in G, by setting

V ∗
0 (N,G) = ⟨e⟩, V ∗

i (N,G)

V ∗
i−1(N,G)

= V ∗
(

N

V ∗
i−1(N,G)

,
G

V ∗
i−1(N,G)

)
.

The pair (N,G) of groups is said to be V-nilpotent pair, if Vn(N,G) = ⟨e⟩ for
some positive integer n (see [2], section 3).

Theorem 1 Let V be a variety of groups. If (N,G) is a V-nilpotent pair of
groups and M is a non-trivial normal subgroup of G such that M ∩N ̸= ⟨e⟩,
then M ∩ V ∗(N,G) ̸= ⟨e⟩.
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Proof Since (N,G) is V-nilpotent, then there exists a positive integer c such
that V ∗

c (N,G) = N . Let i be the least integer such that M ∩ V ∗
i (N,G) ̸= ⟨e⟩.

We have
V (M ∩ V ∗

i (N,G), G) ≤ M ∩ V ∗
i−1(N,G) = ⟨e⟩

and
M ∩ V ∗

i (N,G) ≤ M ∩ V ∗(N,G)

Hence,
M ∩ V ∗(N,G) = M ∩ V ∗

i (N,G) ̸= ⟨e⟩.

The following corollary is an immediate result of Theorem 1.

Corollary 1 If (N,G) is a V-nilpotent pair of groups with N ̸= ⟨e⟩, then
V ∗(N,G) ̸= ⟨e⟩.

Theorem 2 Let V be a variety of groups and (N,G) be a V-nilpotent pair
of groups, then every maximal subgroup of G which does not contain N , is
normal.

Proof By the assumption there exists a positive integer c such that

V ∗
c (N,G) = N,

thus for every maximal subgroup M of G, the following series is a subnormal
series for M

M ⊴MV ∗(N,G)⊴MV ∗
2 (N,G)⊴ ...⊴MV ∗

c (N,G) = MN = G.

If c = 1, then M ⊴G. Since M is a maximal subgroup of G, then there exists
a least positive integer j where MV ∗

j (N,G) = G. Then, MV ∗
j−1(N,G) = M ,

and so M ⊴G.

Theorem 3 Let V be a variety of groups. If (N,G) is a pair of groups such
that K ≤ V ∗(N,G) and (N/K,G/K) is a V-nilpotent pair of groups, then
(N,G) is a V-nilpotent pair.

Proof Since (N/K,G/K) is a V-nilpotent pair of groups. So, there exist a
normal series as

1 =
N1

K
≤ N2

K
≤ ... ≤ Nn

K
=

N

K

such that
Ni+1/N

Ni/N
≤ V ∗

(
N/K

Ni/K
,
G/K

Ni/K

)
.

Now, we have Ni+1/Ni ≤ V ∗ (N/Ni, G/Ni). Hence, we obtain the following
normal series.

1 = N0 ≤ N1 ≤ ... ≤ Nn = N.

Thus, the pair (N,G) is a V-nilpotent pair.
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Theorem 4 Let V be a variety of groups. If (N,G) is a V-nilpotent pair and
K ⊴N such that |K| = pn. Then K ≤ V ∗

n (N,G).

Proof We prove the result by using induction. Let n = 1, then

⟨e⟩ ̸= K ∩ V ∗(N,G) ≤ K,

so |K ∩ V ∗(N,G)| = p = |K|, hence K∩V ∗(N,G) = K and so, K ≤ V ∗(N,G).
Let the result holds for every number less than n and M = K∩V ∗(N,G) ̸= ⟨e⟩,
then |K/M | = pm where m < n. Now we have

K

M
=

K

K ∩ V ∗(N,G)
∼=

KV ∗(N,G)

V ∗(N,G)
.

By induction hypothesis, we have

KV ∗(N,G)

V ∗(N,G)
≤ V ∗

m

(
N

V ∗(N,G)
,

G

V ∗(N,G)

)
=

V ∗
m+1(N,G)

V ∗(N,G)
.

Thus, K ≤ V ∗
m+1(N,G) ≤ V ∗

n (N,G).

Let V and W be two varieties of groups defined by the sets of laws V
and W , respectively and G be a finite group in W with a free presentation
1 → R → F → G → 1. If N is a normal subgroup of G and S is a normal
subgroup of F such that N ∼= S/R, then the Baer-invariant of the pair (N,G)
with respect to V and W is defined as

WVM(N,G) =
W (F )

(
R ∩ [SV ∗F ]

)
W (F )[RV ∗F ]

,

where [XV ∗Y ] = V (X,Y ). One can check that WVM(N,G) is abelian and
independent of the choice of the free presentation of G. In the special case
where W is the variety of all groups, then

WVM(N,G) = VM(N,G)

is the Baer-invariant of the pair (N,G) with respect to the variety V (see [2,
8,11–14] for more information).
In the following theorems we generalize some results of M.R. Rismanchian and
M. Araskhan in [14] .

Theorem 5 Let (N,G) be a pair of finite groups and 1 → R → F → G → 1
be a free presentation of G such that N ∼= S/R for a normal subgroup S of F .
If N is a subgroup V-nilpotent of G of class c ≥ 2, then
(i) |Vc−1(N,G)||WVM(N,G)| =∣∣∣WVM

(
N

Vc−1(N,G) ,
G

Vc−1(N,G)

)∣∣∣∣∣∣ [Vc−1(S,F )RV ∗F ]
[RV ∗F ]

∣∣∣;
(ii) d

(
WVM(N,G)

)
≤ d

(
WVM

(
N

Vc−1(N,G) ,
G

Vc−1(N,G)

))
+d

( [Vc−1(S,F )RV ∗F ]
[RV ∗F ]

)
;
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(iii) e
(
WVM(N,G)

)
divides

e
(
WVM

(
N

Vc−1(N,G) ,
G

Vc−1(N,G)

))
e
( [Vc−1(S,F )RV ∗F ]

[RV ∗F ]

)
.

where e(X) and d(X) are the exponent and the minimal number of generators
of a group X, respectively.

Proof Let V and W be two varieties of groups and G be a group in the variety
W with two normal subgroups K and N such that K ⊆ N . Then, by Theorem
2.2 of [12], the following sequence is exact:

1 → WVM(G,K)
α→ WVM(N,G)

→ WVM(N/K,G/K)
β→ K ∩ [NV ∗G]

[KV ∗G]
→ 1.

Thus,
|WVM(N,G)| = |Im(α)|

∣∣R ∩ [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

∣∣
and

WVM(N/K,G/K)

Im(α)
∼= K,

where K = Vc−1(N,G). Hence,

|K||WVM(N,G)| = |WVM(
N

K
,
G

K
)|
∣∣R ∩ [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

∣∣.
But [KV ∗G] = [Vc−1(N,G)V ∗G] = Vc(N,G) = ⟨e⟩, so

[Vc−1(S, F )RV ∗F ] ⊆ R.

This implies part (i). Similarly, we can prove (ii) and (iii).

Theorem 6 Let (N,G) be a pair of finite groups such that V ∗(G) ⊆ N . Let
H = G/V ∗(G) and L = N/V ∗(G). Then
(i) |[NV ∗G]| ≤ |WVM(L,H)| |[LV ∗H]| ≤ |WVM(N,G)||[NV ∗G]|;

(ii) |[NV ∗G]| = |WVM(L,H)||[LV ∗H]|
⇐⇒ WVM(L,H) ∼= V ∗(G) ∩ [NV ∗G];

(iii) |WVM(L,H)||[LV ∗H]| = |WVM(N,G)||[NV ∗G]|
⇐⇒ WVM(L,H)

WVM(N,G)
∼= V ∗(G) ∩ [NV ∗G].

Proof (i) By Theorem 2.2 of [12], we have

|WVM(L,H)| = |V ∗(G) ∩ [NV ∗G]|| kerβ|.

On the other hand,

[LV ∗H] =
[NV ∗G]V ∗(G)

V ∗(G)
∼=

[NV ∗G]

V ∗(G) ∩ [NV ∗G]
.
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So,

|V ∗(G) ∩ [NV ∗G]| = |[NV ∗G]|
|[LV ∗H]|

.

Hence,
|[NV ∗G]|| kerβ| = |WVM(L,H)||[LV ∗H]|.

This implies that

|[NV ∗G]| ≤ |WVM(L,H)||[LV ∗H]|.

Moreover, | kerβ| = |Imα| ≤ |WVM(N,G)|. Therefore,

|WVM(L,H)||[LV ∗H]| ≤ |WVM(N,G)||[NV ∗G]|.

(ii) By considering the first part, we have

| kerβ| = 1 ⇐⇒ WVM(L,H) ∼= V ∗(G) ∩ [NV ∗G] and
| kerβ| = 1 ⇐⇒ |[NV ∗G]| = |WVM(L,H)||[LV ∗H]|.

Thus, the result holds.
(iii) By Theorem 2.2 of [12],

| kerα||WVM(L,H)||[LV ∗H]| = |WVM(N,G)||[NV ∗G]|.

Also | kerα| = 1 if and only if WVM(L,H)
WVM(N,G)

∼= V ∗(G) ∩ [NV ∗G], which
completes the proof.

By Theorem 6, we obtain the following corollary.

Corollary 2 Let G be a finite group and H = G/V ∗(G). Then

(i) |V (G)| ≤ |WVM(H)||V (H)| ≤ |WVM(G)||V (G)|;
(ii) |V (G)| = |WVM(H)||V (H)| ⇐⇒ WVM(H) ∼= V ∗(G) ∩ V (G);

(iii) |WVM(H)||V (H)| = |WVM(G)||V (G)| ⇐⇒ WVM(H)
WVM(G)

∼= V ∗(G) ∩ V (G).

3 Isologism of pairs of groups

In this section, we survey some results on isologism of pairs of groups. The
notion of isologism of a pair of groups was discussed in [4]. Indeed, we extend
some results of [6,7].

Let (N,G) and (M,H) be pairs of groups. An homomorphism from (N,G)
to (M,H) is a homomorphism f : G → H such that f(N) ⊆ M . We say
that (N,G) and (M,H) are isomorphic and write (N,G) ≃ (M,H), if f is an
isomorphism and f(N) = M .
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Definition 1 Let (N,G) and (M,H) be two pairs of groups and V be a variety
of groups defined by the set of laws V . An V-isologism between (N,G) and
(M,H) is a pair of isomorphism (α, β) with α : G/V ∗(N,G) → H/V ∗(M,H)
and β : V (N,G) → V (M,H), such that α

(
N/V ∗(N,G)

)
= M/V ∗(M,H) and

for every v ∈ V , n ∈ N and g1, . . . , gr ∈ G

β
(
v(g1, · · · , gin, · · · , gr)v(g1, · · · , gr)−1

)
=

v(h1, · · · , him, · · · , hr)v(h1, · · · , hr)
−1,

whenever, hi ∈ α
(
giV

∗(N,G)
)

and m ∈ α
(
nV ∗(N,G)

)
. We say that (N,G)

and (M,H) are v-isologic, if there exists an V-isologism between them. In this
case we write (N,G) ∼V (M,H).

If V is the variety of abelian groups or nilpotent groups of class at most n,
then V-isologism coincides with isoclinism and n-isoclinism between pairs of
groups. In addition, if N = G and M = H, then V-isologism between two
pairs of groups is an V-isologism between G and H.
The following Lemma is proved by the authors in ([4], Lemma 5).

Lemma 1 Let (N,G) be a pair of groups. If M is a normal subgroup of G
with M ≤ N and H is a subgroup of G, then

(a) (H ∩ N,H) ∼V
(
(H ∩ N)V ∗(N,G),HV ∗(N,G)

)
. In particular if G =

HV ∗(N,G), then (H∩N,H) ∼V (N,G). Conversely, if H
V ∗(H∩N,H) satisfies

the ascending chain condition on normal subgroups and (H ∩ N,H) ∼V
(N,G), then G = HV ∗(N,G);

(b) (N/M,G/M) ∼V
(
N/M ∩V (N,G), G/M ∩V (N,G)

)
. In particular if M ∩

V (N,G) = ⟨e⟩, then (N,G) ∼V (N
M , G

M ). Conversely, if V (N,G) satisfies
the ascending chain condition on normal subgroups and (N,G) ∼V (N

M , G
M ),

then M ∩ V (N,G) = ⟨e⟩.

A pair of groups (N,G) is said to be V-perfect, if N = V (N,G).
The following results give the connections between V-perfect and V-isologism
of pairs of groups.

Corollary 3 Let (N,G) be a V-perfect pair of groups such that V ∗(N,G) =
⟨e⟩. Then any V-isologic (K,H) to (N,G) is isomorphic to the direct product
of N by the marginal subgroup of (K,H).

Proof By the assumption, we have

K/V ∗(K,H) ∼= N/V ∗(N,G) ∼= V ∼V K

Now, by Lemma 1, we obtain

K = V (K,H)V ∗(K,H) and V ∗(K,H) ∩ V (K,H) = ⟨e⟩

Thus, K ∼= N × V ∗(K,H).
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Corollary 4 Let (N,G) be a pair of finite groups. If H is a normal subgroup
of G such that H ⊆ N and the pair (H,N) is V-perfect. Also, let (H,N) ∼V
(N,G), then N = V (N,G)V ∗(N,G).
Proof By Lemma 1, we have N = HV ∗(N,G). On the other hand, H =
V (H,N). Therefore, N = V (N,G)V ∗(N,G).
Corollary 5 Let (N,G) be a V-perfect pair of groups. Then (N,G) can not
be V-isologic to any pair of groups (H,N), in which H is a proper subgroup of
G such that H ⊆ N or factor pair of groups of itself.
Proof If H is a proper subgroup of G such that H ⊆ N and (N,G) ∼V (H,N),
then by using Lemma 1, we have H ∩ V (N,G) = ⟨e⟩. Therefore, H = ⟨e⟩.
Corollary 6 Let (N,G) and (K,H) be two pairs of groups such that |N | =
|K| and (K,H) ∼V (N,G). If (N,G) is V-perfect or V ∗(N,G) = ⟨e⟩, then
(N,G) ∼= (K,H).
Proof By the definition of isologism, there are isomorphisms

α :
N

V ∗(N,G)
→ K

V ∗(K,H)
and β : V (N,G) → V (K,H).

Now, if N = V (N,G), then |N | = |V (K,H)| since |N | = |K|, it implies that
K = V (K,H) and hence, (N,G) ∼= (K,H). If V ∗(N,G) = ⟨e⟩, then the result
holds.
Definition 2 Let (N,G) be a pair of groups. If G contains no proper subgroup
H satisfying G = HV ∗(N,G), then (N,G) is called subgroup irreducible with
respect to V-isologism. If the group G contains no normal subgroup M with
N ∩M ̸= ⟨e⟩ and M ∩V (N,G) = ⟨e⟩, then (N,G) is called quotient irreducible
with respect to V-isologism.
Lemma 2 If (N,G) is a V-perfect pair of groups. Then (N,G) is subgroup
and quotient irreducible pair of groups.
Proof Assume that (N,G) be a V-perfect pair of groups and H be a subgroup
of G such that N = HV ∗(N,G). Thus, we have V (N,G) = V (H,N). So,
H = N . Now, we can see that (N,G) is quotient irreducible pair of groups.
Theorem 7 Let (N1, G1) and (N2, G2) be two V-isologic pairs of groups. If
(N1, G1) is subgroup and quotient irreducible pair of groups, then so is (N2, G2).
Proof Let H be a normal subgroup of G1 such that H ⊆ N1 and H ∩
V (N1, G1) = ⟨e⟩. Then, we have

H ⊆ V ∗(N1, G1) and V ∗(N1/H,G1/H
)
=

V ∗(N1, G1)

H
.

Now, assume that

N2 = N1/H = K/HV ∗(N1/H,G1/H
)
=

K

H
· V

∗(N1, G1)

H
.

So, N1 = KV ∗(N1, G1), which implies that N1 = K and hence N2
∼= N1/H =

K/H. Thus, the result holds when N1 is assumed to be quotient irreducible
pair of groups.
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