Some Remarks on the Varieties of Groups

Homayoon Arabyani

Received: 27 February 2021 / Accepted: 16 April 2021

Abstract Let \mathcal{V} be a variety of groups defined by a set V of laws. Let (N, G) be a pair of groups in which N is a normal subgroup of G. We define the lower and upper \mathcal{V} -marginal series of the pair (N, G) and prove some results on \mathcal{V} -nilpotent pairs of groups. Moreover, we extend some properties of the Baer-invariant and isologism of a pair of groups.

Keywords Pair of groups \cdot Baer-invariant \cdot Isologism

Mathematics Subject Classification (2010) 20D15 · 20E99

1 Introduction and Preliminaries

Let F be a free group on a set $\{x_1, x_2, \ldots\}$, V be a non-empty subset of F and \mathcal{V} be a variety of groups defined by a set V of laws. For a pair of groups (N, G) in which N is a normal subgroup of G, we define

$$V(N,G) = \langle v(g_1, \dots, g_i n, \dots, g_r) v(g_1, \dots, g_r)^{-1} : v \in V, n \in N, g_i \in G, 1 \le i \le r \rangle,$$

and

$$V^*(N,G) = \{ n \in N : v(g_1, \dots, g_i n, \dots, g_r) = v(g_1, \dots, g_r), \forall v \in V, g_i \in G, 1 \le i \le r \}.$$

In particular, if N = G, then V(N, G) = V(G) and $V^*(N, G) = V^*(G)$ are ordinary verbal and marginal subgroups of G (see [5, 10, 15]).

If \mathcal{V} is the variety of nilpotent groups of class at most n, then

$$V^*(N,G) = Z_n(N,G) \quad and \quad V(N,G) = \gamma_{n+1}(N,G),$$

H. Arabyani

Tel.: +123-45-678910

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.

Fax: +123-45-678910

 $E\text{-mail: } arabyani.h@gmail.com, \ h.arabyani@iau-neyshabur.ac.ir$

where $\gamma_1(N,G) = N$ and $\gamma_{n+1}(N,G) = [\gamma_n(N,G),G]$ for all $n \ge 1$. Moreover, $Z_0(N,G) = 1$ and for all $n \ge 1$,

$$\frac{Z_n(N,G)}{Z_{n-1}(N,G)} = Z(\frac{N}{Z_{n-1}(N,G)}, \frac{G}{Z_{n-1}(N,G)}).$$
(1)

Let \mathcal{V} and \mathcal{W} be two arbitrary varieties of groups defined by the sets of laws V and W, respectively, and G a group with a free presentation

$$1 \to R \to F \to G \to 1.$$

Then, we define the Baer-invariant of G with respect to two varieties $\mathcal V$ and $\mathcal W$ as follows

$$\mathcal{WVM}(G) = \frac{\left(R \cap W(F)\right)\left(R \cap V(F)\right)}{\left(R \cap W(F)\right)\left[RV^*F\right]},$$

where $[RV^*F]$ is the least normal subgroup T say, of F contained in R so that $R/T \subseteq V^*(F/T)$ (see [9] for more information). In this paper, we are going to generalize some results of [3, 7, 14, 15].

2 Some inequalities on the Baer-invariant of a pair of groups

In this section, we extend some results of [3,14,15]. To this end, we define the lower and the upper \mathcal{V} -marginal series of a pair (N,G). Moreover, we prove some results on nilpotent pairs of groups with respect to a variety of groups. Also, we prove some properties on the Baer-invariant of a pair of groups.

For a pair of groups (N, G) put $V_0(N, G) = N$ and define

$$V_i(N,G) = V(V_{i-1}(N,G),G).$$

Then

$$N = V_0(N,G) \supseteq V_1(N,G) \supseteq \ldots \supseteq V_n(N,G) \supseteq \ldots$$

is the called the lower \mathcal{V} -marginal series of N in G. Similarly, we define the upper \mathcal{V} -marginal series of N in G, by setting

$$V_0^*(N,G) = \langle e \rangle, \quad \frac{V_i^*(N,G)}{V_{i-1}^*(N,G)} = V^*\left(\frac{N}{V_{i-1}^*(N,G)}, \frac{G}{V_{i-1}^*(N,G)}\right).$$

The pair (N, G) of groups is said to be \mathcal{V} -nilpotent pair, if $V_n(N, G) = \langle e \rangle$ for some positive integer n (see [2], section 3).

Theorem 1 Let \mathcal{V} be a variety of groups. If (N, G) is a \mathcal{V} -nilpotent pair of groups and M is a non-trivial normal subgroup of G such that $M \cap N \neq \langle e \rangle$, then $M \cap V^*(N, G) \neq \langle e \rangle$.

Proof Since (N, G) is \mathcal{V} -nilpotent, then there exists a positive integer c such that $V_c^*(N, G) = N$. Let *i* be the least integer such that $M \cap V_i^*(N, G) \neq \langle e \rangle$. We have

$$V\left(M \cap V_i^*(N,G),G\right) \le M \cap V_{i-1}^*(N,G) = \langle e \rangle$$

and

$$M \cap V_i^*(N,G) \le M \cap V^*(N,G)$$

Hence,

$$M \cap V^*(N,G) = M \cap V_i^*(N,G) \neq \langle e \rangle.$$

The following corollary is an immediate result of Theorem 1.

Corollary 1 If (N,G) is a \mathcal{V} -nilpotent pair of groups with $N \neq \langle e \rangle$, then $V^*(N,G) \neq \langle e \rangle$.

Theorem 2 Let \mathcal{V} be a variety of groups and (N,G) be a \mathcal{V} -nilpotent pair of groups, then every maximal subgroup of G which does not contain N, is normal.

Proof By the assumption there exists a positive integer c such that

$$V_c^*(N,G) = N,$$

thus for every maximal subgroup M of G, the following series is a subnormal series for M

$$M \trianglelefteq MV^*(N,G) \trianglelefteq MV^*_2(N,G) \trianglelefteq \dots \trianglelefteq MV^*_c(N,G) = MN = G.$$

If c = 1, then $M \leq G$. Since M is a maximal subgroup of G, then there exists a least positive integer j where $MV_j^*(N, G) = G$. Then, $MV_{j-1}^*(N, G) = M$, and so $M \leq G$.

Theorem 3 Let \mathcal{V} be a variety of groups. If (N, G) is a pair of groups such that $K \leq V^*(N, G)$ and (N/K, G/K) is a \mathcal{V} -nilpotent pair of groups, then (N, G) is a \mathcal{V} -nilpotent pair.

Proof Since (N/K, G/K) is a \mathcal{V} -nilpotent pair of groups. So, there exist a normal series as

$$1 = \frac{N_1}{K} \le \frac{N_2}{K} \le \dots \le \frac{N_n}{K} = \frac{N}{K}$$

such that

$$\frac{N_{i+1}/N}{N_i/N} \leq V^*\left(\frac{N/K}{N_i/K}, \frac{G/K}{N_i/K}\right)$$

Now, we have $N_{i+1}/N_i \leq V^* (N/N_i, G/N_i)$. Hence, we obtain the following normal series.

$$1 = N_0 \le N_1 \le \dots \le N_n = N.$$

Thus, the pair (N, G) is a \mathcal{V} -nilpotent pair.

Theorem 4 Let \mathcal{V} be a variety of groups. If (N, G) is a \mathcal{V} -nilpotent pair and $K \leq N$ such that $|K| = p^n$. Then $K \leq V_n^*(N, G)$.

Proof We prove the result by using induction. Let n = 1, then

$$\langle e \rangle \neq K \cap V^*(N,G) \leq K,$$

so $|K \cap V^*(N,G)| = p = |K|$, hence $K \cap V^*(N,G) = K$ and so, $K \leq V^*(N,G)$. Let the result holds for every number less than n and $M = K \cap V^*(N,G) \neq \langle e \rangle$, then $|K/M| = p^m$ where m < n. Now we have

$$\frac{K}{M} = \frac{K}{K \cap V^*(N,G)} \cong \frac{KV^*(N,G)}{V^*(N,G)}$$

By induction hypothesis, we have

$$\frac{KV^*(N,G)}{V^*(N,G)} \le V_m^* \left(\frac{N}{V^*(N,G)}, \frac{G}{V^*(N,G)} \right) \\
= \frac{V_{m+1}^*(N,G)}{V^*(N,G)}.$$

Thus, $K \leq V_{m+1}^*(N, G) \leq V_n^*(N, G)$.

Let \mathcal{V} and \mathcal{W} be two varieties of groups defined by the sets of laws Vand W, respectively and G be a finite group in \mathcal{W} with a free presentation $1 \to R \to F \to G \to 1$. If N is a normal subgroup of G and S is a normal subgroup of F such that $N \cong S/R$, then the Baer-invariant of the pair (N, G)with respect to \mathcal{V} and \mathcal{W} is defined as

$$\mathcal{WVM}(N,G) = \frac{W(F)(R \cap [SV^*F])}{W(F)[RV^*F]},$$

where $[XV^*Y] = V(X, Y)$. One can check that $\mathcal{WVM}(N, G)$ is abelian and independent of the choice of the free presentation of G. In the special case where \mathcal{W} is the variety of all groups, then

$\mathcal{WVM}(N,G) = \mathcal{VM}(N,G)$

is the Baer-invariant of the pair (N, G) with respect to the variety \mathcal{V} (see [2, 8,11–14] for more information).

In the following theorems we generalize some results of M.R. Rismanchian and M. Araskhan in [14] .

Theorem 5 Let (N, G) be a pair of finite groups and $1 \to R \to F \to G \to 1$ be a free presentation of G such that $N \cong S/R$ for a normal subgroup S of F. If N is a subgroup V-nilpotent of G of class $c \ge 2$, then

(i)
$$|V_{c-1}(N,G)||\mathcal{WVM}(N,G)| = |\mathcal{WVM}(\frac{N}{V_{c-1}(N,G)}, \frac{G}{V_{c-1}(N,G)})||\frac{[V_{c-1}(S,F)RV^*F]}{[RV^*F]}|;$$

(ii) $d(\mathcal{WVM}(N,G)) \leq d(\mathcal{WVM}(\frac{N}{V_{c-1}(N,G)}, \frac{G}{V_{c-1}(N,G)})) + d(\frac{[V_{c-1}(S,F)RV^*F]}{[RV^*F]}),$

(iii) $e(\mathcal{WVM}(N,G))$ divides $e\left(\mathcal{WVM}\left(\frac{N}{V_{c-1}(N,G)},\frac{G}{V_{c-1}(N,G)}\right)\right)e\left(\frac{[V_{c-1}(S,F)RV^*F]}{[RV^*F]}\right).$

where e(X) and d(X) are the exponent and the minimal number of generators of a group X, respectively.

Proof Let \mathcal{V} and \mathcal{W} be two varieties of groups and G be a group in the variety \mathcal{W} with two normal subgroups K and N such that $K \subseteq N$. Then, by Theorem 2.2 of [12], the following sequence is exact:

$$1 \to \mathcal{WVM}(G, K) \xrightarrow{\alpha} \mathcal{WVM}(N, G)$$
$$\to \mathcal{WVM}(N/K, G/K) \xrightarrow{\beta} \frac{K \cap [NV^*G]}{[KV^*G]} \to 1.$$

Thus,

$$|\mathcal{WVM}(N,G)| = |Im(\alpha)| \left| \frac{R \cap [V_{c-1}(S,F)RV^*F]}{[RV^*F]} \right|$$

and

$$\frac{\mathcal{WVM}(N/K, G/K)}{Im(\alpha)} \cong K$$

where $K = V_{c-1}(N, G)$. Hence,

$$|K||\mathcal{WVM}(N,G)| = |\mathcal{WVM}(\frac{N}{K},\frac{G}{K})|\Big|\frac{R \cap [V_{c-1}(S,F)RV^*F]}{[RV^*F]}\Big|.$$

But $[KV^*G] = [V_{c-1}(N,G)V^*G] = V_c(N,G) = \langle e \rangle$, so

$$[V_{c-1}(S,F')RV^*F] \subseteq R.$$

This implies part (i). Similarly, we can prove (ii) and (iii).

Theorem 6 Let (N,G) be a pair of finite groups such that $V^*(G) \subseteq N$. Let $H = G/V^*(G)$ and $L = N/V^*(G)$. Then

 $(i) |[NV^*G]| \le |\mathcal{WVM}(L,H)| |[LV^*H]| \le |\mathcal{WVM}(N,G)||[NV^*G]|;$

$$(ii) |[NV^*G]| = |\mathcal{WVM}(L,H)||[LV^*H]| \\ \iff \mathcal{WVM}(L,H) \cong V^*(G) \cap [NV^*G];$$

(*iii*)
$$|\mathcal{WVM}(L,H)||[LV^*H]| = |\mathcal{WVM}(N,G)||[NV^*G]|$$

 $\iff \frac{\mathcal{WVM}(L,H)}{\mathcal{WVM}(N,G)} \cong V^*(G) \cap [NV^*G].$

Proof (i) By Theorem 2.2 of [12], we have

$$|\mathcal{WVM}(L,H)| = |V^*(G) \cap [NV^*G]||\ker \beta|.$$

On the other hand,

$$[LV^*H] = \frac{[NV^*G]V^*(G)}{V^*(G)} \cong \frac{[NV^*G]}{V^*(G) \cap [NV^*G]}.$$

So,

$$|V^*(G) \cap [NV^*G]| = \frac{|[NV^*G]|}{|[LV^*H]|}$$

Hence,

$$|[NV^*G]||\ker\beta| = |\mathcal{WVM}(L,H)||[LV^*H]|$$

This implies that

$$|[NV^*G]| \le |\mathcal{WVM}(L,H)||[LV^*H]|.$$

Moreover, $|\ker \beta| = |Im\alpha| \le |\mathcal{WVM}(N,G)|$. Therefore,

$$|\mathcal{WVM}(L,H)||[LV^*H]| \le |\mathcal{WVM}(N,G)||[NV^*G]|.$$

(ii) By considering the first part, we have

$$|\ker \beta| = 1 \iff \mathcal{WVM}(L, H) \cong V^*(G) \cap [NV^*G]$$
 and
 $|\ker \beta| = 1 \iff |[NV^*G]| = |\mathcal{WVM}(L, H)||[LV^*H]|.$

Thus, the result holds.

(iii) By Theorem 2.2 of [12],

$$|\ker \alpha||\mathcal{WVM}(L,H)||[LV^*H]| = |\mathcal{WVM}(N,G)||[NV^*G]|.$$

Also $|\ker \alpha| = 1$ if and only if $\frac{\mathcal{WVM}(L,H)}{\mathcal{WVM}(N,G)} \cong V^*(G) \cap [NV^*G]$, which completes the proof.

By Theorem 6, we obtain the following corollary.

Corollary 2 Let G be a finite group and $H = G/V^*(G)$. Then

 $\begin{array}{l} (i) \ |V(G)| \leq |\mathcal{WVM}(H)||V(H)| \leq |\mathcal{WVM}(G)||V(G)|; \\ (ii) \ |V(G)| = |\mathcal{WVM}(H)||V(H)| \Longleftrightarrow \mathcal{WVM}(H) \cong V^*(G) \cap V(G); \\ (iii) \ |\mathcal{WVM}(H)||V(H)| = |\mathcal{WVM}(G)||V(G)| \Longleftrightarrow \frac{\mathcal{WVM}(H)}{\mathcal{WVM}(G)} \cong V^*(G) \cap V(G). \end{array}$

3 Isologism of pairs of groups

In this section, we survey some results on isologism of pairs of groups. The notion of isologism of a pair of groups was discussed in [4]. Indeed, we extend some results of [6,7].

Let (N, G) and (M, H) be pairs of groups. An homomorphism from (N, G) to (M, H) is a homomorphism $f : G \to H$ such that $f(N) \subseteq M$. We say that (N, G) and (M, H) are isomorphic and write $(N, G) \simeq (M, H)$, if f is an isomorphism and f(N) = M.

Definition 1 Let (N, G) and (M, H) be two pairs of groups and \mathcal{V} be a variety of groups defined by the set of laws V. An \mathcal{V} -isologism between (N, G) and (M, H) is a pair of isomorphism (α, β) with $\alpha : G/V^*(N, G) \to H/V^*(M, H)$ and $\beta : V(N, G) \to V(M, H)$, such that $\alpha(N/V^*(N, G)) = M/V^*(M, H)$ and for every $v \in V$, $n \in N$ and $g_1, \ldots, g_r \in G$

$$\beta \left(v(g_1, \cdots, g_i n, \cdots, g_r) v(g_1, \cdots, g_r)^{-1} \right) = v(h_1, \cdots, h_i m, \cdots, h_r) v(h_1, \cdots, h_r)^{-1},$$

whenever, $h_i \in \alpha(g_i V^*(N, G))$ and $m \in \alpha(nV^*(N, G))$. We say that (N, G) and (M, H) are v-isologic, if there exists an \mathcal{V} -isologism between them. In this case we write $(N, G) \sim_{\mathcal{V}} (M, H)$.

If \mathcal{V} is the variety of abelian groups or nilpotent groups of class at most n, then \mathcal{V} -isologism coincides with isoclinism and n-isoclinism between pairs of groups. In addition, if N = G and M = H, then \mathcal{V} -isologism between two pairs of groups is an \mathcal{V} -isologism between G and H.

The following Lemma is proved by the authors in ([4], Lemma 5).

Lemma 1 Let (N,G) be a pair of groups. If M is a normal subgroup of G with $M \leq N$ and H is a subgroup of G, then

- (a) $(H \cap N, H) \sim_{\mathcal{V}} ((H \cap N)V^*(N, G), HV^*(N, G))$. In particular if $G = HV^*(N, G)$, then $(H \cap N, H) \sim_{\mathcal{V}} (N, G)$. Conversely, if $\frac{H}{V^*(H \cap N, H)}$ satisfies the ascending chain condition on normal subgroups and $(H \cap N, H) \sim_{\mathcal{V}} (N, G)$, then $G = HV^*(N, G)$;
- (b) $(N/M, G/M) \sim_{\mathcal{V}} (N/M \cap V(N, G), G/M \cap V(N, G))$. In particular if $M \cap V(N, G) = \langle e \rangle$, then $(N, G) \sim_{\mathcal{V}} (\frac{N}{M}, \frac{G}{M})$. Conversely, if V(N, G) satisfies the ascending chain condition on normal subgroups and $(N, G) \sim_{\mathcal{V}} (\frac{N}{M}, \frac{G}{M})$, then $M \cap V(N, G) = \langle e \rangle$.

A pair of groups (N, G) is said to be \mathcal{V} -perfect, if N = V(N, G). The following results give the connections between \mathcal{V} -perfect and \mathcal{V} -isologism of pairs of groups.

Corollary 3 Let (N,G) be a \mathcal{V} -perfect pair of groups such that $V^*(N,G) = \langle e \rangle$. Then any \mathcal{V} -isologic (K,H) to (N,G) is isomorphic to the direct product of N by the marginal subgroup of (K,H).

Proof By the assumption, we have

$$K/V^*(K,H) \cong N/V^*(N,G) \cong V \sim_{\mathcal{V}} K$$

Now, by Lemma 1, we obtain

$$K = V(K, H)V^*(K, H)$$
 and $V^*(K, H) \cap V(K, H) = \langle e \rangle$

Thus, $K \cong N \times V^*(K, H)$.

Corollary 4 Let (N, G) be a pair of finite groups. If H is a normal subgroup of G such that $H \subseteq N$ and the pair (H, N) is \mathcal{V} -perfect. Also, let $(H, N) \sim_{\mathcal{V}} (N, G)$, then $N = V(N, G)V^*(N, G)$.

Proof By Lemma 1, we have $N = HV^*(N, G)$. On the other hand, H = V(H, N). Therefore, $N = V(N, G)V^*(N, G)$.

Corollary 5 Let (N,G) be a \mathcal{V} -perfect pair of groups. Then (N,G) can not be \mathcal{V} -isologic to any pair of groups (H,N), in which H is a proper subgroup of G such that $H \subseteq N$ or factor pair of groups of itself.

Proof If H is a proper subgroup of G such that $H \subseteq N$ and $(N, G) \sim_{\mathcal{V}} (H, N)$, then by using Lemma 1, we have $H \cap V(N, G) = \langle e \rangle$. Therefore, $H = \langle e \rangle$.

Corollary 6 Let (N,G) and (K,H) be two pairs of groups such that |N| = |K| and $(K,H) \sim_{\mathcal{V}} (N,G)$. If (N,G) is \mathcal{V} -perfect or $V^*(N,G) = \langle e \rangle$, then $(N,G) \cong (K,H)$.

Proof By the definition of isologism, there are isomorphisms

$$\alpha: \frac{N}{V^*(N,G)} \to \frac{K}{V^*(K,H)} \quad and \quad \beta: V(N,G) \to V(K,H).$$

Now, if N = V(N, G), then |N| = |V(K, H)| since |N| = |K|, it implies that K = V(K, H) and hence, $(N, G) \cong (K, H)$. If $V^*(N, G) = \langle e \rangle$, then the result holds.

Definition 2 Let (N, G) be a pair of groups. If G contains no proper subgroup H satisfying $G = HV^*(N, G)$, then (N, G) is called *subgroup irreducible with respect to* \mathcal{V} -isologism. If the group G contains no normal subgroup M with $N \cap M \neq \langle e \rangle$ and $M \cap V(N, G) = \langle e \rangle$, then (N, G) is called *quotient irreducible with respect to* \mathcal{V} -isologism.

Lemma 2 If (N,G) is a \mathcal{V} -perfect pair of groups. Then (N,G) is subgroup and quotient irreducible pair of groups.

Proof Assume that (N, G) be a \mathcal{V} -perfect pair of groups and H be a subgroup of G such that $N = HV^*(N, G)$. Thus, we have V(N, G) = V(H, N). So, H = N. Now, we can see that (N, G) is quotient irreducible pair of groups.

Theorem 7 Let (N_1, G_1) and (N_2, G_2) be two \mathcal{V} -isologic pairs of groups. If (N_1, G_1) is subgroup and quotient irreducible pair of groups, then so is (N_2, G_2) . Proof Let H be a normal subgroup of G_1 such that $H \subseteq N_1$ and $H \cap$

Proof Let *H* be a normal subgroup of G_1 such that $H \subseteq N_1$ and $H + V(N_1, G_1) = \langle e \rangle$. Then, we have

$$H \subseteq V^*(N_1, G_1)$$
 and $V^*(N_1/H, G_1/H) = \frac{V^*(N_1, G_1)}{H}$

Now, assume that

$$N_2 = N_1/H = K/HV^* (N_1/H, G_1/H) = \frac{K}{H} \cdot \frac{V^*(N_1, G_1)}{H}$$

So, $N_1 = KV^*(N_1, G_1)$, which implies that $N_1 = K$ and hence $N_2 \cong N_1/H = K/H$. Thus, the result holds when N_1 is assumed to be quotient irreducible pair of groups.

References

- G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures, 6, 355-371 (1998).
- A. Gholami, Z. Mohammad Abadi, S. Heidarian, Some generalized varietal properties of a pair of groups, Southeast Asian Bull. Math., 36, 301–308 (2012).
- M. Hassanzadeh, A. Pourmirzaei, S. Kayvanfar, On the nilpotency of a pair of groups, Southeast Asian Bull. Math., 37, 67–77 (2013).
- 4. S. Heidarian, A. Gholami, Z. Mohammad Abadi, The structure of ν -isologic pairs of groups, Filomat, 26, 67–79 (2011).
- C. R. Leedham-Green, S. Mackay, Baer- Invariants, Isologism, Varietal Lows and Homology, Acta Math., 137, 99–150 (1976).
- S. Lotfi, M. Taheri, Some relations between isologic and varietal perfect groups, Hindawi Journal of Mathematics, 4 pages (2016).
- M. R. R. Moghaddam, A. R. Salemkar, Varietal isologism and covering groups, Arch. Math., 75, 8–15 (2000).
- M. R. R. Moghaddam, A. R. Salemkar, H. M. Sanny, Some inequalities for the Baerinvariant of a finite groups, Indag. Math., 18, 73–82 (2007).
- M. R. R. Moghaddam, A. R. Salemkar, P. Niroomand, Covering groups respect to two varieties of groups, Southeast Asian Bull. Math., 31, 313–320 (2007).
- H. Neuman, Varieties of groups, Speringer- Verlag Berlin Heidelberg, New York, 1967.
 A. Onsory, M. Araskhan, The Generalization of the Stalling's Theorem, Journal of
- Generalized Lie Theory and Applications, 3 pages, 2015.
- M. R. Rismanchian, M. Araskhan, Generalized Baer-Invariant of a pair of groups and the direct limit, Journal of Sciences, Islamic Republic of Iran, 22, 159–164 (2011).
- M. R. Rismanchian, M. Araskhan, Generalized Baer-Invariant of a Pair of Groups and Marginal Extension, Journal of Sciences, Islamic Republic of Iran, 23, 251–256 (2012).
- 14. M. R. Rismanchian, M. Araskhan, Some properties on the Baer-invariant of a pair of groups and ν_G -marginal series, Turk. J. Math., 37, 259–266 (2013).
- S. M. Taheri, F. Shahini, Varietal nilpotent groups, World Applied Sciences Journal. 12, 2314–2316 (2011).