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Abstract In this paper,we use a Milstein scheme to develop a numerical tech-
nique for solving Stochastic differential equation which we had its deterministic
form in our last article [7], we discuss the existence and uniqueness solution
of deterministic and stochastic form, and then we show the advantages of the
method with numerical example.
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1 Introduction

During last decades, many work were done on forth order degenerate differen-
tial equation which applied to solve many important class of problems, such
that problems of small deformation surfaces of revolution, the membrane the-
ory of shells, the bending of plates of variable thickness with a sharp edge and
the gas dynamics. First time this class of equation on the boundary of the
domain, was considered by V.K. Zakharov [14], which extended the results of
M.I. Vishik [13], on the fourth-order equations on the plane, also degenerate
differential equations in abstract spaces have been studied by V.P. Glushko
and S.G. Krein in [4], A.A. Dezin [2].

This approach was applied in A.A. Dezin book [2], by V.K. Romanko [8],
and this makes it possible to study a number of phenomena, which were not
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fully explored, and at the same time it is easy to trace the connection between
ordinary differential equations and operator equations.

Lu ≡ (tαu(t)′′tt)′′tt+ au(t) = f, (1.1)

where t ∈ [0, b], 0 ≤ α ≤ 4, f ∈ L2((0, b),H), a ∈ R [7],for this reason,I cannot
describe historical background of the stochastic form of equation.
First we start by considering the necessary proposition and corollary about the
spaces Ẇ 2α(0, b) and W 2α(0, b),they are space of our study on these equations.
After that,we prove the existence and uniqueness of deterministic and stochas-
tic equation. and then we discuss about preliminary results in 3.2.1 and also
in section 4 opened the numerical discussion and in subsection4.1 the Milstein
method is used as the numerical method and in the continue convergence of
numerical method has been raised an example is given below.

2 Spaces Ẇ 2α(0, b) and W 2α(0, b)

In this Section we briefly discuss some contents about Spaces Ẇ 2α(0, b) and
W 2α(0, b),also assume Ċ2[0, b] be a set of twice continuously differentiable
functions u(t) defined on [0, b] satisfying the conditions

u(0) = u′(0) = u(b) = u′(b) = 0. (2.1)

Let Ẇ 2
α(0, b), α ≥ 0 be the completion of Ċ2[0, b] in the norm

‖u‖Ẇ 2α(0, b) =

∫ b

0

tα |u′′(t)|2 dt. (2.2)

It is known that the elements of Ẇ 2α(0, b) are continuously differentiable
functions on [ε, b] for every 0 < ε < b whose first derivatives are absolutely
continuous and u(b) = u′(b) = 0 therefore it is sufficient to investigate prop-
erties of the elements from Ẇ 2α(0, b) for small t. [9]

Proposition 1 For every u ∈ Ẇ 2α(0, b) close to t = 0 we have the following
estimates

|u(t)|2 ≤ C1t
3−α‖u‖Ẇ 2α(0, b), for α 6= 1, 3,

|u′(t)|2 ≤ C2t
1−α‖u‖Ẇ 2

α(0, b), for α 6= 1.

For α = 3the factor t3−α should be replaced by | ln t|for α = 1 the factor t1−α

by | ln t| and the factor t3−α by t2| ln t|.

Proposition 2 For every 0 ≤ α ≤ 4 we have a continuous embedding

Ẇ 2
α(0, b) ↪→ L2(0, b), (2.3)

it is compact for 0 ≤ α < 4 and for α = 4 is not compact.

Remark 1 The embedding(2.3) for α > 4 is fail.



Numerical Solution of Degenerate Fourth Order SDE Model . . . 61

When α > 4 we use the function u(t) = t
−1
2 ϕ(t) that ϕ(t) ∈ C2[0, b] ϕ(b) =

ϕ′(b) = 0 and ϕ(0) 6= 0, u ∈ Ẇ 2
α(0, b) but u /∈ L2(0, b).[5]

Proposition 3 For every function u ∈ Ẇ 2α(0, b) and α 6= 1, 3, the norm
‖uh − u‖Ẇ 2

α(0, b) tends to zero by h → 0.

Corollary 1 For every u, v ∈ Ẇ 2α(0, b) and α 6= 1, 3, we have

lim
h→0

{u, vh}α = {u, v}α.

Corollary 2 If the function u has a bounded piecewise-continuous derivative
of the second order in [ε, b] For arbitrary 0 < ε < b, ‖u‖Ẇ 2α(0, b) < ∞, then
(1) is valid for u ∈ Ẇ 2

α(0, b).

Also,let W 2
α(0, b) be a set of the functions u(t) which have a generalized deriva-

tive of the second order such that the following semi-norm

‖u‖21 =

∫ b

0

tα|u′′(t)|2 dt, (2.4)

is finite. [5]

Proposition 4 For every 0 ≤ α ≤ 4 we have the embedding

W 2
α(0, b) ⊂ L2(0, b). (2.5)

It follows from remark 1 that the embedding (2.5) also fails for the space
W 2α(0, b) since it is larger than the space Ẇ 2α(0, b) to work within the space
L2(0, b) further we will assume that 0 ≤ α ≤ 4 and we can define the following
norm in the space W 2

α(0, b)

‖u‖W 2α(0, b) =

∫ b

0

(
tα |u′′(t)|2 + a.|u(t)|2

)
dt, (2.6)

Proposition 5 For u ∈ W 2
α(0, b) we have

(i)|u(t)|2 ≤ (c1 + c2t
3−α)‖u‖W 2α(0, b), for α 6= 1, 3,

(ii)|u′(t)|2 ≤ (c3 + c4t
1−α)‖u‖W 2α(0, b), for α 6= 1.

(2.7)

Following [10] in the above solutions when α = 1 and α = 3 the factors t3−α

in (i) must be replaced by t2| ln t| and | ln t| respectively.when α = 1 the factor
t1−α in (ii) must be replaced by | ln t| .
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3 Solution of Differential Equation

We analyze the solution of equation

Lu ≡ (tαu(t)′′tt)′′tt+ au(t) = f + σ.Ẇ (t),

0 ≤ α ≤ 4, t ∈ [0, b], f ∈ L2(0, b), σ ∈ R,
(3.1)

where the Ẇ (t) is White noise,also the condition on equation is:

u(0) = 0, u′t(0) = 0, u′′tt(0) = 0, u′′′
ttt(0) = 0. (3.2)

In the following we discuss about existence and uniqueness of solution in de-
terministic and Stochastic states.

3.1 Deterministic Differential Equation

In equation (3.1) if σ = 0 we get the deterministic form which we investigated
the existence and uniqueness its of solution. [11]

Theorem 1 (Existences and Uniqueness of solution)
For every f ∈ L2(0, b) the solution of the equation (3.1) under boundary
condition3.2 when σ = 0 exists and is unique.

Proof It is obvious that W 2
α(0, b) is Hilbert space.

Let

B : W 2α(0, b)×W 2α(0, b) → R,

B[u, v] =

∫ b

0

tαu′′v′′dt+

∫ b

0

auvdt, ∀u, v ∈ W 2
α(0, b).

(3.3)

We define the linear map:

lf : W 2
α(0, b) 3 v 7→ lf (v) =

∫ b

0

fvdt ∈ R,

which is a functional on W 2
α(0, b), since

|lf (v)|2 =|
∫ b

0

fvdt|2 ≤ ‖f‖2L2(0,b)‖v‖
2
L2(0,b) ≤ ‖f‖2L2(0,b)‖v‖

2
W 2

α(0,b). (3.4)

We should show that there exists u ∈ W 2α(0, b) such that B[u, v] = lf (v)

for all v ∈ W 2α(0, b), when lf (v) =
∫ b

0
fvds that can be obtained by the
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Lax-Milgram Lemma.

‖u‖W 2α(0, b)‖v‖W 2α(0, b)

= (

∫ b

0

(tα|u′′|2 + a|u|2)dt) 1
2 (

∫ b

0

(tα|v′′|2 + a|v|2)dt) 1
2 ,

= (

∫ b

0

(
√
tαu′′2 + au2)2dt)

1
2 (

∫ b

0

(
√
tαv′′2 + av2)2dt)

1
2 ,

≥ (

∫ b

0

(
√
(tαu′′2 + au2).(tαv′′2 + av2))2dt)

1
2 ,

≥
∫ b

0

|
√
(t2αu′′2v′′2 + atαu′′2v2 + tαa.v′′2u2 + au2)|,

≥
∫ b

0

√
(t2αu′′v′′ + auv)2dt,

≥
∫ b

0

|(tαu′′v′′ + auv)|dt,

=

∫ b

0

|tαu′′v′′ + auv|dt

≥ |B[u, v]|,

(3.5)

for all u ∈ W 2α(0, b), β‖u‖2W 2
α(0, b) ≤ B[u, u], we also have the relation for

β = 1 in fact with equality

B[u, u] =

∫ b

0

(tαu′′2 + au2)dt = ‖u‖2W 2
α(0,b). (3.6)

By the Lax-Milgram Lemma there exists u ∈ W 2α(0, b) such that B[u, v] =∫ b

0
fvdt for all v ∈ W 2α(0, b).

3.2 Stochastic Differential Equation

We start with a deterministic or random outlook and introduce preliminary
background material on differential equations.

3.2.1 Preliminary Results

(Ω,F,=t,P) is complete probability space that F is the σ-algebra =t is filtration
and P is Probability measure.

Definition 1 (filtration)
Let (Ω,F,P) be a probability space.
A filtration {=t : t ≥ 0} is a family of sub σ-algebras of F that are increasing
that is =s is a sub σ-algebra of =t for s ≤ t each (Ω,F,P) is a measure space
and we assume it is complete.
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Definition 2 (adapted)
Let (Ω,F,=t,P) be a filtered probability space a stochastic process {U(t) : t ∈
[0, b]} is =t-adapted if the variable U(t) is =t-measurable for all t ∈ [0, b].

Definition 3 (=t -Brownian motion)
A real-valued process {W (t) : t ∈ [0, b]} is an Brownian motion on a filtered
probability space (Ω,F,=t,P)
if:
(i) W (0) = 0 a.s.
(ii) W (t) is continuous as a function of t.
(iii) W (t) is =t-adapted and W (t)−W (s) is independent of =s, s < t.
(iv) W (t)−W (s) ∼ N(0, t− s) for 0 ≤ s ≤ t.

Definition 4 (Hilbert space of Stochastic Processes )
Let (Ω,F,=t,P) be a filtered probability space. We define H as

H = {u|u : (0, b)×Ω 7→ Rm, ‖u‖H := E[
∫ b

0

tα|u(t)′′|2 + a|u(t)|2dt] < ∞,

u(0) = 0, u′t(0) = 0, u′′tt(0) = 0, u′′′
ttt(0) = 0},

(3.7)

3.2.2 Solution of Stochastic Differential Equation

The Matrix form of the equation (3.1) is

dU(t) = A(t)U(t)dt+B(t)dt+Σ(t)dW (t), (3.8)
when:

A(t) =


0 1 0 0
0 0 1 0
0 0 0 1
−a
tα 0 −α(α−1)

t2
−2α
t

 ,

B(t) =
(
0, 0, 0, f(t)

tα

)T

,

Σ(t) =
(
0, 0, 0, σ

tα

)T
,

when 0 < t < b with the boundary U0 = (u(0), u′t(0), u′′tt(0), u′′′
ttt(0)), the

analytical solution of equation (3.8) has the following form

U(t) = U(0) +

∫ t

0

A(t).U(t)dt+

∫ t

0

B(t)dt+

∫ t

0

Σ(t).dW (t). (3.9)

Theorem 2 (Existence and Uniqueness of Solution )
For every f ∈ L2(0, b) the generalized solution of the equation (3.1) exists and
is unique.
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Proof It is obvious that H is a Hilbert space. Let

B : H×H → R,

B[u, v] = E[
∫ b

0

tαu′′v′′ + auvdt], ∀u, v ∈ H,
(3.10)

we should show that B[u, v] = 〈f, v〉, ∀v ∈ H that it can be obtained by the
Lax-Milgram Lemma.

‖u‖H‖v‖H

= (E[
∫ b

0

(tα|u′′|2 + a|u|2)dt]) 1
2 .(E[

∫ b

0

(tα|v′′|2 + a|v|2)dt]) 1
2 ,

= (E[
∫ b

0

(
√
tαu′′2 + au2)2dt])

1
2 .(E[

∫ b

0

(
√

tαv′′2 + av2)2dt])
1
2 ,

≥ (E[
∫ b

0

(
√
(tαu′′2 + au2).(tαv′′2 + av2))2dt])

1
2 ,

≥ E[
∫ b

0

|
√
(t2αu′′2v′′2 + atαu′′2v2 + tαav′′2u2 + au2)dt|],

≥ E[
∫ b

0

√
(t2αu′′v′′ + auv)2dt],

≥ E[
∫ b

0

|(tαu′′v′′ + auv)|dt],

= E[
∫ b

0

|(tαu′′v′′ + auv)|dt]

= |B[u, v]|
≥ B[u, v],

(3.11)

for ∀u ∈ H, β‖u‖2H ≤ B[u, u], we have:

B[u, v] = E[

√∫ b

0

(tαu′′u′′ + auu)dt]

≥ E[

√∫ b

0

(tαu′′2 + au2)dt]

= ‖u‖2H,

(3.12)

for f : H −→ R, we define the functional

lf (v) = E[
∫ b

0

fvdt+

∫ b

0

σ.Ẇ (t)vdw],
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for every v ∈ H, σ ∈ R.

|lf (v)|2

= |E[
∫ b

0

fvdt+

∫ b

0

σẆ (t)vdw]|2,

≤ 2E
∫ b

0

|fv|2dt+ 2E
∫ b

0

|σẆ (t)v|2dt,

≤ 2(‖f‖L2(0, b)×Ω + σ2b2)v‖v‖L2(0, b)×Ω,

≤ 2(‖f‖L2(0, b)×Ω + σ2b2)‖v‖H

(3.13)

Hence, lf (v) is a linear continuous functional over the space H, by Lax-Milgram
Lemma :

B[u, v] = lf (v).

Remark 2 (Existence and Uniqueness of Solution of SDE form when ε < t < b)
When ε < t < b, the equation (3.8) with the boundary

U0 = (u(ε), u′t(ε), u′′tt(ε), u′′′
ttt(ε))

has the following form

U(t) = U(ε) +

∫ t

ϵ

A(t).U(t)dt+

∫ t

ϵ

B(t)dt,

+

∫ t

ϵ

Σ(t).dW (t).

(3.14)

For every f ∈ L2(0, b) the generalized solution of the equation (3.1) exists and
is unique.

4 Numerical Scheme of SDE

Generally for some drift or diffusion functions of stochastic phenomena models
the available analytical solutions can not easily found the numerical schemes
are useful methods.
We discus the numerical approximation ui where ti = t0 + i.dt, i = 1, ..., N
and dt = b−a

N on [a, b].
To solve a SDE and using numerical method at first needed to have a model
that investigated the subject to find a reasonable mathematical interpretation
that here the Milstein method is considered.
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4.1 Milstein Method

We have

du′′′ = (− a

tα
u− 2α

t
u′′′ − α(α− 1)

t2
u′′)dt+ (

f

tα
)dt+ (

σ

tα
)dW(t), (4.1)

from equation (3.1) also extend with the Taylor series,truncated them and by
considering

f(t) = − a

tα
u− 2α

t
u′′′ − α(α− 1)

t2
u′′ +

f

tα
,

G(t) =
σ

tα
,

(4.2)

have the following equation:

u′′′(t) =u′′′(s) + f(s)(t− s) +G(s)

∫ t

s

dW (p),

+

∫ t

s

DxG(s)(G(s)

∫ t

s

dW (p)W (r) +Rm(s),

(4.3)

which remainder term Rm(s) has the form:

Rm(s) :=

∫ t

s

Rf (r)dr +

∫ t

s

RG(r)dW (r) +

∫ t

s

DG(r)R1(r)dw(r), (4.4)

when:

Rf := Df(r − s) +

∫ 1

0

(1− θ)h2D2f(θ)dθ,

RG :=

∫ 1

0

(1− θ)h2D2G(θ)dθ,

R1 := f(t− s) +RE(s),

RE :=

∫ t

s

Rf (r)dr +

∫ t

s

RG(r)dW (r) +

∫ t

s

DG(r)dW (r).

(4.5)

Definition 5 (mesh-point form of Milstein method )
When dti+1 = (ti+1 − ti) and dWi+1 = (Wi+1 − Wi) and boundary u0 =
(u(t0), u

′(t0), u
′′(t0), u

′′′(t0)) ∈ W 2
α(0, b), the equation (4.3) can has the fol-

lowing form :

U(ti+1) = U(ti) +A(ti)U(ti)dti+1 +B(ti)dWi+1,

+
1

2
B(ti)B

′x(ti){dW 2
i+1 − dti+1}

(4.6)

that is mesh-point form of Milstein method.
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4.1.1 Convergence of Milstein Method

For step dt the Milstein method generates Stochastic variables ui that approx-
imate the variables u(ti) given by the exact solution of the SDE at ti and we
investigated the convergence of ui to u(ti) as dt tends to zero.

Assumption 3 Assume the drift and diffusion functions of Milstein model
hold in linear growth condition and the global Lipschitz condition. [3]

Assumption 4 Let Assumption 3 hold and suppose that the drift and diffu-
sion functions are twice continuously differentiable and the second derivatives
are uniformly bounded. [3]

Theorem 5 (convergence of Milstein method)
Let Assumption 4 hold and for all u1, u2 ∈ W 2α(0, b), ε ∈ R,L ≥ 0 that
‖DG(u1)(G(u1)ε) − DG(u2)(G(u2)ε)‖L2(0, b) ≤ L‖u1 − u2‖2‖ε‖ and T ≥ 0
exists K > 0 such that sup 0 ⩽ ti ⩽ T‖u(ti)− ui‖L2(0,b) ⩽ Kdt.[3]

4.1.2 Analysis of Milstein Convergence

Consider convergence numerically by

‖u(ti)− ui‖L2(0, b) ≈ (
1

M
Σj = 1M‖uj(ti)− uj

i‖
2
2)

1
2 . (4.7)

It is unusual to have explicit solutions and in practice ui are approximated
with two different time steps by using the same sample path of W (t) steps dt
and dtref such that dt = κdtref for some κ ∈ Nthat T = Nrefdtref = Ndt
and Nref = κN that are using this trick in following example.

5 Numerical Illustration

Consider the boundary value problem on interval [1e− 4, 1]

(t.u′′)′′ + u = (t5x4 + 240t2x4).Ẇ (t),

u(1.0e− 4, x) = 1.0e− 20x4,

u′
t(1.0e− 4, x) = 5.0e− 16x4,

u′′
tt(1.0e− 4, x) = 2.0e− 11x4,

u′′′
ttt(1.0e− 4, x) = 6.0e− 7x4.

This problem has been solved with different values of kappa and has discussed
about approximate of solution with dtref and dt.
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Table 1 approximate of solution with dtref and dt

Nref kappa dt dtref Error on u and uref

1000 5 4.9e-3 9.8e-4 3.7e-5
100 9.9e-2 9.9e-4 6.5e-5
500 4.9e-1 9.8e-4 4.9e-6

2000 5 2.4e-3 4.8e-4 4.3e-4
100 4.9e-2 4.9e-4 5.2e-4
500 2.4e-1 4.8e-4 1.6e-5

3000 5 1.6e-3 3.2e-4 2.6e-5
100 3.3e-2 3.3e-4 3.7e-4
500 1.6e-2 3.2e-4 1.8e-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−6

Fig. 1 Diagram of the uref as a consequence of time
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Fig. 2 Approximation by the Milestin scheme with dt = 4.9e− 3 and dtref = 9.8e− 4.
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