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Abstract In this paper, a numerical iterative algorithm based on combina-
tion of the successive approximations method and the quadrature formula
for solving two-dimensional nonlinear Volterra integral equations is proposed.
This algorithm uses a trapezoidal quadrature rule for Lipschitzian functions
applied at each iterative step. The convergence analysis and error estimate of
the method are proved. Finally, two numerical examples are presented to show
the accuracy of the proposed method.
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1 Introduction

This paper is focused on a numerical iterative algorithm for solving the two-
dimensional nonlinear Volterra integral equation as follows

X(s, t) = r(s, t) + λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ(X(x, y))dxdy, (s, t) ∈ I, (1)

where a, b ∈ R, r : I = [a, b]× [a, b] → R,K : I2 → R and r,K are continuous.
Integral equations arise in many physical applications, such as electrostatics,
potential theory, electrical engineering, optimal control theory, solid and Build
mechanics, heat transfer, etc. These equations also arise as representation for-
mulas in the solutions of differential equations [1–7].
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The existing numerical methods for integral equations are based on vari-
ous techniques: the well-known collocations and Galerkin methods [8–10], the
meshless method [11], Bernoulli operational matrix method [12], iterated collo-
cation method [13], Chebyshev polynomials [14,15], Haar wavelet method [16],
hybrid of block-pulse and parabolic functions [17], Legendre functions [18],
expansion method [19], triangular function[20], collocation method and radial
basis functions [21,22], block-pulse functions [23], rationalized haar functions
[24], Nyström type methods [25], Bernstein polynomials [26–28] and homo-
topy method [29,30]. Numerical procedures for solving integral equations of
the second kind, based on the successive approximation method and other it-
erative techniques, have been investigated in [31–35]. Some results about the
existence and uniqueness of the solution of nonlinear 2D integral equations
can be found in [36–42].

In the following, we construct an iterative numerical method for Eq. (1)
based on the Picard’s technique of successive approximations and on a trape-
zoidal quadrature rule applied at each iterative step. In this method, we intro-
duce a numerical iterative procedure using successive approximations method
to approximate the solution of Eq. (1). The characteristic of this method com-
pared with the existing methods based on the operational matrices and col-
location method is that it is not necessary to solve the nonlinear system of
algebraic equations for obtaining the approximate solutions of integral equa-
tions.

The rest of the paper is organized as follows: In Section 2, we give basic
definitions and mathematical preliminaries of the quadrature rule for 2-D in-
tegrals. Section 3 allocated to the study of the existence and uniqueness of
the solution of Eq. (1). Our numerical method for approximating the solu-
tion of Eq. (1) based on combination of the successive approximations method
and quadrature formula for classes of Lipschitz two-dimensional functions is
presented in this section. In addition, the convergence analysis and the error
estimation of the method are proved in this section. Section 4 is devoted to
present some numerical experiments to confirm the theoretical results and to
illustratethe accuracy of the method. Some conclusions are drawn in Section
5.

2 Preliminaries

In this section, we review some necessary and basic definitions and results
which will be further needed.

Definition 1 For L ≥ 0, a function g : [a, b]× [c, d] → R, is L-Lipschitz if

| g(x, y)− g(s, t) |≤ L(|x− s|+ |y − t|) ∀(x, y), (s, t) ∈ [a, b]× [c, d].

The trapezoidal cubature formula derived in [32] is:∫ d

c

∫ b

a

g(s, t)dsdt =
(b− a)(d− c)

4
[g(a, c) + g(a, d) + g(b, c) + g(b, d)] + E(g)
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with the remainder estimate

E(g) ≤ L

4
(b− a)(d− c)(b− a+ d− c)

Let ∆x and ∆y denote, respectively the uniform partitions of [a, b] and [c, d]:

∆x : a = s0 < s1 < s2 < ... < sn−1 < sn = b,

∆y : c = t0 < t1 < t2 < ... < tn−1 < tn = d,

with si = a+ ih, tj = c+ jh′, where h = b−a
n , h′ = d−c

n .
Concerning the remainder estimation, the following result was obtained:

Theorem 1 [32] For uniform partitions of [a, b] and [c, d], the following trape-
zoidal inequality holds:∣∣∣∣∣

∫ d

c

∫ b

a

g(s, t)dsdt− T (f)

∣∣∣∣∣ ≤ L

4n
(b− a)(d− c)(b− a+ d− c), (2)

where

T (g) =
(b− a)(d− c)

4n2

n∑
j=1

n∑
i=1

[g(si−1, tj−1)+g(si−1, tj)+g(si, tj−1)+g(si, tj)]

(3)

For the case [c, d] = [a, b], the trapezoidal cubature rule ( 3) becomes∫ b

a

∫ b

a

g(s, t)dsdt = Tn(g) + En(g) (4)

with

Tn(g) =
(b− a)2

4n2

n∑
j=1

n∑
i=1

[g(si−1, tj−1)+g(si−1, tj)+g(si, tj−1)+g(si, tj)] (5)

and the remainder estimate is:

En(g) ≤
L

2n
(b− a)3 (6)

where L ≥ 0 is the Lipschitz constant of g.

Remark 1 The relation (5) can be written as follows:∫ b

a

∫ b

a

g(s, t)dsdt =
(b− a)2

4n2

n∑
j=1

n∑
i=1

2∑
l2=1

2∑
l1=1

(Cl2
2 )2(Cl1

2 )2 [g(si+l1−2, tj+l2−2)] .

(7)
where

Cl
2 =

2!

l!(2− l)!
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3 Main results

3.1 The existence results

In the sequel let I := [a, b]× [a, b] ⊂ R2, be a closed and bounded interval. Let
(M,d) be a metric space with metric d on R2, and Ω be Banach space of all
continuous mappings f from I into R with uniform norm. Now, we will prove
the existence and uniqueness of the solution of Eq. (1) using the method of
successive approximations.
Consider the integral equation (1) under the following conditions:
(i) r ∈ C(I,R),K ∈ C(I × I,R), ψ ∈ C(R,R),

(ii) there exists α > 0, such that
| ψ(u)− ψ(u′) |≤ α | u− u′ |, ∀u, u′ ∈ R.

(iii) αλMK(b − a)2 < 1, where MK > 0 is such that | K(s, t, x, y) |≤ MK ,
∀s, x ∈ [a, b] ,t, y ∈ [c, d], according continuity of K,

(iv) there exist ζ, η > 0, such that
| (K(s, t, x, y)−K(s′, t′, x′, y′) |≤ ζ(| s− s′ | + | t− t′ |) + η(| x− x′ |
+ | y − y′ |), ∀(s, t), (s′, t′), (x, y), (x′, y′) ∈ I.

(v) there exists θ > 0, such that
| r(s, t)− r(s′, t′) |≤ θ(| s− s′ | + | t− t′ |) ∀(s, t), (s′, t′) ∈ I.

Let {Ψk}k∈N be a the sequence of function Ψk : I → R, defined by Ψk(x, y) =
ψ(Xk(x, y)).

Theorem 2 (a) Let the conditions (i)-(v) are satisfied. then the Eq. (1) has
a unique solution X∗ ∈ Ω, and the sequence of successive approximations
{Xk}k∈N such that

X0(s, t) = r(s, t),

Xk(s, t) = r(s, t) + λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ(Xk−1(x, y))dxdy, k ≥ 1, (8)

converges to the solution X∗ ∈ Ω. Furthermore, the following a priori and a
posteriori error estimates hold∥∥X∗ −Xk∥u ≤ (αλMK(b− a)2)k

1− αλMK(b− a)2
∥X0 −X1∥u, (9)

∥∥X∗ −Xk∥u ≤ (αλMK(b− a)2)

1− αλMK(b− a)2
∥Xk−1 −Xk∥u, (10)

Moreover, the sequence of successive approximations is uniformaly bounded,
that is, there exists a constant σ ≥ 0 such that |Xk(s, t)| ≤ σ.
(b) If all the condition (i)-(vi) are satifed, then the sequence {Xk}k∈N and
{Ψk}k∈N are uniformly lipschitz with constants L0 = λMkM(b−a)+λMζ(b−
a)2 and L′ = α

(
λMKM(b−a)+λMζ(b−a)2

)
, respectively. where M is given

in (16).
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Proof (a) Consider the iterative scheme

Xk+1(s, t) = r(s, t) + λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ(Xk(x, y))dxdy, k = 1, 2, ...

(11)
we have

∣∣Xk+1(s, t)− Xk(s, t)
∣∣ ≤ ∣∣∣∣λ ∫ t

a

∫ s

a

K(s, t, x, y)ψ(Xk(x, y))dxdy −

λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ(Xk−1(x, y))dxdy

∣∣∣∣
≤ λ

∣∣K(s, t, x, y)
∣∣ ∫ t

a

∫ s

a

∣∣ψ(Xk(x, y))− ψ(Xk−1(x, y))
∣∣dxdy

≤ αλMK

∫ t

a

∫ s

a

∣∣ψ(Xk(x, y))− ψ(Xk−1(x, y))
∣∣dxdy

≤ αλMK(t− a)(s− a)
∥∥Xk −Xk−1

∥∥
u

≤ αλMK(b− a)2
∥∥Xk −Xk−1

∥∥
u

Therefore, we obtained

∥Xk+1 −Xk∥u ≤ αλMK(b− a)2∥Xk −Xk−1∥u.

Hence

∥Xk+1 −Xk∥u ≤ (αλMK(b− a)2)k∥X2 −X1∥u.

Since Ω is a complete metric space, and αλMK(b− a)2 < 1, then we conclude
by using the Weierstrass M-test that the series

∞∑
k=1

(Xk+1(s, t)−Xk(s, t)), (12)

is absolutely and uniformly convergent on [a, b] × [c, d]. On the other hand,
Xk(s, t) can be written as

Xk(s, t) = X1(s, t) +

k−1∑
m=1

(Xm+1(s, t)−Xm(s, t)),

therefore from uniform convergence of the series (12), we conclude that
limk→∞Xk(s, t) exists for all (s, t) ∈ [a, b]× [c, d], that is, there exists a unique
solution X∗ ∈ X such that

lim
k→∞

∥ Xk −X∗ ∥= 0.
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Taking limit of both sides of Eq. (11), we obtain

lim
k→∞

Xk+1(x, y) = lim
k→∞

r(s, t) + λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ( lim
k→∞

Xk(x, y))dxdy

= r(s, t) + λ

∫ t

a

∫ s

a

K(s, t, x, y)ψ(X(x, y))dxdy = X(s, t)

that is, X∗(s, t) is the unique solution of (1).
Moreover, by the Banach’s fixed point principle we obtain the estimates (9)
and (10).
Let Ψ0 : [a, b]2 → R, Ψ0(x, y) = ψ(r(x, y)). Since ψ, r are continuous, we infer
that Ψ0 is continuous on the compact set [a, b]2 and therefore M0 ≥ 0 exist,
such that

|ψ0(x, y)| ≤M0 ∀(x, y) ∈ [a, b]× [c, d]. (13)
For (s, t) ∈ [a, b]2, it follows that∣∣Xk(s, t)−Xk−1(s, t)

∣∣
≤ λ

∣∣K(s, t, x, y)
∣∣ ∫ t

a

∫ s

a

∣∣ψ(Xk−1(x, y))− ψ(Xk−2(x, y))
∣∣dxdy

≤ λMK

∫ t

a

∫ s

a

∣∣ψ(Xk−1(x, y))− ψ(Xk−2(x, y))
∣∣dxdy

= (αλMK(b− a)2)
∥∥Xk−1 −Xk−2

∥∥
u
.

and by induction,∣∣Xk(s, t)−Xk−1(s, t)
∣∣ ≤ (αλMK(b− a)2)k−1

∥∥X1 −X0

∥∥
u
.

Choosing X0 ∈ Ω,X0 = r we have∣∣X0(sp, tq)−X1(sp, tq)|

=
∣∣r(sp, tq)− r(sp, tq) + λ

∫ t

a

∫ s

a

K(sp, tq, x, y)ψ(X0(x, y))dxdy
∣∣ (14)

≤ λ

∫ t

a

∫ s

a

∣∣K(sp, tq, x, y)ψ(X0(x, y))
∣∣dxdy

= λMkM0(t− a)(s− a) ≤ λMkM0(b− a)2 (15)

So,∣∣Xk(s, t)−X0(s, t)
∣∣ ≤ ∣∣Xk(s, t)−Xk−1(s, t)

∣∣+ ∣∣Xk−1(s, t)−Xk−2(s, t)
∣∣

+ ...+
∣∣X1(s, t)−X0(s, t)

∣∣
≤ ((αλMK(b− a)2)k−1 + (αλMK(b− a)2)k−2

+ ...+ αλMK(b− a)2 + 1)
∥∥X1 −X0

∥∥
u

=
1− (αλMK(b− a)2)k

1− (αλMK(b− a)2)
.
∥∥X1 −X0

∥∥
u

≤ λMK(b− a)2M0

1− αλMK(b− a)2
∀(s, t) ∈ [a, b]× [c, d].
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Let Mr ≥ 0 such that |r(s, t)| ≤Mr for all (s, t) ∈ I. Then∣∣Xk(s, t)
∣∣ ≤ ∣∣Xk(s, t)−X0(s, t)

∣∣+ ∣∣X0(s, t)
∣∣ ≤ λMK(b− a)2M0

1− αλMK(b− a)2
+Mr = σ.

for all (s, t) ∈ [a, b].
(b) cosidering

M = max
(
M0,max{|ψ(u)| : u ∈ [−σ, σ]}

)
(16)

we get

|Ψk(s, t)| = |ψ(Xk(s, t))| ≤M

for all (s, t) ∈ [a, b] × [a, b] and m ∈ N. Let (s, t), (s′, t′) ∈ [a, b] × [a, b], we
obtain ∣∣X0(s, t)−X0(s

′, t′)
∣∣ ≤ θ(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣)
For arbitrary ψ ∈ C(R,R) and s, t, s′, t′ ∈ [a, b], since∫ t′

a

∫ s′

a

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy

=

∫ t

a

∫ s

a

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy +

∫ t′

t

∫ s

a

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy

+

∫ t

a

∫ s′

s

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy +

∫ t′

t

∫ s′

s

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy

we obtain∣∣Xk(s, t)−Xk(s
′, t′)

∣∣ ≤ ∣∣r(s, t)− r(s′, t′)
∣∣

+ | λ
∫ t

a

∫ s

a

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
dxdy

− λ

∫ t′

a

∫ s′

a

K(s
′
, t

′
, x, y)ψ

(
Xk−1(x, y)

)
)dxdy |

≤ | λ
∫ t

a

∫ s

a

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
dxdy

− λ

∫ t′

a

∫ s′

a

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
)dxdy |

+ | λ
∫ t′

a

∫ s′

a

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
dxdy

− λ

∫ t′

a

∫ s′

a

K(s
′
, t

′
, x, y)ψ

(
Xk−1(x, y)

)
)dxdy |

≤ |
∫ t′

t

∫ s

a

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
dxdy |



48 Manochehr Kazemi

+ |
∫ t

a

∫ s′

s

K(s, t, x, y)ψ
(
X(x, y)

)
dxdy |

+ |
∫ t′

t

∫ s′

s

K(s, t, x, y)ψ
(
Xk−1(x, y)

)
dxdy |

+ | λM
∫ t′

a

∫ s′

a

(K(s, t, x, y)−K(s
′
, t

′
, x, y))dxdy |

≤ λMkM |t′ − t||s− a|+ λMkM |t− a||s′ − s|
+ λMkM |t′ − t||s′ − s|
+ λM(ζ(| s− s′ | + | t− t′ |))|t′ − a||s′ − a|
≤ (λMkM(b− a) + λMζ(b− a)2)|t′ − t|
+ (λMkM(b− a) + λMζ(b− a)2)|s′ − s|
≤ (λMkM(b− a) + λMζ(b− a)2)(|t′ − t|+ |s′ − s|)

with L0 = λMkM(b− a) + λMζ(b− a)2 and∣∣Ψ0(s, t)− Ψ0(s
′, t′)

∣∣ ≤ α
∣∣X0(s, t)−X0(s

′, t′)
∣∣

≤ αθ(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣)∣∣Ψm(s, t)− Ψk(s

′, t′)
∣∣ ≤ α

∣∣Xk(s, t)−Xk(s
′, t′)

∣∣
≤ αL0(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣)
= αL0(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣)
= L′(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣).
where

L′ = αL0 = α
(
λMkM(b− a) + λMζ(b− a)2

)
Corollary 1 The functions K(sp, tq, x, y)ψ(x, y,Xk(x, y)), p = 0, n q = 0, n, k ∈
N are uniformly lipschitz with constant

L = ηM +MKα
(
λMkM(b− a) + λMζ(b− a)2

)
Proof Let arbitrary (s, t), (s′, t′) ∈ [a, b]× [c, d]. We define the function
Ψk,p,q : I → R, Ψk,p,q(x, y) = K(sp, tq, x, y)ψ(Xk(x, y)), (x, y) ∈ I, p, q = 0, n.
Then ∣∣Ψk,s,t(x, y)− Ψk,s,t(x

′, y′)
∣∣

=
∣∣K(sp, tq, x, y)ψ(Xk(x, y))−K(sp, tq, x

′, y′)ψ(Xk(x
′, y′))

∣∣
≤

∣∣K(sp, tq, x, y)ψ(Xk(x, y))−K(sp, tq, x
′, y′)ψ(Xk(x, y))

∣∣
+

∣∣K(sp, tq, x
′, y′)ψ(Xk(x, y))−K(sp, tq, x

′, y′)ψ(Xk(x
′, y′))

∣∣
≤ M

∣∣K(sp, tq, x, y)−K(sp, tq, x
′, y′)

∣∣
+ MK

∣∣ψ(Xk(x, y))− ψ(Xk(x
′, y′))

∣∣
≤ Mη(

∣∣x− x′
∣∣+ ∣∣y − y′

∣∣) +MKL
′(
∣∣x− x′

∣∣+ ∣∣y − y′
∣∣)

≤ L(
∣∣x− x′

∣∣+ ∣∣y − y′
∣∣). k ∈ N (17)
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where

L =Mη +MKL
′ = ηM +MKα

(
λMkM(b− a) + λMζ(b− a)2

)
Here, we present a numerical method to solve E.q (1). We consider the uniform
partitions

D1 : a = s0 < s1 < s2 < ... < sn−1 < sn = b ,

D2 : a = t0 < t1 < t2 < ... < tn−1 < tn = b,

with sp = a+ p b−a
n , p = 0, n, tq = c+ q b−a

n , q = 0, n.
Notation : The symbol p = 0, n means the integer values of the p vary from
0 to n arbitrarily.
We see that on the knots of the partition the sequence of successive approxi-
mations (8) is

X0(sp, tq) = r(sp, tq),

Xk(sp, tq) = r(sp, tq) + λ

∫ tq

a

∫ sp

a

K(sp, tq, x, y)ψ(Xk−1(x, y))dxdy, (18)

and applying the quadrature (7) to relation (18), we obtain the following
iterative relation:

Xk(sp, tq) = r(sp, tq)

+
(b− a)2

4n2

p∑
i=1

q∑
j=1

(
K(sp, tq, xi−1, yj−1)ψ(Xk−1(ti−1, tj−1)).

+ K(sp, tq, xi, yj−1)ψ(Xk−1(xi, yj−1))

+ K(sp, tq, xi−1, yj)ψ(Xk−1(xi−1, yj))

+ K(sp, tq, xi, yj)ψ(Xk−1(xi, yj))

)
,

The above recursive relation can be written as follows:

Xk(sp, tq) = r(sp, tq)

+
(b− a)2

4n2

p∑
i=1

q∑
j=1

2∑
l2=1

2∑
l1=1

(Cl2
2 )2(Cl1

2 )2 [K(sp, tq, xi+l1−2, yj+l2−2)

ψ(Xk−1(xi+l1−2, yj+l2−2))] .

(19)

Also, we have

Xk(sp, tq) = Xk(sp, tq) + Ek,p,q (20)

with

| Ek,p,q |≤ L
(b− a)3

2n
∀k ∈ N, p = 0, n, q = 0, n (21)

where L > 0 is the Lipschitz constant of Ψk,p,q(x, y).
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3.2 The convergence analysis

Here, we present the rate of convergence and the error estimate of the proposed
approach for solving two- dimensional nonlinear Volterra integral equations.

Theorem 3 Suppose that the conditions (i)-(v) are satisfied. Moreover, as-
sume that Xk(sp, tq) is the approximation solution of (1) by using numerical
successive approximations method. If λαMk(b − a)2 < 1, then, Xk(sp, tq) is
convergent to the unique solution of Eq. (1), and the error estimate is:

∥X∗ −Xk∥ ≤ (λαMk(b− a)2)k+1

α(1− λαMk(b− a)2)
M0 +

L(b− a)2

2n(1− λαMK(b− a)3)
, (22)

Proof By (9) and (14) we have∣∣X∗(sp, tq)−Xk(sp, tq)| ≤
(λαMk(b− a)2)k+1

α(1− (λαMk(b− a)2))
M0, (23)

Using (23) we have

|X∗(sp, tq)−Xk(sp, tq)| ≤ |X∗(sp, tq)−Xk(sp, tq)|+ |Xk(sp, tq)−Xk(sp, tq)|

≤ (λαMk(b− a)2)k+1

α(1− (λαMk(b− a)2))
M0 + ∥Xk −Xk∥u

therefore, we shall obtain the estimates for ∥Xk −Xk∥u.
Form (8), (19) and (21) for k = 1, we obtain∣∣X1(sp, tq)−X1(sp, tq)

∣∣ ≤ |E1,p,q| ≤
L(b− a)3

2n

Using (20) and (21) we obtain∣∣Xk(sp, tq)−Xk(sp, tq)
∣∣ ≤ |Ek,p,q|

+ λ
(b− a)2

4n2

p∑
i=1

q∑
j=1

2∑
l2=1

2∑
l1=1

(Cl2
2 )2(Cl1

2 )2

× |K(sp, tq, xi+l1−2, yj+l2−2)|
(
ψ(Xk−1(xi+l1−2, yj+l2−2)

− ψ(Xk−1(xi+l1−2, yj+l2−2))
)

Also, for k = 2 it follow that∣∣X2(sp, tq)−X2(sp, tq)
∣∣ ≤ L(b− a)3

2n

+ λαMk
(b− a)2

4

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2||X1 −X1||u

≤ L(b− a)3

2n
+ λαMkL(b− a)2||X1 −X1||u
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≤ L(b− a)3

2n
+ λαMkL(b− a)2

L(b− a)3

2n

= (1 + λαMkL(b− a)2)
L(b− a)3

2n

By induction, for k ∈ N , k ≥ 3, we obtain

| Xm(s, t)−Xm(s, t) |

≤ [1 + λαMK(b− a)2 + ...+ (λαMK(b− a)2)m−1]
L(b− a)3

2n

=
1− (λαMK(b− a)2)m

1− λαMK(b− a)2
L(b− a)3

2n

≤ 1

1− λαMK(b− a)2
L(b− a)3

2n

therefore

∥Xk −Xk∥u ≤ L(b− a)2

2n(1− λαMK(b− a)3)
. (24)

Hence, from (23) and (24) we conclude that

∥X∗ −Xk∥u ≤ (λαMk(b−a)2)k+1

α(1−λαMk(b−a)2)M0 +
L(b−a)2

2n(1−λαMK(b−a)3) .

Since λαMk(b− a)2 < 1, it is easy to see that

lim
k,n→∞

∥X∗ −Xk∥ = 0, (25)

which is the convergence of the proposed method.

3.3 Algorithm of the approach

Applying the above presented trapezoidal cubature rule we obtain the follow-
ing iterative algorithm:

Step 1: Input the values a, b, λ, ε′ , n and the functions r,K, ψ.

Step 2: Choose ε′ > 0 and for p = 0, n, q = 0, n, set X0(sp, tq) = r(sp, tq).

Step 3: For all p = 0, n, q = 0, n, Compute Xk(sp, tq) by (19).

Step 4: We use the values computed at the previous step and obtain for
p = 0, n, q = 0, n, the values:

| Xk(sp, tq)−Xk−1(sp, tq) |

Step 5: If | Xk(sp, tq) − Xk−1(sp, tq) |< ε
′ , print k and print Xk(sp, tq) ,

for all p = 0, n, q = 0, n, stop.; otherwise, set k = k + 1 and go to Step 3.
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This algorithm has a practical criterion presented below in Remark (2).

Remark 2 The ”a-posteriori error” estimate is useful to get the stopping cri-
terion. Such estimate can be obtained as follows:
For given ε

′
> 0 (previously chosen), there is determined the first natural

number m for which

| Xk(sp, tq)−Xk−1(sp, tq) |< ε
′

(26)

and we stop to this m retaining the approximations uk(s, t) of solution. We
observe

∥X∗ −Xk∥u ≤ ∥X∗ −Xk∥u + ∥Xk −Xk∥u

≤ (αλMK(b− a)2)

1− (αλMK(b− a)2)
∥Xk−1 −Xk∥u +

L(b− a)3

2n(1− λαMK(b− a)2)

and

∥Xk −Xk−1∥u ≤ ∥Xk −Xk∥u + ∥Xk −Xk−1∥u + ∥Xk−1 −Xk−1∥u

≤ L(b− a)3

n(1− λαMK(b− a)2)
+ ∥Xk −Xk−1∥u

So,

∥X∗ −Xk∥u ≤ (αλMK(b− a)2)

1− (αλMK(b− a)2)
∥Xk −Xk−1∥u,

+
(αλMK(b− a)2) + 1

(1− (αλMK(b− a)2))2
L(b− a)3

2n

and therefore, in order to obtain | X∗(s, t)−Xk(s, t) |< ε, we require

(αλMK(b− a)2) + 1

(1− (αλMK(b− a)2))2
L(b− a)3

2n
<
ε

2
, (27)

and

(αλMK(b− a)2)

1− (αλMK(b− a)2)
∥Xk −Xk−1∥ <

ε

2
.

We can choose the least natural number n, for which inequality (29) holds.

(αλMK(b− a)2) + 1

(1− (αλMK(b− a)2))2
L(b− a)3

2n
<
ε

2
, (28)

this is

(αλMK(b− a)2) + 1

(1− (αλMK(b− a)2))2
L(b− a)3

ε
< n, (29)
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Finally, we find the smallest natural number k ∈ N (this is the last iterative
step to be made) for which,

∥Xk −Xk−1∥u <
ε

2
.
1− αλMK(b− a)2

αλMK(b− a)2
= ε

′
.

With these, the inequality | Xk(sp, tq)−Xk−1(sp, tq) |< ε
′ leads to | X∗(sp, tq)−

Xk(sp, tq) |< ε, and the desired accuracy ε is obtained.

4 Numerical experiments

In this section, we report the numerical results of the implementation of the
proposed scheme to show the applicability and efficiency of the methods. We
introduce the notations

Ep,q := |X∗(sp, tq)−Xk(sp, tq)|, (30)
and

∥En∥∞ := max{Ep,q|p, q = 0, 1, ..., n} (31)
where X∗ and Xk denote the exact solution of integral equation (1) and its
approximation of order n obtained by the method presented in Sect. 3, respec-
tively. All results computed by programming in Maple 17.
Example 1 [12,24] Consider two-dimensional nonlinear Fredholm integral equa-
tion

X(s, t) = r(s, t) +

∫ t

0

∫ s

0

K(s, t, x, y)(X(x, y))2dxdy, (s, t) ∈ [0, 1]× [0, 1],

(32)
where

r(s, t) = s+ t− 1

12
st(s3 + 4s2t+ 4st2 + t3),

K(s, t, x, y) = s+ t− y − x.

The exact solution of this equation is
X(s, t) = s+ t.

Applying the algorithm for n = 10, ε
′
= 10−20, we obtain the number of iter-

ations k = 17 iterations. The numerical results of this example at the various
values of s and t in the interval [0, 1] by proposed method are shown in Table
1 for n = 10.
In order to more detailed testing of convergence, we consider n = 20 and for
ε
′
= 10−25 the number of iterations is k = 22. It is seen that Ep,q, p, q = 0, n,

tend to zero as h decrease. The numerical results are shown in Table 2. For
n = 40, ε

′
= 10−25 , we have k = 23 iterations and the results are in Table

3. The results ∥En∥∞ for ε′ = 10−15 and n ∈ {10, 20, 40}, respectively, are
1.015× 10−5, 1.761× 10−6 and 2.152× 10−7. The results in Table 1-3 confirm
the convergence of the numerical method, that is Ep,q → 0 as n→ 0.
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Table 1 Numerical results for n = 10, in Example 1.

s t 0.1 0.3 0.5 0.7 0.9

0.1 5.7821 ×10−5 6.0157 ×10−5 6.7442 ×10−5 8.0510 ×10−5 1.0075 ×10−4

0.3 5.8285 ×10−5 5.5779 ×10−5 5.7072 ×10−5 6.1603 ×10−5 6.8924 ×10−5

0.5 6.1581 ×10−5 5.3752 ×10−5 4.8619 ×10−5 4.4167 ×10−5 3.8048 ×10−5

0.7 7.0985 ×10−5 5.5914 ×10−5 4.2435 ×10−5 2.6858 ×10−5 4.7163 ×10−6

0.9 9.1215 ×10−5 6.4017 ×10−5 3.7157 ×10−5 4.7692 ×10−6 4.0212 ×10−5

Table 2 Numerical results for n = 20, in Example 1.

s t 0.1 0.3 0.5 0.7 0.9

0.1 9.2769 ×10−6 9.6517 ×10−6 1.0820 ×10−5 1.2917 ×10−5 1.6164×10−5

0.3 9.3513 ×10−6 8.9494 ×10−6 9.1568 ×10−6 9.8837 ×10−6 1.1058×10−6

0.5 9.8801 ×10−6 8.6241 ×10−6 7.8005 ×10−6 7.0862 ×10−6 6.1046×10−6

0.7 1.1389 ×10−5 8.9709 ×10−6 6.8083 ×10−6 4.3092 ×10−6 7.5669×10−7

0.9 1.4635 ×10−5 1.0271 ×10−5 5.9609 ×10−6 7.6516 ×10−7 6.4517×10−6

Table 3 Numerical results for n = 40, in Example 1.

s t 0.1 0.3 0.5 0.7 0.9

0.1 1.1872 ×10−6 1.2352 ×10−6 1.3848 ×10−6 1.6531 ×10−6 2.0686 ×10−6

0.3 1.1968 ×10−6 1.1453 ×10−6 1.1719 ×10−6 1.2649 ×10−6 1.4152 ×10−6

0.5 1.2644 ×10−6 1.1037 ×10−6 9.9839 ×10−7 9.0695 ×10−7 7.8126 ×10−7

0.7 1.4575 ×10−6 1.1481 ×10−6 8.7134 ×10−7 5.5154 ×10−7 9.6840 ×10−8

0.9 1.8728 ×10−6 1.3144 ×10−6 7.6285 ×10−7 9.7854 ×10−8 8.2567 ×10−7

Example 2 Consider two-dimensional nonlinear Fredholm integral equation

X(s, t) = r(s, t)+

∫ t

0

∫ s

0

K(s, t, x, y) sin(X(x, y))dxdy, (s, t) ∈ [0, 1]×[0, 1],

(33)
where

r(s, t) = 1 + ts+ sin(st+ 1)s2t2 + sin(1)s2t2 − 2 cos(1)st+ 2ts cos(st+ 1),

K(s, t, x, y) = syx2t2,

and exact solution

X(s, t) = 1 + st.

By applying the same procedure as described in the proposed technique, we
have the following numerical results at different values of s and t in the interval
[0, 1], which are shown in Table 4 for ε′ = 10−20 and n ∈ {10, 20, 40}. Also,
we obtain the accuracy O(10−4 − 10−7), O(10−5 − 10−8) and O(10−6 − 10−8)
respectively.
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Table 4 Numerical results for n = 10, n = 20, n = 40, in Example 2.

(s, t) Ep,q , n = 10 Ep,q , n = 20 Ep,q , n = 40

(0.0,0.0) 0 0 0
(0.1,0.1) 1.854351× 10−7 4.637924× 10−8 1.159607× 10−8

(0.2,0.2) 1.483481× 10−6 3.710339× 10−7 9.276854× 10−8

(0.3,0.3) 5.006748× 10−6 1.252239× 10−6 3.130938× 10−7

(0.4,0.4) 1.186784× 10−5 2.968271× 10−6 7.421482× 10−7

(0.5,0.5) 2.317939× 10−5 5.797404× 10−6 1.449508× 10−6

(0.6,0.6) 4.005398× 10−5 1.001791× 10−5 2.504750× 10−6

(0.7,0.7) 6.360425× 10−5 1.590807× 10−5 3.977450× 10−6

(0.8,0.8) 9.494278× 10−5 2.374617× 10−5 5.937186× 10−6

(0.9,0.9) 1.351822× 10−4 3.381046× 10−5 8.453532× 10−6

(0.1,0.1) 1.854351× 10−4 4.637921× 10−5 9.989606× 10−6

k 23 23 24
∥En∥∞ 1.854× 10−4 4.638× 10−5 9.990× 10−6

5 Conclusions

In this investigation, a computational method has been provided to find the
approximate solution of two-dimensional nonlinear Volterra integral equations
based on the successive approximation method and the trapezoidal quadrature
rule. In Theorem 2, we obtain the existence and uniqueness of the solution and
prove some the uniformly boundedness and uniformly Lipschitz properties for
the terms of the sequence of successive approximations. The convergence and
the error estimation of this presented iterative method are proved in Theorem
3. The numerical results reported in tables show that only a small number of
iteration is required to obtain a good approximate solution.
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