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Abstract Let f: X XY x Z — W be a bounded tri-linear map on normed
spaces. We say that f is close-to-regular when fi****$ = fs****t and we say
that f is Aron-Berner regular when all natural extensions are equal. In this
manuscript, we give a simple criterion for the close-to-regularity of tri-linear
maps.
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1 Introduction

Richard Arens showed in [1] that a bounded bilinear map m : X x Y — Z
on normed spaces, has two natural different extensions m***, m™**" from
X* x Y** into Z**. When these extensions are equal, m is said to be Arens
regular. For a discussion of Arens regularity for Banach algebras and bounded
bilinear maps, see [2], [7], [9], [11] and [12]. For example, every C*-algebra is
Arens regular, see [6].

Let X,Y,Z and W be normed spaces and f : X XY x Z — W be a
bounded tri-linear mapping. The natural extensions of f are as following:
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1. f*:W*Xx X XY — Z*, given by (f*(w*,x,y),z) = (w*, f(x,y, z)) where
zeX,yeY,ze Zw e W,

2. f* = (f)* : 2" x W* x X — Y*, given by (f**(z**,w*,z),y) =
(z**, f*(w*,z,y) where z € X,y € Y, 2** € Z** w* € W*.

(y*, f**(z**,w*, z)) where x € X,y** € Y** 2™ € Z** w* e W*.

4. f**** — (f***)* :X** % Y** % Z** — W**, given by <f****(m**7y**’z**)’
w*> — (x**,f***(y**,z**,w*)> where ** c X**7y** c Y**,Z** c Z**,’LU* c
W,

The bounded tri-linear map f**** is the extension of f such that the maps

* N f****(z**,y**,z**) ZX** — W**,
y** — f****(x,y**,z**) . Y** — W**,
are weak* —weak* continuous for each x € X,y € Y, 2™ € X** y** € Y** and
€ Z**. Now let
FY x X xZ —W: fiy,z,2) = f(z,y,2),
FeXxZxY —W: fl(x,zy) = f(z,y,2),
ffiZxYxX —W:f(zy,2) = fx,y,2),
ft:ZXX XY—>W:ft(vaay) :f(x,yvz)a
7Y X Zx X — W f*(y,2,2) = fz,y,2),
be the flip maps of f. The flip maps of f are bounded tri-linear maps. It is easily

seen that fireei fiwees) froeesr  flosss and f**** are natural extensions of
f such that bounded linear operators
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are weak*—weak™ continuous for each x € X,y € Y,z € Z, 2™ € X** y** ¢
Y™ and z** € Z**. For natural extensions of f we have

FUEE (gt ) = w — li[gnw* —limw* — lim f(zq, y8, 2¢),
& 2t
Tk f (pxx g% 2) = @ — limw* — limw* — lim f(2a, Y3, 2+ ),
P " 3 B~y

fT****T(LC**,y**,Z**) = w* — llf/l’l’w* _ llél'l’w* _ hénf(xa7yﬁ7 Z,y),

« ol

ft****s(x**7y**, Z**) = w* — hﬁnw* _ hén w* — liénf(xouyﬁ»z’y),

1.

2.

3.

4. [ (e gt ) = w* — limw* — liénw* —lim f(2a, Y8, 2v),

5.

6. Foret(gos gyt o) = w* — liénw* _ lifyn W — 1i(£nf(xouyﬁvz’y)v

where {z,},{ys} and {z,} are nets in X,Y and Z which converge to z** €
X y*™ € Y** and z** € Z** in the w*—topologies, respectively. More infor-
mation about these maps can be found in [10] and [13].

Definition 1 A bounded tri-linear map f is said to be close-to-regular if
flrrers = fexxxxt Tt is obvious that f is close-to-regular if and only if f8*****$ =
ft******j on Y** x Z** x W***

Definition 2 A bounded tri-linear map f is said to be Aron-Berner regular
when all natural extensions are equal, that is, fH**** = fixxxsi = frocosr —
Jreee = flewsxs — fseoet Bolds. For example see [10], see also [3], [4] and [5].
If f is Aron-Berner regular, then trivially f is close-to-regular.

Throughout the article, we usually identify a normed space with its canonical
image in its second dual.

2 Close-to-regular maps

We commence with the following theorem for close-to-regular maps.

Theorem 1 For a bounded tri-linear map f : X XY x Z — W the following
statements are equivalent:

1. f is close-to-regular.
2. fs***t*(Y**, W*,Z) g X* and fs******(X**7W*,Y**) g VAR
. , , CY™.
Proof Suppos {z.},{ys} and {z,} are nets in X,Y and Z which converge to
B Y g
¥ e X g™ e Y™ and z** € Z** in the w*—topologies, respectively.
(1) = (2), if f is close-to-regular, then fi****s = fs****t For every z** €
X y*™* e Y* 2z € Z and w* € W* we have

< f”**“(y**,w*,z),m**} _ <y**,fs***(z,x**7w*)>

— <fS****t(x**,y**,Z)’w*> — <ft****s(x**’y**7z),w*>

= () ) = (1 2), 1),



36 Abotaleb Sheikhali et al.

Therefore fS****(y** w* 2) = f**(y**, w*, z) € X*, follows that
FEE (Y W 7) C X
In the other hand,
(Foe (o w *,y**) 2 = (w”, [ (g 2 71, )
2*

— < ’fs****t( ,y >> — < ’f-t****s( 7y ; )>
= (w, [ 2Ty ) = (T (@ w).

Since the ft***(x**,y**,w*) c Z*, thus fs******(X**,W*,Y**) g Z*, as
claimed.
(2) = (3), if (2) holds then

< ft*****(w*7 Z**7I’**),y**> — hrgllllinhén(f(za,yﬂ, Z’y),w*>

= lif/nlign lién<w*, fi(ys, 2y, xa)) = liinliénligl(fs***(z%acmw*),ym
— 11’1)/nhén<y**7 fs***t(w*, ny, xa)> — hPIyIlhin<fs***t*(y**, w*7 Z'y),xa>
_ 1i§n<fs***t*(y**,w*7zv),x**) _ ligl(y**,fs***t(w*,zw,x**))

_ hgl@**’ FE (2, 2, wh)) = li£n<fs******(x**,w*,y**),z.y)

= (It ), 2 = (O (2, 1, w*), y)

— <fs***t(w*7Z**,"E**)7y**>.

Since f***!(w*, 2** z**) € Y*, thus (3) holds.
(3) = (1), let ft*****(W*,Z**,X**) C Y*. Then for every w* € W* we
have,

(i@, y™, 2, W) = lim lim (£ (za, y5, 27), w)

= lim lim lim(w*, f*(z., Zq, = lim lim lim{ f** (w*, 2, xa),
i lim (w”, f*(2y, 2, yp) = lim lim B (f7(w”, 2y, 2a), ys)

= lim lim lim (f"** (yg, w*, ), To) = lim lim(z**, f**(y5, w*, z,))
B v o« B
— liénlim<ft***(m**,y5,w*),Zv> — hén<z**7 ft***<x**,yﬁ7w*)>
5

_ lig1<ft****(z**,x**,y5), w*> _ lim<ft*****(w*,z**,x**),y@

— <ft*****(w*7 Z**,‘T**>,y**> <ft>k>k>k>k5( ’y * % **)7w*>
It follows that f is close-to-regular and this completes the proof.

As an immediate consequence of Theorem 1, we deduce the next result.

Corollary 1 Let f: X XY x Z — W be a bounded tri-linear mapping.

1. IfY 1is reflexive, then f is close-to-reqular.
2. If X and Z are reflexive, then f is close-to-regular.
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Ezample 1 Let G be a compact group. Then LP(G) for p > 1 is a reflexive
Banach algebra. So the bounded tri-linear mapping

f:LP(G) x LP(GQ) x LP(G) — LP(G)

defined by f(k, g, h) = kxgxh is close-to-regular, where (kxg)(z) = [, k(y)g(y~'z)dy
for every k,g and h € LP(G), see [8].

Theorem 2 Let f: X XY x Z — W be a bounded tri-linear map. Then,

1. f7 is close-to-reqular if and only if fi****i = fixexi,
2. f'is close-to-reqular if and only if fi****J = frxr,
3. f7 is close-to-reqular if and only if fr*** = frewesr,
4. ftis close-to-reqular if and only if f****t = fre**,
5. f* is close-to-reqular if and only if fr++s = freex,

Proof We prove only (1), the other parts have the same argument. Let z** €
Xy € Y, 2 € Z** and w* € W* and let {z,},{ys} and {z,} be

koK

nets in X,Y and Z which converge to **,y** and z** in the w*—topologies,
respectively. Then we have

<f1****z( ’y **)’w*> = hglhglh'lyn<f($a,yﬁ,ny)aw*>
= limlimlim<fr(zfy,ya,iﬁa)aW*>
<frs****t( 7y **),’LU*>.
Therefore fi****¢ = frs*=**t p the other hand
<fj****j( ,y *)7w*> — limlimlién<f(ﬂ?myﬁaz’v),w*>
« Y

= limlimlim<f’“(zy, Yg, Ta), W)

<frt****s( ,y **)’w*>
Thus f7****§ = frt**s and this completes the proof.

Another proof: Since the f™ = fJ = " and f™ = f* = f'", thus 7 is
close-to-regular if and only if

frt****s — f?"s****t = frt****s?“ — frs****tr PN fj****j _ fz****z

As immediate consequences of Theorem 2, we have the next corollaries.

Corollary 2 If f is Aron-Berner reqular, then f, fi, f", f* and f* are close-
to-reqular.

Corollary 3 If f¢ and f' are close-to-regular, then f is close-to-reqular.

Theorem 3 Let f: X XY XZ —W andg: X xS x Z — W be bounded
tri-linear mappings and let h : Y — S be a bounded linear mapping such that
fzyy,2) = g(x, h(y), 2), for every v € X,y € Y and z € Z. If h is weakly
compact, then f is close-to-regular.
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Proof Suppos {z.},{ys} and {2y} are nets in X,Y and Z which converge to
¥ e X y™ € Y and 2™ € Z** in the w*—topologies, respectively. Then
a direct verification reveals that

ft****s( 7y **) _ gt****s(m**7 h**(y**), Z**)

Then for each y** € Y** we have

<ft*****(w*,z**,a; ) > ,ft****(z**, ok )>

ft****s(l' ** Z**)>
t****s( ok h**( ), **)>
)

h***( t*****(

)

(w
= (w”
<
< *
= w, 2" 7$**))=y**>'
Therefore fU****(w*, z** x**) = h***(g"***** (w*, 2**, 2**)). The weak com-
pactness of h implies that of h*, from which we have h***(S***) C Y*. In
particular,

h***(gt*****(W*, Z**,X**)) g Y*,

thus we deduce fU*****(W* Z** X**) C Y*. It follows that f is close-to-
regular and this completes the proof.

IfY or S is reflexive, then every bounded linear mapping h : Y — S is weakly
compact. Thus we give the next result.

Corollary 4 Let f : X XY X Z — W andg: X xS x Z — W be bounded
tri-linear mappings and let h : Y — S be a bounded linear mapping such that
flx,y,2) = gz, h(y), 2), for every x € X,y €Y and z € Z. If S is reflexive,
then f is close-to-reqular.

Theorem 4 Let f: X XY x Z — W be bounded tri-linear mapping. If
f****t**s ft**s**** and f****s**t fs**t**** Then f 25 close—to—regular

Proof Using the equality f****s**t = fs*xtx* 5 standard argument applies to
show that f**** = fs****!_ In the other hand, the equality frexxtxss — flrxstons
impleas that f**** = ft****s Therefore fs****t flre**s as claimed.

Note that for theorem 4 the converse is not true.

3 Conclusion

In this manuscript, the authors investigated Aron-Berner regularity and close-
to-regularity of bounded tri-linear maps. In Section 2 some necessary and suffi-
cient conditions on tri-linear maps which guarantee their close-to- regularity
are provided.
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