
Analytical and Numerical Solutions
for Nonlinear Equations
©Available online at https://ansne.du.ac.ir/

Online ISSN: 3060–785X

2024, Volume 9, Issue 2, pp. 270–279

Research article

On the Nonlinear Equation of State in Black Hole Thermodynamics

Sudhaker Upadhyay∗

Department of Physics, K.L.S. College, Nawada, Magadh University, Bodh Gaya, Bihar 805110, India

* Corresponding author(s): sudhakerupadhyay@gmail.com

Received: 16/09/2025 Accepted: 13/10/2025 Published: 29/10/2025 10.22128/ansne.2025.3060.1154

Abstract

The study of black hole thermodynamics has revealed profound connections between gravitation, quantum theory, and statistical

mechanics. In many instances, the key physical information is encoded in nonlinear algebraic or transcendental equations that

relate horizon radius, temperature, and pressure. In this work we examine a specific nonlinear equation arising from the extended

phase space of charged anti–de Sitter (AdS) black holes. By analyzing its structure and obtaining approximate and exact solutions,

we highlight the physical implications for the thermodynamic stability of black holes. Our results clarify the role of nonlinearities

in determining critical points and phase transitions analogous to the van der Waals fluid.
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1 Introduction
The discovery of black hole thermodynamics fundamentally altered our understanding of gravity, quantum theory, and statistical mechanics.

Beginning with the pioneering insights of Bekenstein [1] and Hawking [2], black holes were shown to possess entropy proportional to

the horizon area and temperature proportional to the surface gravity. This surprising connection between geometry and thermodynamics

suggested the existence of a microscopic statistical origin of black hole entropy, a problem that remains a central question in theoretical

physics.

Following these early developments, many authors explored the thermodynamic stability of black holes and the possibility of phase

transitions. Davies [3] pointed out that black holes can undergo thermodynamic instabilities associated with heat capacity divergences.

Later, Hawking and Page [4] discovered a transition between thermal radiation in anti–de Sitter (AdS) space and large AdS black holes, now

known as the Hawking–Page transition. This transition was later recognized as a prototype of confinement/deconfinement in gauge theories

via the AdS/CFT correspondence [5].

A major step forward was achieved by extending the black hole phase space to include the cosmological constant Λ as a thermodynamic

variable, identified with pressure P = −Λ/8π [6–8]. Within this framework, the conjugate thermodynamic volume emerges naturally, and

black hole systems exhibit equations of state analogous to those of familiar fluids. A particularly striking result was obtained by Kubizňák

and Mann [9], who demonstrated that charged AdS black holes undergo phase transitions that precisely parallel the van der Waals gas.

This so-called “P–V criticality” has since been extended to rotating black holes [10], higher-curvature gravities [11, 12], and holographic
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models [13].

At the mathematical core of this subject are nonlinear algebraic and transcendental equations that encode the relations between

thermodynamic quantities such as temperature, pressure, charge, and horizon radius. Unlike the linear relations typical in classical

thermodynamics, black hole equations of state are often quartic or higher-order polynomials, or involve logarithmic and exponential

corrections when quantum effects are included [14, 15]. The multiplicity of solutions to such equations underlies the existence of multiple

black hole branches (small, intermediate, large), with different stability properties. The study of these nonlinear equations is therefore

essential for identifying critical points, spinodal curves, and first-order phase transitions.

In this work, we focus on a representative nonlinear equation arising from the extended thermodynamics of charged AdS black holes.

We show how the quartic equation for the horizon radius encapsulates the thermodynamic structure and how its nonlinear nature leads

directly to the van der Waals-like critical behavior. By analyzing both exact solutions and approximations in different regimes, we aim to

highlight the deep role played by nonlinearity in gravitational thermodynamics.

The paper is organized as follows. In Section 2, we present the derivation of the nonlinear equation of state and its quartic form.

Section 3 discusses methods of solving this equation, including analytic approximations and critical point analysis. In Section 4, we

interpret the solutions in terms of black hole phases and stability. Finally, Section 5 summarizes our results and outlines directions for future

research.

2 Equation of State and Nonlinear Structure
In extended black hole thermodynamics, the cosmological constant Λ is promoted to a thermodynamic variable identified with pressure,

P =− Λ
8π

=
3

8πℓ2 , (1)

where ℓ is the AdS curvature radius. The conjugate variable to P is the thermodynamic volume V , which for spherically symmetric black

holes coincides with the naive geometric volume,

V =
4
3

πr3
+. (2)

For the four-dimensional Reissner–Nordström–AdS (RN–AdS) black hole, the metric function reads

f (r) = 1− 2M
r

+
Q2

r2 +
r2

ℓ2 , (3)

where M and Q denote the black hole mass and electric charge, respectively. The outer horizon radius r+ is defined by f (r+) = 0.

The Hawking temperature, obtained from the surface gravity κ = f ′(r+)/2, is

T =
1

4πr+

(
1+

3r2
+

ℓ2 − Q2

r2
+

)
. (4)

Using the identification of pressure P = 3/(8πℓ2) and defining the specific volume v = 2r+ [9], equation (4) can be rearranged into an

equation of state,

P =
T
v
− 1

2πv2 +
2Q2

πv4 . (5)

This is the precise analogue of the van der Waals equation,(
P+

a
v2

)
(v−b) = T, (6)

with effective parameters a ∼ Q2 and b ∼ 1, though the detailed structure differs in the higher-order 1/v4 term. Equation (5) is a nonlinear

rational function in v, and equivalently, a quartic polynomial in r+ when solved for fixed (T,P,Q).

Multiplying through by denominators and re-expressing in terms of r+ gives the quartic relation

8πPr4
+−4πTr3

++ r2
+−Q2 = 0. (7)

This is a central nonlinear algebraic equation governing black hole phases. The multiplicity of its real, positive roots determines the number

of distinct black hole states at given (T,P,Q).
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Thermodynamic stability requires positivity of the heat capacity at constant pressure. Equivalently, one may impose(
∂P
∂v

)
T,Q

< 0, (8)

which defines the spinodal curve. From (5), (
∂P
∂v

)
T,Q

=− T
v2 +

1
πv3 − 8Q2

πv5 . (9)

The spinodal condition ∂P/∂v = 0 gives

−πT v3 + v2 −8Q2v−2 = 0, (10)

or equivalently

−πT v5 + v4 −8Q2 = 0. (11)

Equation (11) is a quintic polynomial in v, illustrating how nonlinearities proliferate once stability conditions are imposed. Its solutions

demarcate the boundary between stable and unstable black hole branches.

An important quantity in fluid thermodynamics is the compressibility factor,

Zc =
Pcvc

Tc
, (12)

evaluated at the critical point. For the RN–AdS black hole, critical values (Pc,vc,Tc) are determined by(
∂P
∂v

)
T,Q

= 0,
(

∂ 2P
∂v2

)
T,Q

= 0. (13)

Solving these conditions yields [9]

vc = 2
√

6Q, Tc =
1

3
√

6πQ
, Pc =

1
96πQ2 . (14)

The compressibility factor then evaluates to

Zc =
Pcvc

Tc
=

3
8
, (15)

exactly matching the universal ratio of the van der Waals fluid. This nontrivial result demonstrates the power of the nonlinear structure of

(7) in reproducing universal critical behavior.

We can extract an additional result by analyzing the asymptotic behavior of the quartic equation (7) at large pressure. For P → ∞, the

dominant balance in (7) gives

r+ ∼
(

Q2

8πP

)1/4

. (16)

This scaling law shows that in the high-pressure limit, the horizon radius shrinks as P−1/4 for fixed Q. Physically, this indicates that the

AdS curvature compresses the black hole, driving it to a small black hole phase with vanishing size in the infinite pressure limit.

Equation (7) also reveals an approximate duality between the temperature term −4πTr3
+ and the charge term −Q2. Balancing these

terms in the intermediate regime gives

r+ ∼
(

Q2

4πT

)1/3

. (17)

This implies a new scaling relation: for intermediate values of (T,Q), the horizon radius grows with Q2/3 and decays with T 1/3. This

relation provides a useful analytic approximation for black hole radius away from the critical point.

3 Solving the Nonlinear Equation: Exact Methods and Controlled
Approximations

We now analyze the quartic relation

F (r+;T,P,Q)≡ 8πPr4
+−4πTr3

++ r2
+−Q2 = 0, (18)

which encodes the thermodynamic branches of RN–AdS black holes at fixed (T,P,Q). We present (i) an exact algebraic solution via Ferrari’s

method; (ii) perturbative and asymptotic expansions useful throughout the phase diagram; and (iii) a near-critical Landau analysis that yields

coexistence data, critical exponents, and new closed-form amplitudes.
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3.1 Exact Algebraic Solution (Ferrari Method)

Divide (18) by 8πP (with P > 0) to obtain the monic quartic

r4 +αr3 +β r2 + γr+δ = 0, α =− T
2P

, β =
1

8πP
, γ = 0, δ =− Q2

8πP
. (19)

Depress the quartic via r = x−α/4 to obtain

x4 + px2 +qx+ s = 0, (20)

with the standard invariants

p = β − 3α2

8
=

1
8πP

− 3
8

( T
2P

)2
, (21)

q = γ − αβ
2

+
α3

8
=

α
8

(
α2 −4β

)
=− T

16P

(
T 2

4P2 − 1
2πP

)
, (22)

s = δ +
α2β
16

− 3α4

256
=− Q2

8πP
+

1
16

( T
2P

)2 1
8πP

− 3
256

( T
2P

)4
. (23)

Ferrari’s method seeks a factorization

x4 + px2 +qx+ s =
(
x2 +u−Ax−B

)(
x2 +u+Ax+B

)
, (24)

which matches coefficients provided

p = 2u−A2, q =−2AB, s = u2 −B2. (25)

Eliminating A,B yields the resolvent cubic for u,

u3 − p
2

u2 − su+
ps
2

− q2

8
= 0 (26)

(see, e.g., standard algebra texts on quartics). Choose any real root u of (26) for which A2 = 2u− p ≥ 0 (this exists in the multi-branch

region). Then set

A =
√

2u− p, B =− q
2A

. (27)

The four roots x are obtained from the two quadratics

x =
1
2

(
±A±

√
A2 −4(u∓B)

)
, (28)

and the physical horizon radii are r = x−α/4 with the constraint r > 0. This closed-form solution is exact for all (T,P,Q); while lengthy,

it is practical for symbolic manipulation and for establishing analytic properties (e.g., branch mergers when the discriminant vanishes).

Discriminant and branch multiplicity. Let ∆ denote the quartic discriminant of (19). In our case, multiple positive real roots (three

or one, counting multiplicity) occur precisely when (20) has two distinct real turning points and the pressure lies between the corresponding

spinodal pressures (see Sec. 2). Equivalently, for fixed (T,Q) with T < Tc there exists an interval P ∈ (Pmin(T ), Pmax(T )) for which ∆ > 0

and the quartic admits three positive real roots; these correspond to (small, intermediate, large) black holes with the intermediate branch

thermodynamically unstable.

3.2 Newton Refinement and Certified Bracketing

For numerical robustness it is convenient to refine a physically motivated initial guess by Newton iteration,

rn+1 = rn −
F (rn)

F ′(rn)
, F ′(r) = 32πPr3 −12πTr2 +2r. (29)

Two practical brackets follow from (18): since F (0) = −Q2 < 0 and F (r)→ +∞ as r → ∞, there is at least one positive root. Moreover,

the high-P scaling (Sec. 2) r ∼ (Q2/8πP)1/4 and the neutral (Q = 0) roots

r(±)
0 =

T ±
√

T 2 − 2P
π

4P
(Q = 0, T 2 ≥ 2P/π) (30)

provide close initial seeds for small-to-moderate Q by continuity.
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3.3 Small-Charge Perturbation Around the Neutral Branches

Treat Q2 as a small parameter and write r = r0 + ε with r0 solving the neutral equation F (r0;T,P,0) = 0; see (30). A first-order expansion

of (18) gives

0 = F (r0 + ε;T,P,Q)≃ F (r0;T,P,0)︸ ︷︷ ︸
=0

+F ′(r0)ε −Q2, (31)

so that

ε =
Q2

32πPr3
0 −12πTr2

0 +2r0
(32)

This formula shifts either neutral branch r(±)
0 into the charged solution for small Q. It is uniformly accurate away from the spinodal where

the denominator approaches zero (as expected for any first-order perturbation near a turning point).

3.4 Asymptotic Regimes: Strong Curvature and Intermediate Scaling

Two analytically controlled regimes were identified in Sec. 2; here we record their error structure.

High-pressure (strong AdS curvature) limit. Balancing 8πPr4 ∼ Q2 yields r ∼ (Q2/8πP)1/4. Including the next correction from

the r2 term gives

r+ =

(
Q2

8πP

)1/4[
1+

1
8

(
8πP
Q2

)1/2
− T

4

(
8π
P

)1/4 1
Q1/2

+O
(

P−3/4
)]

, (33)

valid at fixed (T,Q) as P → ∞.

Intermediate T–Q balance. Balancing 4πTr3 ∼ Q2 while retaining the r2 term as a correction yields

r+ =

(
Q2

4πT

)1/3[
1+

1
6

(
πT
Q2

)2/3
− 2P

3T

(
Q2

4πT

)2/3

+ · · ·

]
, (34)

which quantifies the temperature–charge duality scaling announced in Sec. 2.

3.5 Near-Critical Landau Expansion and Universal Data

Introduce reduced variables around the critical point (Sec. 2)

τ =
T −Tc

Tc
, ω =

v− vc

vc
, v = 2r+, (35)

and expand the equation of state (5) to cubic order in (τ,ω) at fixed Q:

P(τ,ω) = Pc +Aτ −Bτ ω −C ω3 +O
(

τω2, ω4
)
, (36)

with exact coefficients

A =

(
∂P
∂T

)
c
=

1
vc

, B =−
(

∂ 2P
∂T ∂ω

)
c
=

2
vc

, C =
1
6

(
∂ 3P
∂ω3

)
c
=

1
3

Tc

vc
, (37)

where the subscript c denotes evaluation at (Tc,Pc,vc) and we used the explicit RN–AdS EOS derivatives at criticality (details follow from

straightforward differentiation of (5) using vc = 2
√

6Q).

Critical exponents. From (36) one recovers mean-field exponents

β =
1
2
, γ = 1, δ = 3, (38)

with universal compressibility factor Zc = 3/8 (Sec. 2). The isothermal compressibility κT ∼ (∂P/∂ω)−1 ∼ |τ|−1 gives γ = 1; the critical

isotherm (τ = 0) yields P−Pc =−Cω3 and δ = 3.
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Coexistence curve and order parameter. For T < Tc, Maxwell’s equal-area law together with (36) implies the symmetric solution

ωl =−ωs = ω0 with

ω0 =

√
B
C

τ1/2 =

√
2
Tc

τ1/2, (0 < τc −T ≪ Tc), (39)

so that the (dimensionful) coexistence volumes are

vl,s = vc

(
1±
√

2
Tc

τ1/2

)
+O(τ). (40)

Since the entropy is S = πr2
+ = πv2/4, the entropy jump is

∆S = Sl −Ss =
πv2

c
2

ω0 +O(τ) =
πv2

c
2

√
2
Tc

τ1/2 + · · · , (41)

and the latent heat L = T ∆S vanishes as L ∼ τ1/2, as expected for a mean-field critical point.

Clapeyron slope near criticality. The coexistence line obeys dP/dT = ∆S/∆V . Using ∆V = vl − vs = 2vcω0 and the above ∆S,

dP
dT

∣∣∣∣
coex

=
πvc

4
, (T ≲ Tc), (42)

which gives a remarkably simple constant slope at criticality in terms of vc = 2
√

6Q.

3.6 Spinodal Reconstruction and the Three-Root Window

The spinodal curve follows from (∂P/∂v)T,Q = 0, cf. (11). For a given (T,Q), solve the quintic for the two positive spinodal volumes

v−(T )< v+(T ). Then, evaluating the pressure on (5) at these volumes defines

Pmax(T ) = P
(
T,v−

)
, Pmin(T ) = P

(
T,v+

)
. (43)

Proposition 1. For T < Tc and P ∈
(
Pmin(T ),Pmax(T )

)
, the quartic (18) admits three positive real roots; outside this interval it admits a

single positive real root. This gives a constructive test for multiplicity without computing the discriminant.

3.7 Gibbs Free Energy and Swallowtail Structure

The enthalpy (ADM mass) in extended thermodynamics is H=M, and the Gibbs free energy at fixed (T,P,Q) is

G(T,P,Q) = H −T S =
r+
2

(
1+

Q2

r2
+

+
8πPr2

+

3

)
−πr2

+T, (44)

with r+ constrained by (18). Along isotherms below Tc, plotting G vs. P (or T ) reveals the characteristic swallowtail associated with a

first-order small/large transition; the cusp point coincides with (Tc,Pc). A local series built from the Landau expansion produces the cubic

cusp normal form for G, consistent with exponents above.

4 Phase Structure
The nonlinear quartic (18) determines the spectrum of possible horizon radii at given (T,P,Q). We now interpret its solutions in the language

of thermodynamics, highlighting stability criteria, metastability regions, and geometric measures of fluctuations.

A black hole at fixed (P,Q) has Gibbs free energy

G(T,P,Q) = H −T S, (45)

with H = M the enthalpy and S = πr2
+ the entropy. The local thermodynamic stability is governed by the sign of the heat capacity at constant

pressure,

CP ≡ T
(

∂S
∂T

)
P,Q

. (46)
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Differentiating (4) with respect to r+ and combining with S = πr2
+ yields

CP =
2πr2

+

(
3r4

++3ℓ2r2
+− ℓ2Q2)

3r4
+− ℓ2r2

++3ℓ2Q2 . (47)

The divergence of CP occurs precisely at the spinodal curve defined earlier (Sec. 2), confirming that the spinodal marks the onset of local

instability.

The isothermal compressibility is

κT =− 1
V

(
∂V
∂P

)
T,Q

=
1
V

(
∂P
∂V

)−1

T,Q
. (48)

Since V = (4/3)πr3
+, positivity of κT is equivalent to (∂P/∂v)T,Q < 0, the same condition as local stability. Thus both CP and κT diverge

at the spinodal, paralleling classical fluid thermodynamics.

For T < Tc and pressures in the window Pmin(T )< P < Pmax(T ), the quartic equation admits three positive real roots. These correspond

to:

• Small black hole (SBH): small r+, locally stable (CP > 0).

• Intermediate black hole (IBH): intermediate r+, locally unstable (CP < 0).

• Large black hole (LBH): large r+, locally stable (CP > 0).

As pressure decreases through Pmax(T ), the SBH and IBH branches annihilate; as it increases through Pmin(T ), the IBH and LBH branches

annihilate. This is the standard cusp catastrophe pattern also seen in van der Waals fluids.

The coexistence line (Maxwell construction) selects the first-order SBH–LBH transition. Along this line, the Gibbs free energies of

the SBH and LBH branches are equal, while the IBH branch is metastable. Graphically, G(T,P,Q) versus T or P exhibits a swallowtail

(Figure 1), with the lower envelope identifying the globally preferred state. The crossing point of the swallowtail marks the coexistence

transition, and the cusp marks the second-order critical point.

0 20 40 60 80 100 120 140 160
P/Pc

0.5

0.0

0.5

1.0

1.5

G

Swallowtail Structure of G(P) at T = 0.9Tc

Pc

Figure 1. Swallowtail structure of the Gibbs free energy G as a function of normalized pressure P/Pc at fixed temperature T = 0.9Tc. The

multiple branches correspond to small, intermediate, and large black hole phases. The lower envelope identifies the globally preferred

phase. The cusp at P = Pc marks the second-order critical point, while the crossing of branches indicates the first-order SBH–LBH

transition.

The global structure of black hole phases is most clearly summarized by the P–T phase diagram (Figure 2). The coexistence line,

obtained via the Maxwell equal-area construction, separates the small black hole (SBH) and large black hole (LBH) phases in complete
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analogy with the liquid–gas transition of the van der Waals fluid. Below the line, SBH and LBH coexist as distinct thermodynamic states;

above it, only a single homogeneous black hole phase exists. The line terminates at the second-order critical point (Tc,Pc), beyond which

the distinction between SBH and LBH disappears and response functions diverge with mean-field exponents. This diagram therefore

encapsulates the entire phase behavior implied by the nonlinear equation of state: metastability regions bounded by spinodals, a first-order

transition line with latent heat, and a universal critical endpoint.

0.5 0.6 0.7 0.8 0.9 1.0
T/Tc

0.2

0.0

0.2

0.4

0.6

0.8

1.0
P/

P c

Phase Diagram of RN--AdS Black Hole
Coexistence line
Critical point

Figure 2. Phase diagram of the Reissner–Nordström–AdS black hole in the reduced P–T plane. The blue curve shows the coexistence

line obtained via the Maxwell construction, separating the small black hole (SBH) and large black hole (LBH) phases. The line terminates

at the red critical point (Tc,Pc), beyond which the distinction between SBH and LBH disappears.

Beyond response functions, black hole thermodynamics admits a geometric description in terms of the Ruppeiner metric [16, 17],

gi j =− ∂ 2S
∂X i∂X j , (49)

with (X i) thermodynamic variables such as (U,V ) or (T,V ). The associated scalar curvature R has been interpreted as a measure of

underlying microscopic interactions, with sign(R) indicating whether effective interactions are repulsive or attractive.

For RN–AdS black holes, the Ruppeiner curvature diverges at the spinodal curve and changes sign across different branches [18]. This

provides an information-geometric counterpart to the phase structure: the divergence of R correlates with large fluctuations near criticality,

just as in ordinary fluids.

The nonlinear structure of (18) thus gives rise to the following thermodynamic picture: At high temperatures T > Tc, there is a unique

black hole phase with smooth response functions. At T < Tc, the quartic supports three branches, two of which (SBH, LBH) are locally stable

and separated by a metastable IBH branch. The first-order SBH–LBH transition occurs where their Gibbs free energies cross, producing

latent heat and coexistence curves. The transition ends at the critical point (Tc,Pc,vc), where response functions diverge with mean-field

exponents and the Gibbs swallowtail collapses to a cusp. This complete structure mirrors that of van der Waals fluids, but arises from the

nonlinearities intrinsic to Einstein–Maxwell–AdS gravity.

5 Discussion and Conclusion
The analysis presented in this work demonstrates how a single nonlinear algebraic equation, arising from the extended thermodynamics

of the Reissner–Nordström–AdS black hole, encodes a remarkably rich set of physical phenomena. By systematically solving and

approximating the quartic relation for the horizon radius, we showed how the structure of black hole phases emerges directly from algebraic

considerations.

The quartic equation (18) admits multiple real positive solutions in the regime T < Tc, corresponding to distinct black hole branches.

The intermediate branch is thermodynamically unstable, as revealed by the divergence of the heat capacity (47) and the sign change of
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the isothermal compressibility. The small and large black hole branches, by contrast, are locally stable and dominate the phase diagram

in different pressure ranges. Thus the algebraic multiplicity of solutions translates directly into the physical coexistence of metastable and

stable states.

Two complementary global pictures arise from the Gibbs free energy and the coexistence diagram. The swallowtail structure in G(P)

(Figure 1) provides a geometric visualization of the first-order transition, with the lower envelope identifying the globally favored phase. The

crossing point of the swallowtail corresponds to the SBH–LBH coexistence transition, while the cusp at Pc signals the onset of criticality.

The P–T phase diagram (Figure 2) condenses this information into a more traditional thermodynamic representation. The coexistence

line separating small and large black holes terminates at the universal critical point (Tc,Pc). The analogy to the liquid–gas system is striking:

below the line, two distinct phases coexist with latent heat; at the line, a first-order transition occurs; and at the endpoint, critical exponents

take their mean-field values β = 1/2, γ = 1, δ = 3. The nonlinearities of Einstein–Maxwell–AdS gravity thus reproduce familiar universal

structures of statistical physics, but in a purely gravitational context.

Beyond response functions, the Ruppeiner curvature provides a geometric measure of thermodynamic fluctuations. Its divergence at

the spinodal curve and sign changes across branches [16–18] enrich the phase diagram by linking macroscopic instabilities to microscopic

interaction analogies. This suggests that nonlinearity in the equation of state not only governs stability but also encodes information about

the effective microscopic degrees of freedom, even if their precise nature remains unknown.

In addition to recovering known results, we derived several new analytic relations: (i) a small-charge perturbative correction (32) that

systematically shifts neutral AdS solutions to charged ones; (ii) controlled asymptotic expansions at large pressure and intermediate T –Q

balance; (iii) a Landau expansion with explicit coefficients (37) that yields closed-form amplitudes for the coexistence order parameter

and latent heat; and (iv) a simple constant Clapeyron slope (42) near criticality. Together these results illustrate how analytic control over

nonlinear equations can sharpen our understanding of black hole thermodynamics.

The deep structural analogy with van der Waals fluids reinforces the view that black holes behave as thermodynamic systems with

universal critical behavior. At the same time, the gravitational setting provides unique twists: the molecules of black hole microstructure

are unknown, the volume variable is geometric, and the entropy is holographic in origin. These features open a number of directions for

future work. Extensions to higher-dimensional or rotating black holes [10], to higher-curvature gravities [11,12], and to quantum-corrected

scenarios [15] promise even richer nonlinear structures. Another natural avenue is the exploration of information geometry, where Ruppeiner

curvature might provide a diagnostic for quantum gravitational microstates. Finally, the methods here may prove useful for studying

dynamical processes such as black hole nucleation and evaporation, where nonlinear thermodynamic equations again play a decisive role.

In summary, the nonlinear equation of state for charged AdS black holes provides a precise mathematical window into gravitational

thermodynamics. Through its quartic structure, it reproduces stability, metastability, first-order phase transitions, and a universal critical

point, in complete analogy with ordinary matter. The coexistence line and swallowtail geometry highlight the physical richness hidden in a

single equation. Thus black hole thermodynamics serves as a vivid reminder that profound physical insights can emerge from the careful

study of nonlinear equations in gravity.
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