On Left *ϕ***-Biflat and Left** *ϕ***-Biprojectivity of** *θ***-Lau Product Algebras**

Amir Sahami *·* **Sayed Mehdi Kazemi Torbaghan**

Received: 9 October 2020 / Accepted: 29 November 2020

Abstract *Monfared* defined θ -Lau product structure $A \times_{\theta} B$ for two Banach algebras *A* and *B*, where θ : $B \to C$ is a multiplicative linear functional. In this paper, we study the notion of left *ϕ*-biflatness and left *ϕ*-biprojectivity for the *θ* Lau product structure $A \times_{\theta} B$. For a locally compact group *G*, we show that $M(G) \times_{\theta} M(G)$ is left character biflat (left character biprojective) if and only if *G* is discrete and amenable (*G* is finite), respectively. Also we prove that $\ell^1(N_\vee) \times_\theta \ell^1(N_\vee)$ is neither (ϕ_{N_\vee}, θ) -biprojective nor $(0, \phi_{N_\vee})$ -biprojective, where ϕ_{N_v} is the augmentation character on $\ell^1(N_v)$. Finally, we give an example among the Lau product structure of matrix algebras which is not left *ϕ*-biflat.

Keywords Left *ϕ*-amenability *·* Left *ϕ*-biflatnes *·* Left *ϕ*-biprojectivity *·* Left *ϕ*-contractibility *· θ*-Lau product

Mathematics Subject Classification (2010) 43A07 *·* 46M10 *·* 43A20 *·* 46H05

1 Introduction

Johnson defined amenable Banach algebras thorough virtual diagonals [8]. In fact a Banach algebra *A* is amenable, if there exists an element $M \in (A \hat{\otimes} A)^{**}$ such that $a \cdot M = M \cdot a$ and $\pi_A^{**}(M)a = a$ for each $a \in A$, here π_A is given by $\pi_A(a \otimes b) = ab$ for each $a, b \in A$, see [14].

A. Sahami (Corresponding Author) Department of Mathematics, Faculty of Basic Sciences Ilam University, P.O. Box 69315-516, Ilam, Iran. E-mail: a.sahami@ilam.ac.ir

S. M. Kazemi Torbaghan Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran. E-mail: m.kazemi@ub.ac.ir

There are two homological notions parallel to amenability, namely biflatness and biprojectivity which were defined by Helemskii. In fact a Banach algebra *A* is called biflat (biprojective) if there exists a bounded *A*-bimodule morphism $\rho: A \to (A \hat{\otimes} A)^{**}(\rho: A \to A \hat{\otimes} A)$ such that $\pi_A^{**} \circ \rho(a) = a(\pi_A \circ \rho(a) = a),$ for all $a \in A$, respectively. It is well-known that a Banach algebra *A* is amenable if and only if *A* is biflat and *A* has a bounded approximate identity, see [14].

Recently some homological notions related to a multiplicative linear functional were given for Banach algebras. The notions like left *ϕ*-amenability, left *ϕ*-contractibility, left *ϕ*-biflatness and left *ϕ*-biprojectivity studied for the group algebras, the measure algebras and the Fourier algebras, for more information about these notions see [1], [7], [9], [13], [15] [16] and [17].

In this paper, we study the notion of left ϕ -biflatness and left ϕ -biprojectivity for the θ -Lau product structure $A \times_{\theta} B$. For a locally compact group *G*, we show that $M(G) \times_{\theta} M(G)$ is left character biflat (left character biprojective) if and only if *G* is discrete and amenable (*G* is finite), respectively. Also we prove that $\ell^1(N_\vee) \times_\theta \ell^1(N_\vee)$ is neither (ϕ_{N_\vee}, θ) -biprojective nor $(0, \phi_{N_\vee})$ -biprojective, where ϕ_N is the augmentation character on $\ell^1(N)$. Finally, we give an example among the *θ*-Lau product structure of matrix algebras which is not left *ϕ*-biflat.

We remind some definitions and notations which we need in this paper. For an arbitrary Banach algebra *A*, the character space is denoted by $\sigma(A)$ consists of all non-zero multiplicative linear functionals on *A* and any element of $\sigma(A)$ is called a character. The θ *−*Lau product was first introduced by Lau [10] for F-algebras. Monfared [12] introduced and investigated *θ*-Lau product space $A \times_{\theta} B$, for Banach algebras in general. Indeed for two Banach algebras *A* and *B* such that $\sigma(B) \neq \emptyset$ and θ be a non-zero character on *B*, the Cartesian product $A \times B$ by following multiplication and norm

$$
(a,b)(a',b') = (aa' + \theta(b')a + \theta(b)a', bb'),
$$
 (1)

$$
||(a, b)|| = ||a||_A + ||b||_B \tag{2}
$$

is a Banach algebra, for all $a, a' \in A$ and $b, b' \in B$. The Cartesian product $A \times B$ with the above properties called the *θ−*Lau product of *A* and *B* which is denoted by $A \times_{\theta} B$. From [12] we identify $A \times \{0\}$ with *A*, and $\{0\} \times B$ with *B*. Thus, it is clear that *A* is a closed two-sided ideal while *B* is a closed subalgebra of $A \times_{\theta} B$, and $(A \times_{\theta} B)/A$ is isometrically isomorphic to B. If $\theta = 0$, then we obtain the usual direct product of A and B. Since direct products often exhibit different properties, we have excluded the possibility that $\theta = 0$. Moreover, if $B = C$, the complex numbers, and θ is the identity map on *C*, then $A \times_{\theta} B$ is the unitization A^{\sharp} of *A*. Note that, by [12, Proposition 2.4], the character space $\sigma(A \times_{\theta} B)$ of $A \times_{\theta} B$ is equal to

$$
\{(\phi, \theta) : \phi \in \sigma(A)\} \cup \{((0, \psi) : \psi \in \sigma(B)\}. \tag{3}
$$

Also, the dual space $(A \times_{\theta} B)^*$ of $A \times_{\theta} B$ is identified with $A^* \times B^*$ such that for each $(a, b) \in A \times_{\theta} B$, $\phi \in \sigma(A)$ and $\psi \in \sigma(B)$ we have

$$
\langle (\phi, \psi), (a, b) \rangle = \phi(a) + \psi(b). \tag{4}
$$

Now, suppose that A^{**} , B^{**} and $(A \times_{\theta} B)^{**}$ are equipped with their first Arens products. Then $(A \times_{\theta} B)^{**}$ is isometrically isomorphic with $A^{**} \times_{\theta} B^{**}$. Also, for all $(m, n), (p, q) \in (A \times_{\theta} B)^{**}$ the first Arens product is defined by

$$
(m, n)(p, q) = (mp + n(\theta)p + q(\theta)m, nq); \tag{5}
$$

see [12, Proposition 2.12]. Note that every $\phi \in \sigma(A)$ has a unique extension to a character on A^{**} is given by $\tilde{\phi}$ where $\tilde{\phi}(m) = m(\phi)$, for all $m \in A^{**}$.

Note that *A* and *B* are closed two-sided ideal and closed subalgebra of $L := A \times_{\theta} B$, respectively. So, we can write $a = (a, 0)$ and $b = (0, b)$ for all *a* ∈ *A* and *b* ∈ *B*. Therefore, $L = A \times_{\theta} B$ is a Banach *A*−bimodule and also is a Banach *B−*bimodule. It has worth to mention that some generalizations of twisted product related to a homomorphism are given recently but by [3] it seems those products are trivial.

We recall that if *X* is a Banach *A*-bimodule, then with the following actions *X∗* is also a Banach *A*-bimodule: The projective tensor product of *A* with *A* is denoted by $A \hat{\otimes} A$. The projective tensor product of *A* with *A* is denoted by $A \hat{\otimes} A$. The Banach

$$
a \cdot f(x) = f(x \cdot a), \quad f \cdot a(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).
$$
 (6)

a $f(x) = f(x \cdot a)$, $f \cdot a(x) = f(a \cdot x)$ $(a \in A, x \in X, f$
The projective tensor product of A with A is denoted by $A \widehat{\otimes} A$.
algebra $A \widehat{\otimes} A$ is a Banach A-bimodule with the following actions

$$
a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A). \tag{7}
$$

2 Left *ϕ−***biflatness and left** *ϕ−***biprojectivity**

In this note $p_A : L \longrightarrow A$ and $p_B : L \longrightarrow B$ are denoted for the usual projections given by $p_A(a, b) = a$ and $p_B(a, b) = b$. Suppose that $q_A : A \longrightarrow L$ and $q_B : B \longrightarrow L$ are injections defined by $q_A(a) = (a, 0)$ and $q_B(b) = (0, b)$. So q_A and p_B give *g*_{*A*} $p = a$ and $p_B(a, b) = b$. Suppose that $q_A : A \longrightarrow L$
tions defined by $q_A(a) = (a, 0)$ and $q_B(b) = (0, b)$.
 $q_A \otimes q_A : A \widehat{\otimes} A \longrightarrow L \widehat{\otimes} L$ (8)

$$
q_A \otimes q_A : A \widehat{\otimes} A \longrightarrow L \widehat{\otimes} L \tag{8}
$$

and

$$
q_A \otimes q_A : A \widehat{\otimes} A \longrightarrow L \widehat{\otimes} L \tag{8}
$$

$$
p_B \otimes p_B : L \widehat{\otimes} L \longrightarrow B \widehat{\otimes} B \tag{9}
$$

with

$$
(q_A \otimes q_A)(a \otimes c) = (a, 0) \otimes (c, 0) \tag{10}
$$

and

$$
(p_B \otimes p_B)((a, b) \otimes (c, d)) = b \otimes d,\tag{11}
$$

for all $a, c \in A$ and $b, d \in B$ respectively. It is easy to see that q_A and $q_A \otimes q_A$ are *A*-bimodule morphisms and p_B , q_B and $p_B \otimes p_B$ are *B*-bimodule morphisms.

The notion of left *ϕ−*biprojectivity for Banach algebras first introduced by Sahami [17]. For a non-zero multiplicative linear functional ϕ on A, the Banach algebras *A* is called left ϕ −biprojective if there exists a bounded linear map $\rho: A \longrightarrow A \widehat{\otimes} A$ such that

$$
\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a), \quad \phi \circ \pi_A \circ \rho(a) = \phi(a), \quad (a, b \in A). \tag{12}
$$

Proposition 1 *Let A and B be two Banach algebras which A has unit e. Also let* ϕ ∈ $\sigma(A)$ *and* θ ∈ $\sigma(B)$ *. If L is left* (ϕ *,* θ)*−biprojective. Then A is left ϕ−biprojective.*

Proof bounded linear map $\rho_L : L \longrightarrow L \widehat{\otimes} L$ such that $\rho_L(ab) = a \cdot \rho_L(b) =$ $\phi(b)\rho_L(a)$ and $(\phi,\theta)\circ \pi_L \circ \rho_L = (\phi,\theta)$. We know that

$$
r_A \circ \pi_L = \pi_A \circ (r_A \otimes r_A), \qquad \phi \circ r_A = (\phi, \theta). \tag{13}
$$

Define $\rho_A : A \longrightarrow A \widehat{\otimes} A$ by $\rho_A = (r_A \otimes r_A) \circ \rho_L \circ q_A$. Consider

$$
\rho_A(a_1a_2) = (r_A \otimes r_A) \circ \rho_L \circ q_A(a_1a_2)
$$

= $(r_A \otimes r_A) \circ \rho_L(a_1 \cdot q_A(a_2))$
= $a_1 \cdot (r_A \otimes r_A) \circ \rho_L(q_A(a_2))$
= $a_1 \cdot \rho_A(a_2)$

and

$$
\rho_A(a_1a_2) = (r_A \otimes r_A) \circ \rho_L \circ q_A(a_1a_2)
$$

= $(r_A \otimes r_A) \circ \rho_L(q_A(a_1) \cdot a_2)$
= $\phi(a_2)(r_A \otimes r_A) \circ \rho_L(q_A(a_1))$
= $\phi(a_2) \cdot \rho_A(a_1)$

for every a_1 and a_2 in A . So these facts follow that

$$
\rho_A(a_1 a_2) = a_1 \cdot \rho_A(a_2) = \phi(a_2) \rho_A(a_1). \tag{14}
$$

Moreover we have

$$
\phi \circ \pi_A \circ \rho_A(a) = \phi \circ \pi_A \circ (r_A \otimes r_A) \circ \rho_L \circ q_A(a)
$$

= $(\phi \circ r_A \circ \pi_L \circ \rho_L)(a, 0)$
= $((\phi, \theta) \circ \pi_L \circ \rho_L)(a, 0)$
= $(\phi, \theta)(a, 0)$
= $\phi(a),$

for all $a \in A$. Hence $\phi \circ \pi_A \circ \rho_A = \phi$. Therefore *A* is left ϕ -biprojective.

Proposition 2 *Let A and B be two Banach algebras* $\psi \in \sigma(B)$ *. If L is left* (0*, ψ*)*−biprojective, then B is left ψ−biprojective. Converse holds whenever A is unital.*

Proof Suppose that *L* is left $(0, \psi)$ −biprojective. Then there exists a bounded <u>On Left φ-Biflat and Left φ-Biprojectivity of ...</u>
 Proof Suppose that *L* is left $(0, ψ)$ −biprojective. Then there exists a bounded linear map $ρ_L : L \longrightarrow L \widehat{\otimes} L$ such that $(0, ψ) ∘ π_L ∘ ρ_L = (0, ψ)$. Define $ρ_B :$ *B Dn* Let ϕ -Binat and Let ϕ -Biprojectivity of ...
Proof Suppose that *L* is left $(0, \psi)$ -biprojective. The linear map $\rho_L : L \longrightarrow L \widehat{\otimes} L$ such that $(0, \psi) \circ \pi_I$
 $B \longrightarrow B \widehat{\otimes} B$ by $\rho_B = (p_B \otimes p_B) \circ \rho_L \circ q_B$. Clea

$$
\pi_B \circ (p_B \otimes p_B) = p_B \circ \pi_L, \qquad \psi \circ p_B = (0, \psi). \tag{15}
$$

Note that

$$
\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \quad (b_1, b_2 \in B). \tag{16}
$$

Also $\psi \circ \pi_B \circ \lambda_B = \psi$. To see these facts, consider

$$
\rho_B(b_1b_2) = (p_B \otimes p_B) \circ \rho_L \circ q_B(b_1b_2) = (p_B \otimes p_B) \circ \rho_L(q_B(b_1) \cdot b_2)
$$

= $\psi(b_2)(p_B \otimes p_B) \circ \rho_L(q_B(b_1))$
= $\psi(b_2)\rho_B(a_1)$

and

$$
\rho_B(b_1b_2) = (p_B \otimes p_B) \circ \rho_L \circ q_B(b_1b_2) = (p_B \otimes p_B) \circ \rho_L(b_1 \cdot q_B(b_2))
$$

\n
$$
= b_1 \cdot (p_B \otimes p_B) \circ \rho_L(q_B(b_2)),
$$

\n
$$
= b_1 \cdot \rho_B(b_2),
$$

\n1 b_1 and b_2 in *B*. Moreover
\n
$$
(\psi \circ \pi_B \circ \rho_B)(b) = (\psi \circ \pi_B \circ (p_B \otimes p_B)\rho_L \circ q_B)(b)
$$

for all b_1 and b_2 in B . Moreover

$$
\begin{aligned}\n\left(\psi \circ \pi_B \circ \rho_B\right)(b) &= \left(\psi \circ \pi_B \circ (p_B \otimes p_B)\rho_L \circ q_B\right)(b) \\
&= \left(\psi \circ p_B \circ \pi_L \circ \rho_L\right)(0, b) \\
&= \left((0, \psi) \circ \pi_L \circ \rho_L\right)(0, b) \\
&= \psi(b),\n\end{aligned}
$$

for all $b \in B$. For converse let *B* be left ψ −biprojective. Then there exists a bounded linear map $\rho_B : B \longrightarrow B \widehat{\otimes} B$ such that $\rho_B(ab) = a \cdot \rho_B(b) =$ *ψ*(*b*) $ρ$ *B*(*a*) and $ψ ◦ π*B* ◦ *ρ B* = *ψ*. Define $ρ$ *L* : *L* $→$ *L* $\hat{\otimes} L$ via$

$$
\rho_L(a,b) := (S_B \otimes S_B) \circ \rho_B(b),
$$

for all $a \in A$ and $b \in B$. One can show that

$$
\pi_L \circ (S_B \otimes S_B) = S_B \circ \pi_B, \qquad (0, \psi) \circ S_B = \psi, \quad ((S_B \otimes S_B) \circ \rho_B(b)) \cdot x = 0, \tag{17}
$$

for all $b \in B$ and $x \in A$. Using these facts show that ρ_L is a bounded linear map such that

$$
\rho_L(l_1 l_2) = (0, \psi)(l_2) \rho_L(l_1) = l_1 \cdot \rho_L(l_2), \tag{18}
$$

for all $l_1, l_2 \in L$. Also

$$
(0, \psi) \circ \pi_L \circ \rho_L = (0, \psi). \tag{19}
$$

It follows that *L* is left $(0, \psi)$ −biprojective.

Remark 1 We claim that left (ϕ, θ) −biprojectivity of *L* gives that *B* is left *θ−*biprojective. However it is easy but for the sake of completeness we give it Amir Sahami, Sayed Mendi Kazemi Torbaghan
 Remark 1 We claim that left (ϕ, θ) -biprojectivity of *L* gives that *B* is left
 θ -biprojective. However it is easy but for the sake of completeness we give it

here. We k that

$$
\rho_L(ab) = a \cdot \rho_L(b) = (\phi, \theta)(b)\rho_L(a), \quad (\phi, \theta) \circ \pi_L \circ \rho_L = (\phi, \theta), \qquad (a, b \in L).
$$
\n(20)

On the other hand, one can see that

On the other hand, one can see that
\n
$$
p_B \circ \pi_L = \pi_B \circ (p_B \otimes p_B),
$$
 $r_A \circ \pi_L = \pi_A \circ (r_A \otimes r_A),$ $\theta \circ p_B = (0, \theta).$
\nLet $\rho_B : B \longrightarrow B \widehat{\otimes} B$ be a map defined by $\rho_B := (p_B \otimes p_B) \circ \rho_L \circ q_B$. The fact
\n $((\phi, 0) \circ \pi_L \circ \rho_L)(0, b) = 0$ follows that
\n $(\theta \circ \pi_B \circ \rho_B)(b) = \langle (\phi, \theta), (0, b) \rangle - ((\phi, 0) \circ \pi_L \circ \rho_L)(0, b)$

$$
(\theta \circ \pi_B \circ \rho_B)(b) = \langle (\phi, \theta), (0, b) \rangle - ((\phi, 0) \circ \pi_L \circ \rho_L)(0, b) = \theta(b),
$$

for every $b \in B$. Moreover

$$
\rho(b_1 b_2) = b_1 \cdot \rho_B(b_2) = \theta(b_2) \rho_B(b_1), \quad (b_1, b_2 \in B). \tag{22}
$$

It implies that *B* is left θ *−*biprojective.

Sahami in [17] introduced and studied the notion of left *ϕ−*biflatness for Banach algebras. A Banach algebra *A* is called left ϕ −biflat if there exists a It implies that *B* is left θ -biprojective.
Sahami in [17] introduced and studied the notion c
nach algebras. A Banach algebra *A* is called left
bounded linear map $\rho_A : A \longrightarrow (A \widehat{\otimes} A)^{**}$ such that

$$
\rho_A(ab) = a \cdot \rho_A(b) = \phi(b)\rho_A(a), \quad \tilde{\phi} \circ \pi_A^{**} \circ \rho_A = \phi, \quad (a, b \in A), \tag{23}
$$

where $\tilde{\phi}(F) = F(\phi)$ for all $F \in A^{**}$.

Proposition 3 *Let A and B be Banach algebras. Suppose that* $\theta \in \sigma(B)$ *and* $\phi \in \sigma(A)$ *. If L* is left $(\phi, \theta) - \text{biflat}$, then *A* is left $\phi - \text{biflat}$, provided that *A* is *unital.* $\phi \in \sigma(A)$ *. If*
punital.
Proof Since
L → $(L \widehat{\otimes} L)$

Proof Since *L* is left (ϕ, θ) −biflat, there exists a bounded linear map ρ_L : $L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that *Proof* Since *L* is left (ϕ, θ) -biflat, there exists $L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that
 $\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (\phi, \theta)(l_2) \rho_L(l_1), \quad (\widetilde{\phi}, \theta) \circ \pi$

$$
L \longrightarrow (L \otimes L)^{**} \text{ such that}
$$
\n
$$
\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (\phi, \theta)(l_2) \rho_L(l_1), \quad (\widetilde{\phi}, \theta) \circ \pi_L^{**} \circ \rho_L = (\phi, \theta), \qquad (l_1, l_2 \in L).
$$
\n
$$
\text{We define } \rho_A: A \longrightarrow (A \widehat{\otimes} A)^{**} \text{ by } \rho_A := (r_A \otimes r_A)^{**} \circ \rho_L \circ q_A. \text{ One can see}
$$
\n
$$
(24)
$$

that

$$
(r_A \otimes r_A)^*(\phi \circ \pi_A) = (\phi, \theta) \circ \pi_L.
$$
 (25)

It gives that

$$
\langle \tilde{\phi} \circ \pi_A^{**} \circ \rho_A, a \rangle = \langle \rho_A(a), \pi_A^*(\phi) \rangle
$$

= $\langle \rho_L(a, 0), (r_A \otimes r_A)^*(\phi \circ \pi_A) \rangle$
= $\phi(a),$

for all $a \in A$. Also

$$
\rho_A(a_1a_2) = (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_1a_2)) = a_1 \cdot (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_2)) = a_1 \cdot \rho_A(a_2)
$$
\n(26)

and

$$
\rho_A(a_1 a_2) = (r_A \otimes r_A)^{**} \circ \rho_L \circ q_A(a_1 a_2) = (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_1) \cdot a_2)
$$

= $\phi(a_2)\rho_A(a_1)$,

for all a_1 and a_2 in *A*. Hence *A* is left ϕ −biflat.

Proposition 4 *Let A and B be Banach algebras. Also let A be unital and* $\psi, \theta \in \sigma(B)$. Then *L* is left $(0, \psi)$ −biflat if and only if *B* is left ψ −biflat. **Proposition 4** Let A
 $\psi, \theta \in \sigma(B)$. Then L is
 Proof Suppose that L

map $\rho_L: L \longrightarrow (L \hat{\otimes} L)$

Proof Suppose that *L* is left $(0, ∨)$ −biflat. Then there exists a bounded linear map $\rho_L: L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that *<i>ψ*, $\theta \in \sigma(B)$. Then *L* is left $(0, \psi)$ – biflat. Then
Proof Suppose that *L* is left $(0, \psi)$ – biflat. Then
map $\rho_L : L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that
 $\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (0, \psi)(l_2) \rho_L(l_1), \quad (\widetilde{0, \psi}) \circ \pi$

$$
\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (0, \psi)(l_2) \rho_L(l_1), \quad (\widetilde{0, \psi}) \circ \pi_L^{**} \circ \rho_L = (0, \psi), \qquad (l_1, l_2 \in L).
$$

We know that $\pi_B^*(\psi) = \psi \circ \pi_B$.
Define $\lambda_B : B \longrightarrow (B \widehat{\otimes} B)^{**}$ by

We know that $\pi_B^*(\psi) = \psi \circ \pi_B$.

$$
\rho_B := (p_B \otimes p_B)^{**} \circ \rho_L \circ q_B. \tag{28}
$$

Clearly $\pi_L^*((0, \psi)) = (p_B \otimes p_B)^*(\psi \circ \pi_B)$. It follows that

$$
\langle \tilde{\psi} \circ \pi_B^{**} \circ \rho_B, b \rangle = \langle \pi_B^{**} \circ \rho_B(b), \psi \rangle
$$

= $\langle \rho_B(b), \psi \circ \pi_B \rangle$
= $\langle \rho_L((0, b)), (p_B \otimes p_B)^*(\psi \circ \pi_B) \rangle$
= $\psi(b),$

for all $b \in B$. Also we have

$$
\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \qquad (b_1, b_2 \in B). \tag{29}
$$

It gives that *B* is left ψ -biflat.

To show the only if part, let *B* be left *ψ−*biflat. Then there exists a bounded $\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)$
It gives that *B* is left ψ -biflat.
To show the only if part, let *B* be left ψ -
linear map $\rho_B : B \longrightarrow (B \widehat{\otimes} B)^{**}$ such that

$$
\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \quad \tilde{\psi} \circ \pi_B^{**} \circ \lambda_B = \psi \qquad (b_1, b_2 \in B). \tag{30}
$$

One can show that

$$
(S_B \otimes S_B)^*((0, \psi) \circ \pi_L) = \pi_B^*(\psi). \tag{31}
$$

Define $\rho_L : L \longrightarrow (L \widehat{\otimes} L)^{**}$ by
 D efine $\rho_L : L \longrightarrow (L \widehat{\otimes} L)^{**}$ by

$$
\rho_L := (S_B \otimes S_B)^{**} \circ \rho_B \circ p_B. \tag{32}
$$

Clearly ρ_L is a bounded linear map which satisfies

$$
\rho_L := (S_B \otimes S_B)^{**} \circ \rho_B \circ p_B.
$$
\n(32)
\nClearly ρ_L is a bounded linear map which satisfies
\n
$$
\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (\psi, 0)(l_2) \rho_L(l_1), \quad (\widetilde{0, \psi}) \circ \pi_L^{**} \circ \rho_L = \psi, \quad (l_1, l_2 \in L).
$$
\n(33)
\nIt follows that L is left $(0, \psi)$ -biflat.

By modifying the proof of Proposition 4 (if part), if we define

$$
\rho_B = (p_B \otimes p_B)^{**} \circ \rho_L \circ S_B,\tag{34}
$$

then we can show that *B* is left ψ −biflat.

3 Results

Suppose that *A* is a Banach algebra and $\phi \in \sigma(A)$. We remind that a Banach algebra *A* is left ϕ -amenable (left ϕ -contractible) if there exists an element *m* in A^{**} (an element *m* in *A*) such that $am = \phi(a)m$ ($am = \phi(a)m$) and $\phi(m) = 1$ ($\phi(m) = 1$) for all $a \in A$, respectively, see [9] and [13]. A Banach algebra *A* is called left character amenable (left character contractible), if *A* for all $\phi \in \sigma(A)$, is left ϕ -amenable (left ϕ -contractible) and *A* posses a bounded left approximate identity (left identity), respectively, see [13].

Example 1 We give a Lau product Banach algebra which is not left *ϕ*-biflat. To see this, let $C^1[0,1]$ be the set of all differentiable functions which its first derivation is continuous. Equip $C^1[0,1]$ with the point-wise multiplication and the sup-norm. Clearly $C^1[0,1]$ becomes a Banach algebra. It is known that $\sigma(C^1[0,1]) = \{\phi_t : t \in [0,1]\},\$ where $\phi_t(f) = f(t)$ for all $t \in [0,1].$ We assume in contradiction that $C^1[0,1] \times_{\theta} C^1[0,1]$ is left (ϕ_t, θ) *-*biflat or left $(0, \phi_t)$ −biflat, where $\phi_t(f) = f(t)$ for each $t \in [0, 1]$. We know that the function 1 is an identity for $C^1[0,1]$. By Proposition 3 and Proposition 4 $C^1[0,1]$ is left ϕ_t *-*biflat. Therefore, there exists a bounded linear map $\rho : C^1[0,1] \longrightarrow$ $(C^1[0,1]\hat{\otimes} C^1[0,1])^{**}$ such that

$$
\rho_{C^1[0,1]}(fg) = f \cdot \rho_{C^1[0,1]}(g) = \phi_t(g)\rho_{C^1[0,1]}(f), \quad \tilde{\phi}_t \circ \pi_{C^1[0,1]}^{**} \circ \rho(f) = \phi_t(f)
$$
\n(35)

for all $f, g \in C[0, 1]$. Put $m = \pi_{C_{[0,1]}}^{**} \circ \rho(1) \in A^{**}$, we have

$$
f \cdot m = f \cdot \pi_{C_{[0,1]}}^{**} \circ \rho(1) = \pi_{C_{[0,1]}}^{**} \circ \rho(f1) = \pi_{C_{[0,1]}}^{**} \circ \rho(1f) = \phi_t(f)m, \quad (36)
$$

and

$$
\tilde{\phi}_t(m) = \tilde{\phi}_t \circ \pi_{C_{[0,1]}}^{**} \circ \rho(1) = \phi_t(1) = 1,\tag{37}
$$

for all $f \in C^1[0,1]$. It follows that $C^1[0,1]$ is left ϕ_t -amenable which is impossible by [9, Example 2.5].

The Banach algebra *A* is called left character biflat (left character biprojective) if *A* is left ϕ -biflat (left ϕ -biprojective) for each $\phi \in \sigma(A)$, respectively, see [17].

Proposition 5 *Let G be a locally compact group and let M*(*G*) *be the measure algebra over G. Suppose that* $\theta \in \sigma(M(G))$ *. Then* $M(G) \times_{\theta} M(G)$ *is left character biflat if and only if G is discrete and amenable.*

Proof Suppose that $M(G) \times_{\theta} M(G)$ is left character biflat. It is known that $M(G)$ has an identity. So Proposition 3 implies that $M(G)$ is left ϕ −amenable for all $\phi \in \sigma(M(G))$ (By placing $m = \pi_{M(G)}^{**} \circ \rho(e)$, where *e* is the unit of $M(G)$). Since that $M(G)$ has an identity, $M(G)$ is left character amenable. Applying [11, Corollary 2.5] gives that *G* is discrete and amenable .

For converse, suppose that *G* is discrete and amenable. Then we have $M(G)$ = $\ell^1(G)$. Thus by Johnson Theorem $\ell^1(G)$ is amenable. So [2, Corollary 2.1] finishes the proof.

Proposition 6 *Suppose that G is a locally compact group. Then* $M(G) \times_{\theta}$ *M*(*G*) *is left character biprojective if and only if G is finite.*

Proof Suppose that $M(G) \times_{\theta} M(G)$ is left character biprojective. Then by Proposition 1, $M(G)$ is left character biprojective $(M(G))$ is unital). One can easily see that $M(G)$ is left ϕ −contractible for all $\phi \in \sigma(M(G))$. Since $M(G)$ is unital, it follows that $M(G)$ is left character contractible. From [13, Corollary 6.2], we have G is a finite group. Converse is clear.

It is well-known that the Fourier algebra $A(G)$ over a locally compact group *G* is a commutative Banach algebra. Also, $\sigma(A(G)) = \{\phi_g : g \in G\}$, where $\phi_q(f) = f(g)$, see [14].

Theorem 1 *Suppose that G is a locally compact group. Then* $M(G) \times_{\theta} A(G)$ *is left character biprojective if and only if G is a finite group.*

Proof Similar to the proof of previous Proposition. P

Suppose that N_V is the semigroup *N* (the natural numbers) with products $m \vee n = \max\{m, n\}$. Consider $\ell^1(N_\vee)$ with convolution product. We denote *δ*^{*n*} for the *point mass* at ${n}$ *}*. For every *n* ∈ *N*, we consider a homomorphism Suppose that N_{\vee} is the semigroup N (the natural numbers) with products $m \vee n = \max\{m, n\}$. Consider $\ell^1(N_{\vee})$ with convolution product. We denote δ_n for the *point mass* at $\{n\}$. For every $n \in N$, we consi *N ∪ {∞}*. It is known that

$$
\sigma(\ell^1(N_\vee)) = \{\phi_n : n \in N \cup \{\infty\}\}\tag{38}
$$

We write $\phi_{N_v} = \phi_{\infty}$ for the *augmentation character*, see [4].

Theorem 2 *The Banach algebra* $\ell^1(N_\vee) \times \ell^2(N_\vee)$ *is neither* (ϕ_{N_\vee}, θ) *-biprojective nor* $(0, \phi_{N_v})$ *-biprojective, where* ϕ_{N_v} *is the augmentation character on* $\ell^1(N_v)$ *.*

Proof We assume conversely that $\ell^1(N_\vee) \times_{\theta} \ell^1(N_\vee)$ is either left (ϕ_{N_\vee}, θ) biprojective or left $(0, \phi_{N_v})$ -biprojective. Since N_v is unital, $\ell^1(N_v)$ has an identity. By Proposition 1 and Proposition 2 $\ell^1(N_\vee)$ is left ϕ_{N_\vee} -biprojective. The existence of a unit δ_1 implies that $\ell^1(N_\vee)$ is left ϕ_{N_\vee} -contractible. Now we claim that $\ell^1(N_\vee)$ is left ϕ_n -contractible for all $n \in N$. To see this define $m_n = \delta_n - \delta_{n+1} \in \ell^1(N_\vee)$. Let $a = \sum_{n=1}^\infty a_n \delta_n \in \ell^1(N_\vee)$, where (a_n) is a **Example 12**
 $m_n = \delta_n - \delta_{n+1} \in \ell^1(N_\vee)$. Let $a = \sum_{n=1}^\infty a_n \delta_n$ sequence in *C* such that $\sum_{n=1}^\infty |a_n| < \infty$. Consider $a_n = \delta_n - \delta_{n+1} \in \ell^1(N_\vee)$
equence in *C* such that $\sum_{i=1}^\infty a_n = a(\delta_n - \delta_{n+1}) = \sum_{i=1}^\infty a_i$

$$
am_n = a(\delta_n - \delta_{n+1}) = \sum_{n=1}^{\infty} a_n \delta_n (\delta_n - \delta_{n+1}) = \phi_n(a)(\delta_n - \delta_{n+1}) = \phi_n(a)m_n
$$
\n(39)

and

 $\phi_n(m_n) = \phi_n(\delta_n - \delta_{n+1}) = \phi_n(\delta_n) - \phi_n(\delta_{n+1}) = 1$,

for every $a \in \ell^1(N_\vee)$. Thus $\ell^1(N_\vee)$ is character contractible. Applying [5, Corollary 2.2] follows that $\sigma(\ell^1(N_V)) = N_V \cup \{\infty\}$ is discrete with respect to the w^* -topology. Using the Gelfand representation theorem, we have $\sigma(\ell^1(N_v))$ = *N[∨] ∪ {∞}* is compact, so is finite which is a contradiction.

Example 2 Suppose that $A = \begin{cases} a & b \end{cases}$ 0 *c* : $a, b, c \in C$ } be a matrix algebra. With matrix operation and ℓ^1 -norm *A* becomes a Banach algebra. Define $\phi : A \longrightarrow$ *C* by ϕ ($\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ = *c*. It is easy to see that is a character on *A*. We claim that *A* ×*θ A* is neither (ϕ, θ) - biflat nor $(0, \phi)$ -biflat, where $\theta \in \sigma(A)$. Suppose in contradiction that $A \times_{\theta} A$ is either (ϕ, θ) -biflat or $(0, \phi)$ -biflat. Since A is unital, by Proposition 3 and Proposition $4 \nA$ is left ϕ -biflat. Since A is unital, it is easy to see that A is left ϕ -amenable. Set

$$
J := \{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} : b, d \in C \}
$$

and $\phi_{|J} \neq 0$. It is clear that *J* is a closed ideal of *A*. Since *A* is left ϕ -amenable, by [9, Lemma 3.1] we have that *J* is $\phi_{|J}$ *-*amenable. Now [9, Theorem 1.4] follows that, there exists a bounded net (u_{α}) in *J* such that $ju_{\alpha} - \phi(j)u_{\alpha} \longrightarrow 0$ and $\phi(u_{\alpha}) = 1$ for all $j \in J$. Let

$$
j = \left(\begin{array}{c} 0 & j_1 \\ 0 & j_2 \end{array}\right)
$$

and

$$
u_{\alpha} = \left(\begin{smallmatrix} 0 & w_{\alpha} \\ 0 & v_{\alpha} \end{smallmatrix}\right)
$$

, for some $j_1, j_2, w_\alpha, v_\alpha \in C$. Thus,

$$
ju_{\alpha} - \phi(j)u_{\alpha} = \begin{pmatrix} 0 & j_1w_{\alpha} \\ 0 & j_2v_{\alpha} \end{pmatrix} - \begin{pmatrix} 0 & j_2w_{\alpha} \\ 0 & j_2v_{\alpha} \end{pmatrix} \longrightarrow 0.
$$
 (40)

It gives that $j_1v_\alpha - j_2w_\alpha \longrightarrow 0$. If we put $j_1 = 1$ and $j_2 = 0$, then we have $v_{\alpha} \to 0$ which contradicts with $\phi(u_{\alpha}) = v_{\alpha} = 1$.

Acknowledgments. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. The first author is thankful to Ilam university for its support.

References

- 1. M. Alaghmandan, R. Nasr-Isfahani, M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc., 82, 274–281 (2010).
- 2. M. Askari-Sayah, A. Pourabbas, A. Sahami, Johnson pseudo-contractibility and pseudoamenability of *θ*-Lau product, Krag. Jour. Math., 44, 593–601 (2020).
- 3. Y. Choi, Triviality of the generalised Lau product associated to a Banach algebra homomorphism, Bull. Aust. Math. Soc., 94, 286–289 (2016).
- 4. H. G. Dales, A. T. Lau, D. Strauss, Banach algebras on semigroups and their compactifications, Mem. Am. Math. Soc., 205, 1–165 (2010).
- 5. M. Dashti, R. Nasr-Isfahani, S. Soltani Renani, Character amenability of Lipschitz algebras, Canad. Math. Bull., 57, 37–41 (2014).
- 6. H. R. Ebrahimi Vishki, A. R. Khoddami, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iran. Math. Soc., 39, 559–568 (2013).
- 7. E. Ghaderi, A. Sahami *ϕ−*biflatness and *ϕ−*biprojectivity for *θ*-Lau product with applications U.P.B. Sci. Bull. Series A., (To appear).
- 8. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
- 9. E. Kaniuth, A. T. Lau, J. Pym, On *ϕ−*amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144, 85–96 (2008).
- 10. A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118, 161–175 (1983).
- 11. M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc., 144, 697–706 (2008).
- 12. M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math., 178, 277–294 (2007).
- 13. R. Nasr-Isfahani, S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math., 202, 205–225 (2011).
- 14. V. Runde, Lectures on amenability, Springer, New York, (2002).
- 15. A. Sahami, M. Rostami, A. Pourabbas,On left *ϕ*-biflat Banach algebras, Comment. Math. Univ. Carolin., 61, (2020).
- 16. A. Sahami, M. Rostami, A. Pourabbas, Left *ϕ*-biprojectivity of some Banach algebras, Preprint.
- 17. A. Sahami, On left *ϕ*-biprojectivity and left *ϕ*-biflatness of certain Banach algebras, U.P.B. Sci. Bull. Series A., 81, 97–106 (2019).