On Left ϕ -Biflat and Left ϕ -Biprojectivity of θ -Lau Product Algebras

Amir Sahami · Sayed Mehdi Kazemi Torbaghan

Received: 9 October 2020 / Accepted: 29 November 2020

Abstract Monfared defined θ -Lau product structure $A \times_{\theta} B$ for two Banach algebras A and B, where $\theta : B \to C$ is a multiplicative linear functional. In this paper, we study the notion of left ϕ -biffatness and left ϕ -biprojectivity for the θ Lau product structure $A \times_{\theta} B$. For a locally compact group G, we show that $M(G) \times_{\theta} M(G)$ is left character biffat (left character biprojective) if and only if G is discrete and amenable (G is finite), respectively. Also we prove that $\ell^1(N_{\vee}) \times_{\theta} \ell^1(N_{\vee})$ is neither $(\phi_{N_{\vee}}, \theta)$ -biprojective nor $(0, \phi_{N_{\vee}})$ -biprojective, where $\phi_{N_{\vee}}$ is the augmentation character on $\ell^1(N_{\vee})$. Finally, we give an example among the Lau product structure of matrix algebras which is not left ϕ -biffat.

Keywords Left ϕ -amenability · Left ϕ -biflatnes · Left ϕ -biprojectivity · Left ϕ -contractibility · θ -Lau product

Mathematics Subject Classification (2010) $43A07\cdot46M10\cdot43A20\cdot46H05$

1 Introduction

Johnson defined amenable Banach algebras thorough virtual diagonals [8]. In fact a Banach algebra A is amenable, if there exists an element $M \in (A \otimes A)^{**}$ such that $a \cdot M = M \cdot a$ and $\pi_A^{**}(M)a = a$ for each $a \in A$, here π_A is given by $\pi_A(a \otimes b) = ab$ for each $a, b \in A$, see [14].

A. Sahami (Corresponding Author) Department of Mathematics, Faculty of Basic Sciences Ilam University, P.O. Box 69315-516, Ilam, Iran. E-mail: a.sahami@ilam.ac.ir

S. M. Kazemi Torbaghan Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran. E-mail: m.kazemi@ub.ac.ir There are two homological notions parallel to amenability, namely biflatness and biprojectivity which were defined by Helemskii. In fact a Banach algebra A is called biflat (biprojective) if there exists a bounded A-bimodule morphism $\rho: A \to (A \hat{\otimes} A)^{**}(\rho: A \to A \hat{\otimes} A)$ such that $\pi_A^{**} \circ \rho(a) = a(\pi_A \circ \rho(a) = a)$, for all $a \in A$, respectively. It is well-known that a Banach algebra A is amenable if and only if A is biflat and A has a bounded approximate identity, see [14].

Recently some homological notions related to a multiplicative linear functional were given for Banach algebras. The notions like left ϕ -amenability, left ϕ -contractibility, left ϕ -biflatness and left ϕ -biprojectivity studied for the group algebras, the measure algebras and the Fourier algebras, for more information about these notions see [1], [7], [9], [13], [15] [16] and [17].

In this paper, we study the notion of left ϕ -biflatness and left ϕ -biprojectivity for the θ -Lau product structure $A \times_{\theta} B$. For a locally compact group G, we show that $M(G) \times_{\theta} M(G)$ is left character biflat (left character biprojective) if and only if G is discrete and amenable (G is finite), respectively. Also we prove that $\ell^1(N_{\vee}) \times_{\theta} \ell^1(N_{\vee})$ is neither $(\phi_{N_{\vee}}, \theta)$ -biprojective nor $(0, \phi_{N_{\vee}})$ -biprojective, where ϕ_N is the augmentation character on $\ell^1(N)$. Finally, we give an example among the θ -Lau product structure of matrix algebras which is not left ϕ -biflat.

We remind some definitions and notations which we need in this paper. For an arbitrary Banach algebra A, the character space is denoted by $\sigma(A)$ consists of all non-zero multiplicative linear functionals on A and any element of $\sigma(A)$ is called a character. The θ -Lau product was first introduced by Lau [10] for F-algebras. Monfared [12] introduced and investigated θ -Lau product space $A \times_{\theta} B$, for Banach algebras in general. Indeed for two Banach algebras A and B such that $\sigma(B) \neq \emptyset$ and θ be a non-zero character on B, the Cartesian product $A \times B$ by following multiplication and norm

$$(a,b)(a',b') = (aa' + \theta(b')a + \theta(b)a',bb'),$$
(1)

$$\|(a,b)\| = \|a\|_A + \|b\|_B \tag{2}$$

is a Banach algebra, for all $a, a' \in A$ and $b, b' \in B$. The Cartesian product $A \times B$ with the above properties called the θ -Lau product of A and B which is denoted by $A \times_{\theta} B$. From [12] we identify $A \times \{0\}$ with A, and $\{0\} \times B$ with B. Thus, it is clear that A is a closed two-sided ideal while B is a closed subalgebra of $A \times_{\theta} B$, and $(A \times_{\theta} B)/A$ is isometrically isomorphic to B. If $\theta = 0$, then we obtain the usual direct product of A and B. Since direct products often exhibit different properties, we have excluded the possibility that $\theta = 0$. Moreover, if B = C, the complex numbers, and θ is the identity map on C, then $A \times_{\theta} B$ is the unitization A^{\sharp} of A. Note that, by [12, Proposition 2.4], the character space $\sigma(A \times_{\theta} B)$ of $A \times_{\theta} B$ is equal to

$$\{(\phi,\theta): \phi \in \sigma(A)\} \mid \{(0,\psi): \psi \in \sigma(B)\}.$$
(3)

Also, the dual space $(A \times_{\theta} B)^*$ of $A \times_{\theta} B$ is identified with $A^* \times B^*$ such that for each $(a, b) \in A \times_{\theta} B$, $\phi \in \sigma(A)$ and $\psi \in \sigma(B)$ we have

$$\langle (\phi, \psi), (a, b) \rangle = \phi(a) + \psi(b). \tag{4}$$

Now, suppose that A^{**} , B^{**} and $(A \times_{\theta} B)^{**}$ are equipped with their first Arens products. Then $(A \times_{\theta} B)^{**}$ is isometrically isomorphic with $A^{**} \times_{\theta} B^{**}$. Also, for all $(m, n), (p, q) \in (A \times_{\theta} B)^{**}$ the first Arens product is defined by

$$(m,n)(p,q) = (mp+n(\theta)p+q(\theta)m,nq);$$
(5)

see [12, Proposition 2.12]. Note that every $\phi \in \sigma(A)$ has a unique extension to a character on A^{**} is given by $\tilde{\phi}$ where $\tilde{\phi}(m) = m(\phi)$, for all $m \in A^{**}$.

Note that A and B are closed two-sided ideal and closed subalgebra of $L := A \times_{\theta} B$, respectively. So, we can write a = (a, 0) and b = (0, b) for all $a \in A$ and $b \in B$. Therefore, $L = A \times_{\theta} B$ is a Banach A-bimodule and also is a Banach B-bimodule. It has worth to mention that some generalizations of twisted product related to a homomorphism are given recently but by [3] it seems those products are trivial.

We recall that if X is a Banach A-bimodule, then with the following actions X^* is also a Banach A-bimodule:

$$a \cdot f(x) = f(x \cdot a), \quad f \cdot a(x) = f(a \cdot x) \qquad (a \in A, x \in X, f \in X^*).$$
(6)

The projective tensor product of A with A is denoted by $A \widehat{\otimes} A$. The Banach algebra $A \widehat{\otimes} A$ is a Banach A-bimodule with the following actions

$$a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A).$$
 (7)

2 Left ϕ -biflatness and left ϕ -biprojectivity

In this note $p_A : L \longrightarrow A$ and $p_B : L \longrightarrow B$ are denoted for the usual projections given by $p_A(a,b) = a$ and $p_B(a,b) = b$. Suppose that $q_A : A \longrightarrow L$ and $q_B : B \longrightarrow L$ are injections defined by $q_A(a) = (a,0)$ and $q_B(b) = (0,b)$. So q_A and p_B give

$$q_A \otimes q_A : A \widehat{\otimes} A \longrightarrow L \widehat{\otimes} L \tag{8}$$

and

$$p_B \otimes p_B : L \widehat{\otimes} L \longrightarrow B \widehat{\otimes} B \tag{9}$$

with

$$(q_A \otimes q_A)(a \otimes c) = (a, 0) \otimes (c, 0)$$
(10)

and

$$(p_{\scriptscriptstyle B} \otimes p_{\scriptscriptstyle B})((a,b) \otimes (c,d)) = b \otimes d, \tag{11}$$

for all $a, c \in A$ and $b, d \in B$ respectively. It is easy to see that q_A and $q_A \otimes q_A$ are A-bimodule morphisms and p_B , q_B and $p_B \otimes p_B$ are B-bimodule morphisms.

The notion of left ϕ -biprojectivity for Banach algebras first introduced by Sahami [17]. For a non-zero multiplicative linear functional ϕ on A, the Banach algebras A is called left ϕ -biprojective if there exists a bounded linear map $\rho: A \longrightarrow A \widehat{\otimes} A$ such that

$$\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a), \quad \phi \circ \pi_A \circ \rho(a) = \phi(a), \quad (a, b \in A).$$
(12)

Proposition 1 Let A and B be two Banach algebras which A has unit e. Also let $\phi \in \sigma(A)$ and $\theta \in \sigma(B)$. If L is left (ϕ, θ) -biprojective. Then A is left ϕ -biprojective.

Proof bounded linear map $\rho_L : L \longrightarrow L \widehat{\otimes} L$ such that $\rho_L(ab) = a \cdot \rho_L(b) = \phi(b)\rho_L(a)$ and $(\phi, \theta) \circ \pi_L \circ \rho_L = (\phi, \theta)$. We know that

$$r_A \circ \pi_L = \pi_A \circ (r_A \otimes r_A), \qquad \phi \circ r_A = (\phi, \theta). \tag{13}$$

Define $\rho_A: A \longrightarrow A \widehat{\otimes} A$ by $\rho_A = (r_A \otimes r_A) \circ \rho_L \circ q_A$. Consider

$$\begin{split} \rho_A(a_1a_2) &= (r_A \otimes r_A) \circ \rho_L \circ q_A(a_1a_2) \\ &= (r_A \otimes r_A) \circ \rho_L(a_1 \cdot q_A(a_2)) \\ &= a_1 \cdot (r_A \otimes r_A) \circ \rho_L(q_A(a_2)) \\ &= a_1 \cdot \rho_A(a_2) \end{split}$$

and

$$\rho_A(a_1a_2) = (r_A \otimes r_A) \circ \rho_L \circ q_A(a_1a_2)$$

= $(r_A \otimes r_A) \circ \rho_L(q_A(a_1) \cdot a_2)$
= $\phi(a_2)(r_A \otimes r_A) \circ \rho_L(q_A(a_1))$
= $\phi(a_2) \cdot \rho_A(a_1)$

for every a_1 and a_2 in A. So these facts follow that

$$\rho_A(a_1 a_2) = a_1 \cdot \rho_A(a_2) = \phi(a_2)\rho_A(a_1). \tag{14}$$

Moreover we have

$$\begin{split} \phi \circ \pi_A \circ \rho_A(a) &= \phi \circ \pi_A \circ (r_A \otimes r_A) \circ \rho_L \circ q_A(a) \\ &= (\phi \circ r_A \circ \pi_L \circ \rho_L)(a, 0) \\ &= ((\phi, \theta) \circ \pi_L \circ \rho_L)(a, 0) \\ &= (\phi, \theta)(a, 0) \\ &= \phi(a), \end{split}$$

for all $a \in A$. Hence $\phi \circ \pi_A \circ \rho_A = \phi$. Therefore A is left ϕ -biprojective.

Proposition 2 Let A and B be two Banach algebras $\psi \in \sigma(B)$. If L is left $(0, \psi)$ -biprojective, then B is left ψ -biprojective. Converse holds whenever A is unital.

Proof Suppose that L is left $(0, \psi)$ -biprojective. Then there exists a bounded linear map $\rho_L : L \longrightarrow L \widehat{\otimes} L$ such that $(0, \psi) \circ \pi_L \circ \rho_L = (0, \psi)$. Define $\rho_B : B \longrightarrow B \widehat{\otimes} B$ by $\rho_B = (p_B \otimes p_B) \circ \rho_L \circ q_B$. Clearly

$$\pi_B \circ (p_{\scriptscriptstyle B} \otimes p_{\scriptscriptstyle B}) = p_{\scriptscriptstyle B} \circ \pi_L, \qquad \psi \circ p_{\scriptscriptstyle B} = (0, \psi). \tag{15}$$

Note that

$$\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \quad (b_1, b_2 \in B).$$
(16)

Also $\psi \circ \pi_B \circ \lambda_B = \psi$. To see these facts, consider

$$\begin{split} \rho_B(b_1b_2) &= (p_{_B} \otimes p_{_B}) \circ \rho_L \circ q_{_B}(b_1b_2) = (p_{_B} \otimes p_{_B}) \circ \rho_L(q_{_B}(b_1) \cdot b_2) \\ &= \psi(b_2)(p_{_B} \otimes p_{_B}) \circ \rho_L(q_{_B}(b_1) \\ &= \psi(b_2)\rho_B(a_1) \end{split}$$

and

$$\begin{split} \rho_B(b_1b_2) &= (p_{\scriptscriptstyle B} \otimes p_{\scriptscriptstyle B}) \circ \rho_L \circ q_{\scriptscriptstyle B}(b_1b_2) = (p_{\scriptscriptstyle B} \otimes p_{\scriptscriptstyle B}) \circ \rho_L(b_1 \cdot q_{\scriptscriptstyle B}(b_2)) \\ &= b_1 \cdot (p_{\scriptscriptstyle B} \otimes p_{\scriptscriptstyle B}) \circ \rho_L(q_{\scriptscriptstyle B}(b_2), \\ &= b_1 \cdot \rho_B(b_2), \end{split}$$

for all b_1 and b_2 in B. Moreover

$$\begin{split} \left(\psi \circ \pi_B \circ \rho_B\right)(b) &= \left(\psi \circ \pi_B \circ (p_B \otimes p_B)\rho_L \circ q_B\right)(b) \\ &= \left(\psi \circ p_B \circ \pi_L \circ \rho_L\right)(0,b) \\ &= \left((0,\psi) \circ \pi_L \circ \rho_L\right)(0,b) \\ &= \psi(b), \end{split}$$

for all $b \in B$. For converse let B be left ψ -biprojective. Then there exists a bounded linear map $\rho_B : B \longrightarrow B \widehat{\otimes} B$ such that $\rho_B(ab) = a \cdot \rho_B(b) = \psi(b)\rho_B(a)$ and $\psi \circ \pi_B \circ \rho_B = \psi$. Define $\rho_L : L \longrightarrow L \widehat{\otimes} L$ via

$$\rho_L(a,b) := (S_B \otimes S_B) \circ \rho_B(b),$$

for all $a \in A$ and $b \in B$. One can show that

$$\pi_L \circ (S_B \otimes S_B) = S_B \circ \pi_B, \qquad (0, \psi) \circ S_B = \psi, \quad ((S_B \otimes S_B) \circ \rho_B(b)) \cdot x = 0, \ (17)$$

for all $b \in B$ and $x \in A$. Using these facts show that ρ_L is a bounded linear map such that

$$\rho_L(l_1 l_2) = (0, \psi)(l_2)\rho_L(l_1) = l_1 \cdot \rho_L(l_2), \tag{18}$$

for all $l_1, l_2 \in L$. Also

$$(0,\psi)\circ\pi_L\circ\rho_L=(0,\psi).$$
(19)

It follows that L is left $(0, \psi)$ -biprojective.

Remark 1 We claim that left (ϕ, θ) -biprojectivity of L gives that B is left θ -biprojective. However it is easy but for the sake of completeness we give it here. We know that there exists a bounded linear map $\rho_L : L \longrightarrow L \widehat{\otimes} L$ such that

$$\rho_L(ab) = a \cdot \rho_L(b) = (\phi, \theta)(b)\rho_L(a), \quad (\phi, \theta) \circ \pi_L \circ \rho_L = (\phi, \theta), \qquad (a, b \in L).$$
(20)

On the other hand, one can see that

$$\begin{array}{ll} p_B \circ \pi_L = \pi_B \circ (p_B \otimes p_B), & r_A \circ \pi_L = \pi_A \circ (r_A \otimes r_A), & \theta \circ p_B = (0, \theta). \\ (21) \\ \text{Let } \rho_B : B \longrightarrow B \widehat{\otimes} B \text{ be a map defined by } \rho_B := (p_B \otimes p_B) \circ \rho_L \circ q_B. \\ & ((\phi, 0) \circ \pi_L \circ \rho_L)(0, b) = 0 \text{ follows that} \end{array}$$

$$\left(\theta \circ \pi_B \circ \rho_B \right)(b) = \langle (\phi, \theta), (0, b) \rangle - \left((\phi, 0) \circ \pi_L \circ \rho_L \right)(0, b)$$

= $\theta(b),$

for every $b \in B$. Moreover

$$\rho(b_1b_2) = b_1 \cdot \rho_B(b_2) = \theta(b_2)\rho_B(b_1), \quad (b_1, b_2 \in B).$$
(22)

It implies that B is left θ -biprojective.

Sahami in [17] introduced and studied the notion of left ϕ -biflatness for Banach algebras. A Banach algebra A is called left ϕ -biflat if there exists a bounded linear map $\rho_A : A \longrightarrow (A \widehat{\otimes} A)^{**}$ such that

$$\rho_A(ab) = a \cdot \rho_A(b) = \phi(b)\rho_A(a), \quad \phi \circ \pi_A^{**} \circ \rho_A = \phi, \quad (a, b \in A),$$
(23)

where $\tilde{\phi}(F) = F(\phi)$ for all $F \in A^{**}$.

Proposition 3 Let A and B be Banach algebras. Suppose that $\theta \in \sigma(B)$ and $\phi \in \sigma(A)$. If L is left (ϕ, θ) -biflat, then A is left ϕ -biflat, provided that A is unital.

Proof Since L is left (ϕ, θ) -biflat, there exists a bounded linear map $\rho_L : L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that

$$\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (\phi, \theta)(l_2)\rho_L(l_1), \quad (\phi, \theta) \circ \pi_L^{**} \circ \rho_L = (\phi, \theta), \qquad (l_1, l_2 \in L).$$
(24)

We define $\rho_A : A \longrightarrow (A \widehat{\otimes} A)^{**}$ by $\rho_A := (r_A \otimes r_A)^{**} \circ \rho_L \circ q_A$. One can see that

$$(r_A \otimes r_A)^* (\phi \circ \pi_A) = (\phi, \theta) \circ \pi_L.$$
(25)

It gives that

$$\begin{split} \langle \tilde{\phi} \circ \pi_A^{**} \circ \rho_A, a \rangle &= \langle \rho_A(a), \pi_A^{*}(\phi) \rangle \\ &= \langle \rho_L(a, 0), (r_A \otimes r_A)^{*}(\phi \circ \pi_A) \rangle \\ &= \phi(a), \end{split}$$

for all $a \in A$. Also

$$\rho_A(a_1a_2) = (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_1a_2)) = a_1 \cdot (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_2)) = a_1 \cdot \rho_A(a_2)$$
(26)

and

$$\rho_A(a_1a_2) = (r_A \otimes r_A)^{**} \circ \rho_L \circ q_A(a_1a_2) = (r_A \otimes r_A)^{**} \circ \rho_L(q_A(a_1) \cdot a_2)$$
$$= \phi(a_2)\rho_A(a_1),$$

for all a_1 and a_2 in A. Hence A is left ϕ -biflat.

Proposition 4 Let A and B be Banach algebras. Also let A be unital and $\psi, \theta \in \sigma(B)$. Then L is left $(0, \psi)$ -biflat if and only if B is left ψ -biflat.

Proof Suppose that L is left $(0, \psi)$ -biflat. Then there exists a bounded linear map $\rho_L : L \longrightarrow (L \widehat{\otimes} L)^{**}$ such that

$$\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (0, \psi)(l_2)\rho_L(l_1), \quad (0, \psi) \circ \pi_L^{**} \circ \rho_L = (0, \psi), \qquad (l_1, l_2 \in L).$$
(27)

We know that $\pi_B^*(\psi) = \psi \circ \pi_B$. Define $\lambda_B : B \longrightarrow (B \widehat{\otimes} B)^{**}$ by

$$\rho_B := (p_B \otimes p_B)^{**} \circ \rho_L \circ q_B.$$
(28)

Clearly $\pi_L^*((0,\psi)) = (p_B \otimes p_B)^*(\psi \circ \pi_B)$. It follows that

$$\begin{aligned} \langle \hat{\psi} \circ \pi_B^{**} \circ \rho_B, b \rangle &= \langle \pi_B^{**} \circ \rho_B(b), \psi \rangle \\ &= \langle \rho_B(b), \psi \circ \pi_B \rangle \\ &= \langle \rho_L((0,b)), (p_B \otimes p_B)^*(\psi \circ \pi_B) \rangle \\ &= \psi(b), \end{aligned}$$

for all $b \in B$. Also we have

$$\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \qquad (b_1, b_2 \in B).$$
(29)

It gives that B is left ψ -biflat.

To show the only if part, let B be left ψ -biflat. Then there exists a bounded linear map $\rho_B : B \longrightarrow (B \widehat{\otimes} B)^{**}$ such that

$$\rho_B(b_1b_2) = b_1 \cdot \rho_B(b_2) = \psi(b_2)\rho_B(b_1), \quad \bar{\psi} \circ \pi_B^{**} \circ \lambda_B = \psi \qquad (b_1, b_2 \in B).$$
(30)

One can show that

$$(S_B \otimes S_B)^*((0,\psi) \circ \pi_L) = \pi_B^*(\psi).$$
(31)

Define $\rho_L: L \longrightarrow (L \widehat{\otimes} L)^{**}$ by

$$\rho_L := (S_{\scriptscriptstyle B} \otimes S_{\scriptscriptstyle B})^{**} \circ \rho_B \circ p_{\scriptscriptstyle B}.$$
(32)

Clearly ρ_L is a bounded linear map which satisfies

$$\rho_L(l_1 l_2) = l_1 \cdot \rho_L(l_2) = (\psi, 0)(l_2)\rho_L(l_1), \quad (\widetilde{0, \psi}) \circ \pi_L^{**} \circ \rho_L = \psi, \quad (l_1, l_2 \in L).$$
(33)

It follows that L is left $(0, \psi)$ -biflat.

By modifying the proof of Proposition 4 (if part), if we define

$$\rho_B = (p_B \otimes p_B)^{**} \circ \rho_L \circ S_B, \tag{34}$$

then we can show that B is left ψ -biflat.

3 Results

Suppose that A is a Banach algebra and $\phi \in \sigma(A)$. We remind that a Banach algebra A is left ϕ -amenable (left ϕ -contractible) if there exists an element m in A^{**} (an element m in A) such that $am = \phi(a)m$ ($am = \phi(a)m$) and $\tilde{\phi}(m) = 1$ ($\phi(m) = 1$) for all $a \in A$, respectively, see [9] and [13]. A Banach algebra A is called left character amenable (left character contractible), if A for all $\phi \in \sigma(A)$, is left ϕ -amenable (left ϕ -contractible) and A posses a bounded left approximate identity (left identity), respectively, see [13].

Example 1 We give a Lau product Banach algebra which is not left ϕ -biflat. To see this, let $C^1[0,1]$ be the set of all differentiable functions which its first derivation is continuous. Equip $C^1[0,1]$ with the point-wise multiplication and the sup-norm. Clearly $C^1[0,1]$ becomes a Banach algebra. It is known that $\sigma(C^1[0,1]) = \{\phi_t : t \in [0,1]\}$, where $\phi_t(f) = f(t)$ for all $t \in [0,1]$. We assume in contradiction that $C^1[0,1] \times_{\theta} C^1[0,1]$ is left (ϕ_t,θ) -biflat or left $(0,\phi_t)$ -biflat, where $\phi_t(f) = f(t)$ for each $t \in [0,1]$. We know that the function 1 is an identity for $C^1[0,1]$. By Proposition 3 and Proposition 4 $C^1[0,1] \rightarrow (C^1[0,1] \otimes C^1[0,1])^{**}$ such that

$$\rho_{C^{1}[0,1]}(fg) = f \cdot \rho_{C^{1}[0,1]}(g) = \phi_{t}(g)\rho_{C^{1}[0,1]}(f), \quad \tilde{\phi}_{t} \circ \pi_{C^{1}[0,1]}^{**} \circ \rho(f) = \phi_{t}(f)$$
(35)

for all $f, g \in C[0, 1]$. Put $m = \pi^{**}_{C_{[0,1]}} \circ \rho(1) \in A^{**}$, we have

$$f \cdot m = f \cdot \pi_{C_{[0,1]}}^{**} \circ \rho(1) = \pi_{C_{[0,1]}}^{**} \circ \rho(f1) = \pi_{C_{[0,1]}}^{**} \circ \rho(1f) = \phi_t(f)m, \quad (36)$$

and

$$\tilde{\phi}_t(m) = \tilde{\phi}_t \circ \pi^{**}_{C_{[0,1]}} \circ \rho(1) = \phi_t(1) = 1,$$
(37)

for all $f \in C^1[0,1]$. It follows that $C^1[0,1]$ is left ϕ_t -amenable which is impossible by [9, Example 2.5].

The Banach algebra A is called left character biflat (left character biprojective) if A is left ϕ -biflat (left ϕ -biprojective) for each $\phi \in \sigma(A)$, respectively, see [17].

Proposition 5 Let G be a locally compact group and let M(G) be the measure algebra over G. Suppose that $\theta \in \sigma(M(G))$. Then $M(G) \times_{\theta} M(G)$ is left character biflat if and only if G is discrete and amenable.

Proof Suppose that $M(G) \times_{\theta} M(G)$ is left character biflat. It is known that M(G) has an identity. So Proposition 3 implies that M(G) is left ϕ -amenable for all $\phi \in \sigma(M(G))$ (By placing $m = \pi_{M(G)}^{**} \circ \rho(e)$, where e is the unit of M(G)). Since that M(G) has an identity, M(G) is left character amenable. Applying [11, Corollary 2.5] gives that G is discrete and amenable.

For converse, suppose that G is discrete and amenable. Then we have $M(G) = \ell^1(G)$. Thus by Johnson Theorem $\ell^1(G)$ is amenable. So [2, Corollary 2.1] finishes the proof.

Proposition 6 Suppose that G is a locally compact group. Then $M(G) \times_{\theta} M(G)$ is left character biprojective if and only if G is finite.

Proof Suppose that $M(G) \times_{\theta} M(G)$ is left character biprojective. Then by Proposition 1, M(G) is left character biprojective (M(G) is unital). One can easily see that M(G) is left ϕ -contractible for all $\phi \in \sigma(M(G))$. Since M(G) is unital, it follows that M(G) is left character contractible. From [13, Corollary 6.2], we have G is a finite group. Converse is clear.

It is well-known that the Fourier algebra A(G) over a locally compact group G is a commutative Banach algebra. Also, $\sigma(A(G)) = \{\phi_g : g \in G\}$, where $\phi_g(f) = f(g)$, see [14].

Theorem 1 Suppose that G is a locally compact group. Then $M(G) \times_{\theta} A(G)$ is left character biprojective if and only if G is a finite group.

Proof Similar to the proof of previous Proposition.

Suppose that N_{\vee} is the semigroup N (the natural numbers) with products $m \vee n = \max\{m, n\}$. Consider $\ell^1(N_{\vee})$ with convolution product. We denote δ_n for the *point mass* at $\{n\}$. For every $n \in N$, we consider a homomorphism $\phi_n : \ell^1(N_{\vee}) \longrightarrow C$ with the formula $\phi_n (\sum_{i=1}^{\infty} \alpha_i \delta_i) = \sum_{i=1}^{n} \alpha_i$ for each $n \in N \cup \{\infty\}$. It is known that

$$\sigma(\ell^1(N_{\vee})) = \{\phi_n \colon n \in N \cup \{\infty\}\}$$

$$(38)$$

We write $\phi_{N_{\vee}} = \phi_{\infty}$ for the augmentation character, see [4].

Theorem 2 The Banach algebra $\ell^1(N_{\vee}) \times_{\theta} \ell^1(N_{\vee})$ is neither $(\phi_{N_{\vee}}, \theta)$ -biprojective nor $(0, \phi_{N_{\vee}})$ -biprojective, where $\phi_{N_{\vee}}$ is the augmentation character on $\ell^1(N_{\vee})$.

Proof We assume conversely that $\ell^1(N_{\vee}) \times_{\theta} \ell^1(N_{\vee})$ is either left $(\phi_{N_{\vee}}, \theta)$ biprojective or left $(0, \phi_{N_{\vee}})$ -biprojective. Since N_{\vee} is unital, $\ell^1(N_{\vee})$ has an identity. By Proposition 1 and Proposition 2 $\ell^1(N_{\vee})$ is left $\phi_{N_{\vee}}$ -biprojective. The existence of a unit δ_1 implies that $\ell^1(N_{\vee})$ is left $\phi_{N_{\vee}}$ -contractible. Now we claim that $\ell^1(N_{\vee})$ is left ϕ_n -contractible for all $n \in N$. To see this define $m_n = \delta_n - \delta_{n+1} \in \ell^1(N_{\vee})$. Let $a = \sum_{n=1}^{\infty} a_n \delta_n \in \ell^1(N_{\vee})$, where (a_n) is a sequence in C such that $\sum_{n=1}^{\infty} |a_n| < \infty$. Consider

$$am_{n} = a(\delta_{n} - \delta_{n+1}) = \sum_{n=1}^{\infty} a_{n}\delta_{n}(\delta_{n} - \delta_{n+1}) = \phi_{n}(a)(\delta_{n} - \delta_{n+1}) = \phi_{n}(a)m_{n}$$
(39)

and

 $\phi_n(m_n) = \phi_n(\delta_n - \delta_{n+1}) = \phi_n(\delta_n) - \phi_n(\delta_{n+1}) = 1,$

for every $a \in \ell^1(N_{\vee})$. Thus $\ell^1(N_{\vee})$ is character contractible. Applying [5, Corollary 2.2] follows that $\sigma(\ell^1(N_{\vee})) = N_{\vee} \cup \{\infty\}$ is discrete with respect to the w^* -topology. Using the Gelfand representation theorem, we have $\sigma(\ell^1(N_{\vee})) = N_{\vee} \cup \{\infty\}$ is compact, so is finite which is a contradiction.

Example 2 Suppose that $A = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in C \}$ be a matrix algebra. With matrix operation and ℓ^1 -norm A becomes a Banach algebra. Define $\phi : A \longrightarrow C$ by $\phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = c$. It is easy to see that is a character on A. We claim that $A \times_{\theta} A$ is neither (ϕ, θ) - biflat nor $(0, \phi)$ -biflat, where $\theta \in \sigma(A)$. Suppose in contradiction that $A \times_{\theta} A$ is either (ϕ, θ) -biflat or $(0, \phi)$ -biflat. Since A is unital, by Proposition 3 and Proposition 4 A is left ϕ -biflat. Since A is unital, it is easy to see that A is left ϕ -amenable. Set

$$J := \left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} : \ b, d \in C \right\}$$

and $\phi_{|_J} \neq 0$. It is clear that J is a closed ideal of A. Since A is left ϕ -amenable, by [9, Lemma 3.1] we have that J is $\phi_{|_J}$ -amenable. Now [9, Theorem 1.4] follows that, there exists a bounded net (u_α) in J such that $ju_\alpha - \phi(j)u_\alpha \longrightarrow 0$ and $\phi(u_\alpha) = 1$ for all $j \in J$. Let

$$j = \begin{pmatrix} 0 & j_1 \\ 0 & j_2 \end{pmatrix}$$

and

$$u_{\alpha} = \begin{pmatrix} 0 \ w_{\alpha} \\ 0 \ v_{\alpha} \end{pmatrix}$$

, for some $j_1, j_2, w_\alpha, v_\alpha \in C$. Thus,

$$ju_{\alpha} - \phi(j)u_{\alpha} = \begin{pmatrix} 0 \ j_1 w_{\alpha} \\ 0 \ j_2 v_{\alpha} \end{pmatrix} - \begin{pmatrix} 0 \ j_2 w_{\alpha} \\ 0 \ j_2 v_{\alpha} \end{pmatrix} \longrightarrow 0.$$
(40)

It gives that $j_1v_{\alpha} - j_2w_{\alpha} \longrightarrow 0$. If we put $j_1 = 1$ and $j_2 = 0$, then we have $v_{\alpha} \rightarrow 0$ which contradicts with $\phi(u_{\alpha}) = v_{\alpha} = 1$.

Acknowledgments. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. The first author is thankful to Ilam university for its support.

References

- M. Alaghmandan, R. Nasr-Isfahani, M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc., 82, 274–281 (2010).
- M. Askari-Sayah, A. Pourabbas, A. Sahami, Johnson pseudo-contractibility and pseudoamenability of θ-Lau product, Krag. Jour. Math., 44, 593–601 (2020).
- Y. Choi, Triviality of the generalised Lau product associated to a Banach algebra homomorphism, Bull. Aust. Math. Soc., 94, 286–289 (2016).
- H. G. Dales, A. T. Lau, D. Strauss, Banach algebras on semigroups and their compactifications, Mem. Am. Math. Soc., 205, 1–165 (2010).
- M. Dashti, R. Nasr-Isfahani, S. Soltani Renani, Character amenability of Lipschitz algebras, Canad. Math. Bull., 57, 37–41 (2014).
- H. R. Ebrahimi Vishki, A. R. Khoddami, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iran. Math. Soc., 39, 559–568 (2013).
- 7. E. Ghaderi, A. Sahami ϕ -biflatness and ϕ -biprojectivity for θ -Lau product with applications U.P.B. Sci. Bull. Series A., (To appear).
- 8. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
- E. Kaniuth, A. T. Lau, J. Pym, On *\(\phi\)*-amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144, 85–96 (2008).
- A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118, 161–175 (1983).
- M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc., 144, 697–706 (2008).
- M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math., 178, 277–294 (2007).
- 13. R. Nasr-Isfahani, S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math., 202, 205–225 (2011).
- 14. V. Runde, Lectures on amenability, Springer, New York, (2002).
- 15. A. Sahami, M. Rostami, A. Pourabbas, On left $\phi\mbox{-biflat}$ Banach algebras, Comment. Math. Univ. Carolin., 61, (2020).
- 16. A. Sahami, M. Rostami, A. Pourabbas, Left $\phi\mbox{-biprojectivity}$ of some Banach algebras, Preprint.
- 17. A. Sahami, On left ϕ -biprojectivity and left ϕ -biflatness of certain Banach algebras, U.P.B. Sci. Bull. Series A., 81, 97–106 (2019).