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Abstract Monfared defined θ-Lau product structure A×θ B for two Banach
algebras A and B, where θ : B → C is a multiplicative linear functional. In this
paper, we study the notion of left ϕ-biflatness and left ϕ-biprojectivity for the
θ Lau product structure A×θB. For a locally compact group G, we show that
M(G)×θ M(G) is left character biflat (left character biprojective) if and only
if G is discrete and amenable (G is finite), respectively. Also we prove that
ℓ1(N∨) ×θ ℓ

1(N∨) is neither (ϕN∨ , θ)-biprojective nor (0, ϕN∨)-biprojective,
where ϕN∨ is the augmentation character on ℓ1(N∨). Finally, we give an ex-
ample among the Lau product structure of matrix algebras which is not left
ϕ-biflat.
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1 Introduction

Johnson defined amenable Banach algebras thorough virtual diagonals [8]. In
fact a Banach algebra A is amenable, if there exists an element M ∈ (A⊗̂A)∗∗
such that a ·M =M · a and π∗∗

A (M)a = a for each a ∈ A, here πA is given by
πA(a⊗ b) = ab for each a, b ∈ A, see [14].
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There are two homological notions parallel to amenability, namely biflat-
ness and biprojectivity which were defined by Helemskii. In fact a Banach alge-
bra A is called biflat (biprojective) if there exists a bounded A-bimodule mor-
phism ρ : A→ (A⊗̂A)∗∗(ρ : A→ A⊗̂A) such that π∗∗

A ◦ρ(a) = a(πA◦ρ(a) = a),
for all a ∈ A, respectively. It is well-known that a Banach algebra A is
amenable if and only if A is biflat and A has a bounded approximate identity,
see [14].

Recently some homological notions related to a multiplicative linear func-
tional were given for Banach algebras. The notions like left ϕ-amenability, left
ϕ-contractibility, left ϕ-biflatness and left ϕ-biprojectivity studied for the group
algebras, the measure algebras and the Fourier algebras, for more information
about these notions see [1], [7], [9], [13], [15] [16] and [17].

In this paper, we study the notion of left ϕ-biflatness and left ϕ-biprojectivity
for the θ-Lau product structure A×θB. For a locally compact groupG, we show
that M(G)×θ M(G) is left character biflat (left character biprojective) if and
only if G is discrete and amenable (G is finite), respectively. Also we prove that
ℓ1(N∨) ×θ ℓ

1(N∨) is neither (ϕN∨ , θ)-biprojective nor (0, ϕN∨)-biprojective,
where ϕN is the augmentation character on ℓ1(N). Finally, we give an exam-
ple among the θ-Lau product structure of matrix algebras which is not left
ϕ-biflat.

We remind some definitions and notations which we need in this paper.
For an arbitrary Banach algebra A, the character space is denoted by σ(A)
consists of all non-zero multiplicative linear functionals on A and any element
of σ(A) is called a character. The θ−Lau product was first introduced by Lau
[10] for F-algebras. Monfared [12] introduced and investigated θ-Lau product
space A×θ B, for Banach algebras in general. Indeed for two Banach algebras
A and B such that σ(B) ̸= ∅ and θ be a non-zero character on B, the Cartesian
product A×B by following multiplication and norm

(a, b)(a′, b′) = (aa′ + θ(b′)a+ θ(b)a′, bb′), (1)

∥(a, b)∥ = ∥a∥A + ∥b∥B (2)

is a Banach algebra, for all a, a′ ∈ A and b, b′ ∈ B. The Cartesian product
A×B with the above properties called the θ−Lau product of A and B which is
denoted by A×θB. From [12] we identify A×{0} with A, and {0}×B with B.
Thus, it is clear that A is a closed two-sided ideal while B is a closed subalgebra
of A×θ B, and (A×θ B)/A is isometrically isomorphic to B. If θ = 0, then we
obtain the usual direct product of A and B. Since direct products often exhibit
different properties, we have excluded the possibility that θ = 0. Moreover, if
B = C, the complex numbers, and θ is the identity map on C, then A ×θ B
is the unitization A♯ of A. Note that, by [12, Proposition 2.4], the character
space σ(A×θ B) of A×θ B is equal to

{(ϕ, θ) : ϕ ∈ σ(A)}
⋃

{(0, ψ) : ψ ∈ σ(B)}. (3)
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Also, the dual space (A×θ B)∗ of A×θ B is identified with A∗ ×B∗ such that
for each (a, b) ∈ A×θ B, ϕ ∈ σ(A) and ψ ∈ σ(B) we have

⟨(ϕ, ψ), (a, b)⟩ = ϕ(a) + ψ(b). (4)

Now, suppose that A∗∗, B∗∗ and (A×θB)∗∗ are equipped with their first Arens
products. Then (A×θ B)∗∗ is isometrically isomorphic with A∗∗ ×θ B

∗∗. Also,
for all (m,n), (p, q) ∈ (A×θ B)∗∗ the first Arens product is defined by

(m,n)(p, q) = (mp+ n(θ)p+ q(θ)m,nq); (5)

see [12, Proposition 2.12]. Note that every ϕ ∈ σ(A) has a unique extension
to a character on A∗∗ is given by ϕ̃ where ϕ̃(m) = m(ϕ), for all m ∈ A∗∗.

Note that A and B are closed two-sided ideal and closed subalgebra of
L := A ×θ B, respectively. So, we can write a = (a, 0) and b = (0, b) for all
a ∈ A and b ∈ B. Therefore, L = A ×θ B is a Banach A−bimodule and also
is a Banach B−bimodule. It has worth to mention that some generalizations
of twisted product related to a homomorphism are given recently but by [3] it
seems those products are trivial.

We recall that if X is a Banach A-bimodule, then with the following actions
X∗ is also a Banach A-bimodule:

a · f(x) = f(x · a), f · a(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗). (6)

The projective tensor product of A with A is denoted by A⊗̂A. The Banach
algebra A⊗̂A is a Banach A-bimodule with the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A). (7)

2 Left ϕ−biflatness and left ϕ−biprojectivity

In this note p
A

: L −→ A and p
B

: L −→ B are denoted for the usual
projections given by p

A
(a, b) = a and p

B
(a, b) = b. Suppose that q

A
: A −→ L

and q
B
: B −→ L are injections defined by q

A
(a) = (a, 0) and q

B
(b) = (0, b).

So q
A

and p
B

give

q
A
⊗q

A
: A⊗̂A −→ L⊗̂L (8)

and

p
B
⊗p

B
: L⊗̂L −→ B⊗̂B (9)

with
(q

A
⊗q

A
)(a⊗ c) = (a, 0)⊗ (c, 0) (10)

and
(p

B
⊗p

B
)((a, b)⊗ (c, d)) = b⊗ d, (11)

for all a, c ∈ A and b, d ∈ B respectively. It is easy to see that q
A

and q
A
⊗q

A
are

A-bimodule morphisms and p
B

, q
B

and p
B
⊗ p

B
are B-bimodule morphisms.



16 Amir Sahami, Sayed Mehdi Kazemi Torbaghan

The notion of left ϕ−biprojectivity for Banach algebras first introduced by
Sahami [17]. For a non-zero multiplicative linear functional ϕ on A, the Banach
algebras A is called left ϕ−biprojective if there exists a bounded linear map
ρ : A −→ A⊗̂A such that

ρ(ab) = a · ρ(b) = ϕ(b)ρ(a), ϕ ◦ πA ◦ ρ(a) = ϕ(a), (a, b ∈ A). (12)

Proposition 1 Let A and B be two Banach algebras which A has unit e. Also
let ϕ ∈ σ(A) and θ ∈ σ(B). If L is left (ϕ, θ)−biprojective. Then A is left
ϕ−biprojective.

Proof bounded linear map ρL : L −→ L⊗̂L such that ρL(ab) = a · ρL(b) =
ϕ(b)ρL(a) and (ϕ, θ) ◦ πL ◦ ρL = (ϕ, θ). We know that

r
A
◦ π

L
= πA ◦ (r

A
⊗r

A
), ϕ ◦ r

A
= (ϕ, θ). (13)

Define ρA : A −→ A⊗̂A by ρA = (r
A
⊗r

A
) ◦ ρL ◦ q

A
. Consider

ρA(a1a2) = (r
A
⊗r

A
) ◦ ρL ◦ q

A
(a1a2)

= (r
A
⊗r

A
) ◦ ρL(a1 · qA(a2))

= a1 · (rA⊗rA) ◦ ρL(qA(a2))
= a1 · ρA(a2)

and

ρA(a1a2) = (r
A
⊗r

A
) ◦ ρL ◦ q

A
(a1a2)

= (r
A
⊗r

A
) ◦ ρL(qA(a1) · a2)

= ϕ(a2)(rA⊗rA) ◦ ρL(qA(a1))
= ϕ(a2) · ρA(a1)

for every a1 and a2 in A. So these facts follow that

ρA(a1a2) = a1 · ρA(a2) = ϕ(a2)ρA(a1). (14)

Moreover we have

ϕ ◦ πA ◦ ρA(a) = ϕ ◦ πA ◦ (r
A
⊗r

A
) ◦ ρL ◦ q

A
(a)

= (ϕ ◦ r
A
◦ πL ◦ ρL)(a, 0)

= ((ϕ, θ) ◦ πL ◦ ρL)(a, 0)
= (ϕ, θ)(a, 0)

= ϕ(a),

for all a ∈ A. Hence ϕ ◦ πA ◦ ρA = ϕ. Therefore A is left ϕ-biprojective.

Proposition 2 Let A and B be two Banach algebras ψ ∈ σ(B). If L is left
(0, ψ)−biprojective, then B is left ψ−biprojective. Converse holds whenever A
is unital.
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Proof Suppose that L is left (0, ψ)−biprojective. Then there exists a bounded
linear map ρL : L −→ L⊗̂L such that (0, ψ) ◦ πL ◦ ρL = (0, ψ). Define ρB :
B −→ B⊗̂B by ρB = (p

B
⊗ p

B
) ◦ ρL ◦ q

B
. Clearly

πB ◦ (p
B
⊗ p

B
) = p

B
◦ πL, ψ ◦ p

B
= (0, ψ). (15)

Note that

ρB(b1b2) = b1 · ρB(b2) = ψ(b2)ρB(b1), (b1, b2 ∈ B). (16)

Also ψ ◦ πB ◦ λB = ψ. To see these facts, consider

ρB(b1b2) = (p
B
⊗ p

B
) ◦ ρL ◦ q

B
(b1b2) = (p

B
⊗ p

B
) ◦ ρL(qB (b1) · b2)

= ψ(b2)(pB
⊗ p

B
) ◦ ρL(qB (b1)

= ψ(b2)ρB(a1)

and

ρB(b1b2) = (p
B
⊗ p

B
) ◦ ρL ◦ q

B
(b1b2) = (p

B
⊗ p

B
) ◦ ρL(b1 · qB (b2))

= b1 · (pB
⊗ p

B
) ◦ ρL(qB (b2),

= b1 · ρB(b2),

for all b1 and b2 in B. Moreover(
ψ ◦ πB ◦ ρB

)
(b) =

(
ψ ◦ πB ◦ (p

B
⊗ p

B
)ρL ◦ q

B

)
(b)

=
(
ψ ◦ p

B
◦ πL ◦ ρL

)
(0, b)

=
(
(0, ψ) ◦ πL ◦ ρL

)
(0, b)

= ψ(b),

for all b ∈ B. For converse let B be left ψ−biprojective. Then there exists
a bounded linear map ρB : B −→ B⊗̂B such that ρB(ab) = a · ρB(b) =
ψ(b)ρB(a) and ψ ◦ πB ◦ ρB = ψ. Define ρL : L −→ L⊗̂L via

ρL(a, b) := (S
B
⊗ S

B
) ◦ ρB(b),

for all a ∈ A and b ∈ B. One can show that

πL◦(SB
⊗S

B
) = S

B
◦πB , (0, ψ)◦S

B
= ψ, ((S

B
⊗S

B
)◦ρB(b))·x = 0, (17)

for all b ∈ B and x ∈ A. Using these facts show that ρL is a bounded linear
map such that

ρL(l1l2) = (0, ψ)(l2)ρL(l1) = l1 · ρL(l2), (18)

for all l1, l2 ∈ L. Also
(0, ψ) ◦ πL ◦ ρL = (0, ψ). (19)

It follows that L is left (0, ψ)−biprojective.
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Remark 1 We claim that left (ϕ, θ)−biprojectivity of L gives that B is left
θ−biprojective. However it is easy but for the sake of completeness we give it
here. We know that there exists a bounded linear map ρL : L −→ L⊗̂L such
that

ρL(ab) = a · ρL(b) = (ϕ, θ)(b)ρL(a), (ϕ, θ) ◦ πL ◦ ρL = (ϕ, θ), (a, b ∈ L).
(20)

On the other hand, one can see that

p
B
◦πL = πB ◦ (p

B
⊗p

B
), rA ◦πL = πA ◦ (rA⊗rA), θ ◦p

B
= (0, θ).

(21)
Let ρB : B −→ B⊗̂B be a map defined by ρB := (p

B
⊗p

B
) ◦ ρL ◦ q

B
. The fact(

(ϕ, 0) ◦ πL ◦ ρL
)
(0, b) = 0 follows that(

θ ◦ πB ◦ ρB
)
(b) = ⟨(ϕ, θ), (0, b)⟩ −

(
(ϕ, 0) ◦ πL ◦ ρL

)
(0, b)

= θ(b),

for every b ∈ B. Moreover

ρ(b1b2) = b1 · ρB(b2) = θ(b2)ρB(b1), (b1, b2 ∈ B). (22)

It implies that B is left θ−biprojective.

Sahami in [17] introduced and studied the notion of left ϕ−biflatness for Ba-
nach algebras. A Banach algebra A is called left ϕ−biflat if there exists a
bounded linear map ρA : A −→ (A⊗̂A)∗∗ such that

ρA(ab) = a · ρA(b) = ϕ(b)ρA(a), ϕ̃ ◦ π∗∗
A ◦ ρA = ϕ, (a, b ∈ A), (23)

where ϕ̃(F ) = F (ϕ) for all F ∈ A∗∗.

Proposition 3 Let A and B be Banach algebras. Suppose that θ ∈ σ(B) and
ϕ ∈ σ(A). If L is left (ϕ, θ)−biflat, then A is left ϕ−biflat, provided that A is
unital.

Proof Since L is left (ϕ, θ)−biflat, there exists a bounded linear map ρL :
L −→ (L⊗̂L)∗∗ such that

ρL(l1l2) = l1·ρL(l2) = (ϕ, θ)(l2)ρL(l1), ˜(ϕ, θ)◦π∗∗
L ◦ρL = (ϕ, θ), (l1, l2 ∈ L).

(24)
We define ρA : A −→ (A⊗̂A)∗∗ by ρA := (r

A
⊗ r

A
)∗∗ ◦ ρL ◦ q

A
. One can see

that
(rA ⊗ rA)

∗(ϕ ◦ πA) = (ϕ, θ) ◦ πL. (25)
It gives that

⟨ϕ̃ ◦ πA∗∗ ◦ ρA, a⟩ = ⟨ρA(a), πA∗(ϕ)⟩
= ⟨ρL(a, 0), (rA ⊗ rA)

∗(ϕ ◦ πA)⟩
= ϕ(a),
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for all a ∈ A. Also

ρA(a1a2) = (r
A
⊗r

A
)∗∗◦ρL(qA(a1a2)) = a1·(rA⊗rA)∗∗◦ρL(qA(a2)) = a1·ρA(a2)

(26)
and

ρA(a1a2) = (r
A
⊗ r

A
)∗∗ ◦ ρL ◦ q

A
(a1a2) = (r

A
⊗ r

A
)∗∗ ◦ ρL(qA(a1) · a2)

= ϕ(a2)ρA(a1),

for all a1 and a2 in A. Hence A is left ϕ−biflat.

Proposition 4 Let A and B be Banach algebras. Also let A be unital and
ψ, θ ∈ σ(B). Then L is left (0, ψ)−biflat if and only if B is left ψ−biflat.

Proof Suppose that L is left (0, ψ)−biflat. Then there exists a bounded linear
map ρL : L −→ (L⊗̂L)∗∗ such that

ρL(l1l2) = l1·ρL(l2) = (0, ψ)(l2)ρL(l1), ˜(0, ψ)◦π∗∗
L ◦ρL = (0, ψ), (l1, l2 ∈ L).

(27)
We know that π∗

B(ψ) = ψ ◦ πB .
Define λB : B −→ (B⊗̂B)∗∗ by

ρB := (p
B
⊗ p

B
)∗∗ ◦ ρL ◦ q

B
. (28)

Clearly πL∗((0, ψ)) = (pB ⊗ pB)
∗
(ψ ◦ πB). It follows that

⟨ψ̃ ◦ πB∗∗ ◦ ρB , b⟩ = ⟨πB∗∗ ◦ ρB(b), ψ⟩
= ⟨ρB(b), ψ ◦ πB⟩
= ⟨ρL((0, b)), (pB

⊗ p
B
)∗(ψ ◦ πB)⟩

= ψ(b),

for all b ∈ B. Also we have

ρB(b1b2) = b1 · ρB(b2) = ψ(b2)ρB(b1), (b1, b2 ∈ B). (29)

It gives that B is left ψ-biflat.
To show the only if part, let B be left ψ−biflat. Then there exists a bounded

linear map ρB : B −→ (B⊗̂B)∗∗ such that

ρB(b1b2) = b1 ·ρB(b2) = ψ(b2)ρB(b1), ψ̃◦π∗∗
B ◦λB = ψ (b1, b2 ∈ B). (30)

One can show that

(SB ⊗ SB)
∗((0, ψ) ◦ πL) = πB

∗(ψ). (31)

Define ρL : L −→ (L⊗̂L)∗∗ by

ρL := (S
B
⊗ S

B
)∗∗ ◦ ρB ◦ p

B
. (32)

Clearly ρL is a bounded linear map which satisfies

ρL(l1l2) = l1 · ρL(l2) = (ψ, 0)(l2)ρL(l1), ˜(0, ψ) ◦ πL∗∗ ◦ ρL = ψ, (l1, l2 ∈ L).
(33)

It follows that L is left (0, ψ)−biflat.
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By modifying the proof of Proposition 4 (if part), if we define

ρB = (p
B
⊗ p

B
)∗∗ ◦ ρL ◦ S

B
, (34)

then we can show that B is left ψ−biflat.

3 Results

Suppose that A is a Banach algebra and ϕ ∈ σ(A). We remind that a Banach
algebra A is left ϕ-amenable (left ϕ-contractible) if there exists an element
m in A∗∗ (an element m in A) such that am = ϕ(a)m (am = ϕ(a)m) and
ϕ̃(m) = 1 (ϕ(m) = 1) for all a ∈ A, respectively, see [9] and [13]. A Banach
algebra A is called left character amenable (left character contractible), if A for
all ϕ ∈ σ(A), is left ϕ-amenable (left ϕ-contractible) and A posses a bounded
left approximate identity (left identity), respectively, see [13].

Example 1 We give a Lau product Banach algebra which is not left ϕ-biflat.
To see this, let C1[0, 1] be the set of all differentiable functions which its first
derivation is continuous. Equip C1[0, 1] with the point-wise multiplication and
the sup-norm. Clearly C1[0, 1] becomes a Banach algebra. It is known that
σ(C1[0, 1]) = {ϕt : t ∈ [0, 1]}, where ϕt(f) = f(t) for all t ∈ [0, 1]. We
assume in contradiction that C1[0, 1] ×θ C

1[0, 1] is left (ϕt, θ)−biflat or left
(0, ϕt)−biflat, where ϕt(f) = f(t) for each t ∈ [0, 1]. We know that the function
1 is an identity for C1[0, 1]. By Proposition 3 and Proposition 4 C1[0, 1] is
left ϕt−biflat. Therefore, there exists a bounded linear map ρ : C1[0, 1] −→
(C1[0, 1]⊗̂C1[0, 1])∗∗ such that

ρC1[0,1](fg) = f · ρC1[0,1](g) = ϕt(g)ρC1[0,1](f), ϕ̃t ◦ π∗∗
C1[0,1] ◦ ρ(f) = ϕt(f)

(35)
for all f, g ∈ C[0, 1]. Put m = π∗∗

C[0,1]
◦ ρ(1) ∈ A∗∗, we have

f ·m = f · π∗∗
C[0,1]

◦ ρ(1) = π∗∗
C[0,1]

◦ ρ(f1) = π∗∗
C[0,1]

◦ ρ(1f) = ϕt(f)m, (36)

and
ϕ̃t(m) = ϕ̃t ◦ π∗∗

C[0,1]
◦ ρ(1) = ϕt(1) = 1, (37)

for all f ∈ C1[0, 1]. It follows that C1[0, 1] is left ϕt−amenable which is im-
possible by [9, Example 2.5].

The Banach algebra A is called left character biflat (left character biprojective)
if A is left ϕ-biflat (left ϕ-biprojective) for each ϕ ∈ σ(A), respectively, see [17].

Proposition 5 Let G be a locally compact group and let M(G) be the measure
algebra over G. Suppose that θ ∈ σ(M(G)). Then M(G) ×θ M(G) is left
character biflat if and only if G is discrete and amenable.
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Proof Suppose that M(G) ×θ M(G) is left character biflat. It is known that
M(G) has an identity. So Proposition 3 implies that M(G) is left ϕ−amenable
for all ϕ ∈ σ(M(G)) (By placing m = π∗∗

M(G) ◦ ρ(e), where e is the unit of
M(G)). Since that M(G) has an identity, M(G) is left character amenable.
Applying [11, Corollary 2.5] gives that G is discrete and amenable .
For converse, suppose that G is discrete and amenable. Then we have M(G) =
ℓ1(G). Thus by Johnson Theorem ℓ1(G) is amenable. So [2, Corollary 2.1]
finishes the proof.

Proposition 6 Suppose that G is a locally compact group. Then M(G) ×θ

M(G) is left character biprojective if and only if G is finite.

Proof Suppose that M(G) ×θ M(G) is left character biprojective. Then by
Proposition 1, M(G) is left character biprojective (M(G) is unital). One can
easily see that M(G) is left ϕ−contractible for all ϕ ∈ σ(M(G)). Since M(G) is
unital, it follows that M(G) is left character contractible. From [13, Corollary
6.2], we have G is a finite group.
Converse is clear.

It is well-known that the Fourier algebra A(G) over a locally compact group
G is a commutative Banach algebra. Also, σ(A(G)) = {ϕg : g ∈ G}, where
ϕg(f) = f(g), see [14].

Theorem 1 Suppose that G is a locally compact group. Then M(G)×θ A(G)
is left character biprojective if and only if G is a finite group.

Proof Similar to the proof of previous Proposition.

Suppose that N∨ is the semigroup N (the natural numbers) with products
m ∨ n = max{m,n}. Consider ℓ1(N∨) with convolution product. We denote
δn for the point mass at {n}. For every n ∈ N , we consider a homomorphism
ϕn : ℓ1(N∨) −→ C with the formula ϕn (

∑∞
i=1 αiδi) =

∑n
i=1 αi for each n ∈

N ∪ {∞}. It is known that

σ(ℓ1(N∨)) = {ϕn:n ∈ N ∪ {∞}} (38)

We write ϕN∨ = ϕ∞ for the augmentation character, see [4].

Theorem 2 The Banach algebra ℓ1(N∨)×θℓ
1(N∨) is neither (ϕN∨ , θ)-biprojective

nor (0, ϕN∨)-biprojective, where ϕN∨ is the augmentation character on ℓ1(N∨).

Proof We assume conversely that ℓ1(N∨) ×θ ℓ
1(N∨) is either left (ϕN∨ , θ)-

biprojective or left (0, ϕN∨)-biprojective. Since N∨ is unital, ℓ1(N∨) has an
identity. By Proposition 1 and Proposition 2 ℓ1(N∨) is left ϕN∨ -biprojective.
The existence of a unit δ1 implies that ℓ1(N∨) is left ϕN∨ -contractible. Now
we claim that ℓ1(N∨) is left ϕn-contractible for all n ∈ N . To see this define
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mn = δn − δn+1 ∈ ℓ1(N∨). Let a =
∑∞

n=1 anδn ∈ ℓ1(N∨), where (an) is a
sequence in C such that

∑∞
n=1 |an| <∞. Consider

amn = a(δn − δn+1) =

∞∑
n=1

anδn(δn − δn+1) = ϕn(a)(δn − δn+1) = ϕn(a)mn

(39)
and

ϕn(mn) = ϕn(δn − δn+1) = ϕn(δn)− ϕn(δn+1) = 1,

for every a ∈ ℓ1(N∨). Thus ℓ1(N∨) is character contractible. Applying [5,
Corollary 2.2] follows that σ(ℓ1(N∨)) = N∨∪{∞} is discrete with respect to the
w∗-topology. Using the Gelfand representation theorem, we have σ(ℓ1(N∨)) =
N∨ ∪ {∞} is compact, so is finite which is a contradiction.

Example 2 Suppose that A = {
(
a b
0 c

)
: a, b, c ∈ C} be a matrix algebra. With

matrix operation and ℓ1-norm A becomes a Banach algebra. Define ϕ : A −→

C by ϕ(
(
a b
0 c

)
) = c. It is easy to see that is a character on A. We claim that

A ×θ A is neither (ϕ, θ)- biflat nor (0, ϕ)−biflat, where θ ∈ σ(A). Suppose
in contradiction that A ×θ A is either (ϕ, θ)-biflat or (0, ϕ)-biflat. Since A is
unital, by Proposition 3 and Proposition 4 A is left ϕ-biflat. Since A is unital,
it is easy to see that A is left ϕ-amenable. Set

J := {
(
0 b
0 d

)
: b, d ∈ C}

and ϕ|J ̸= 0. It is clear that J is a closed ideal of A. Since A is left ϕ-amenable,
by [9, Lemma 3.1] we have that J is ϕ|J−amenable. Now [9, Theorem 1.4]
follows that, there exists a bounded net (uα) in J such that juα−ϕ(j)uα −→ 0
and ϕ(uα) = 1 for all j ∈ J . Let

j =

(
0 j1
0 j2

)
and

uα =

(
0 wα

0 vα

)
, for some j1, j2, wα, vα ∈ C. Thus,

juα − ϕ(j)uα =

(
0 j1wα

0 j2vα

)
−
(
0 j2wα

0 j2vα

)
−→ 0. (40)

It gives that j1vα − j2wα −→ 0. If we put j1 = 1 and j2 = 0, then we have
vα → 0 which contradicts with ϕ(uα) = vα = 1.
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