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Abstract

This work is devoted to a rigorous analysis of the existence and uniqueness of solutions for a class of high-order nonlinear

differential equations of fractional order. The considered problem is defined by a Caputo fractional derivative and is augmented by

a set of nonlocal boundary constraints. A key feature of these constraints is an integral condition that couples the behavior of the

solution across its entire spatial domain, reflecting a global dependency. Our primary analytical strategy is to recast the differential

problem as a fixed-point equation for an equivalent integral operator. This is accomplished by first methodically constructing the

Green’s function associated with the corresponding linear problem. With the integral operator established, the existence of a unique

solution for the full nonlinear problem is then proven by leveraging the power of the Banach contraction mapping principle. To

demonstrate the practical relevance and applicability of our theoretical framework, a detailed illustrative example is presented and

analyzed.
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1 Introduction and Scholarly Context
In the last few decades, the theory of fractional calculus has transitioned from a topic of purely mathematical curiosity to a vital and

powerful tool in the modeling of complex systems across science and engineering. The core strength of fractional operators lies in their

nonlocal nature. Whereas classical integer-order derivatives are local point properties, fractional derivatives (and integrals) depend on the

entire history of the function being analyzed. This inherent "memory" is crucial for accurately describing phenomena with hereditary

properties, such as the stress-strain relationship in viscoelastic materials, anomalous diffusion in porous media, and long-range interactions

in electrostatics [1–3]. This has led to a burgeoning interest in the study of fractional differential equations (FDEs) as sophisticated modeling

instruments [4–9].

Within the broader field of FDEs, the analysis of boundary value problems (BVPs) is of paramount importance, as they provide the
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mathematical framework for physical systems constrained at their boundaries. Recently, BVPs with nonlocal conditions have attracted

significant attention. Unlike classical Dirichlet or Neumann conditions, nonlocal conditions can connect the boundary values to interior

values of the solution, often via an integral. Such integral boundary conditions are not merely mathematical abstractions; they arise naturally

in various applications. For instance, they can model the total heat flux in a thermodynamics problem or the total population size in an

ecological model.

The analytical treatment of nonlinear FDEs is challenging, and closed-form solutions are rarely attainable. Consequently, the focus often

shifts to proving the existence, uniqueness, and qualitative properties of solutions. Fixed-point theory has emerged as the preeminent tool

for this purpose. Foundational results like the Banach Contraction Principle, the Schauder Fixed-Point Theorem, and the Leray-Schauder

Nonlinear Alternative provide a robust framework for establishing the solvability of nonlinear equations [10]. The standard methodology

involves converting the BVP into an equivalent integral equation, whose solution corresponds to a fixed point of an integral operator. The

kernel of this integral operator is the Green’s function associated with the linear part of the BVP. The successful application of this technique

has been demonstrated in a vast body of literature. For instance, Cabada and his co-authors have made significant contributions, such as

in [11] and [12], where they explored problems involving Riemann-Liouville and Caputo derivatives with various nonlocal conditions. Their

work highlights the nuances in constructing the Green’s function and applying different fixed-point theorems based on the specific structure

of the problem.

Inspired by these developments, the present article undertakes a detailed investigation into the existence and uniqueness of a solution

for the following high-order nonlinear fractional BVP:{
CDβ

t w(t)+h(t,w(t),w′(t),w′′(t)) = 0, t ∈ (0,1),

w(0) = w′′(0) = 0, σw′(0)+(1−σ)w(1) =
∫ 1

0 w(s)ds,
(1)

where the fractional order β lies in the range 2 < β ≤ 3, the parameter σ is a constant in [0,1], CDβ
t denotes the Caputo fractional derivative,

and the nonlinear source term h : (0,1)×R3 → R is a given continuous function. The choice of the Caputo derivative is motivated by

its utility in modeling real-world problems, as it allows for the specification of initial conditions in a form that is familiar from classical

integer-order differential equations. The novelty of our work lies in the specific combination of a high-order derivative (β > 2) with this

particular three-point integral boundary condition, for which we provide a complete and self-contained unique solvability analysis based on

the Banach fixed-point theorem.

This paper is organized to guide the reader logically through our analysis. Section 2 establishes the mathematical preliminaries by

defining the essential fractional operators. Section 3 is dedicated to the foundational step of solving the linear analogue of our problem

and explicitly constructing its Green’s function. In Section 4, we leverage this result to formulate the nonlinear problem as a fixed-point

equation within a suitable Banach space. Section 5 contains our main theorem, where we state and rigorously prove sufficient conditions

for the existence of a unique solution. To show the utility of our abstract result, Section 6 presents a concrete example. Finally, Section 7

summarizes our findings and discusses several promising avenues for future research.

2 Mathematical Preliminaries
In this section, we briefly review the fundamental definitions and properties of fractional calculus that are essential for our subsequent

analysis. A detailed theoretical treatment can be found in reference texts such as [4] and [13].

Definition 1. Let β > 0 and set n = ⌈β⌉. For a function w for which the n-th derivative w(n) is continuous, the Caputo fractional derivative
of order β is defined by the integral expression:

CDβ w(t) :=
1

Γ(n−β )

∫ t

0
(t − τ)n−β−1w(n)(τ)dτ.

This definition is particularly advantageous in applied problems because, unlike the Riemann-Liouville derivative, the initial conditions for

Caputo FDEs are specified in terms of integer-order derivatives, which often have clear physical interpretations.

Definition 2. For a locally integrable function w and for β > 0, the Riemann-Liouville fractional integral of order β is defined as:

Iβ w(t) :=
1

Γ(β )

∫ t

0
(t − τ)β−1w(τ)dτ.
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This operator serves as the fundamental building block for fractional calculus and can be viewed as a continuous generalization of

integer-order integration.

The relationship between these two operators is the key to transforming differential equations into integral equations. The following

lemma is the cornerstone of our entire analytical approach.

Lemma 1. Let β > 0 and n = ⌈β⌉. For a sufficiently smooth function w, the action of the fractional integral on the Caputo fractional

derivative yields:

Iβ [CDβ w(t)] = w(t)−
n−1

∑
k=0

w(k)(0)
k!

tk. (2)

This identity demonstrates that the fractional integral is a left-inverse to the fractional derivative, with the resulting polynomial accounting

for the initial conditions of the function. Consequently, the general solution to the homogeneous FDE CDβ w(t) = 0 is a polynomial of

degree n−1.

3 The Linear Problem and Its Green’s Function
Before tackling the nonlinear problem (1), we must first understand its linear structure. This is a standard and powerful technique in the

study of differential equations. By solving the corresponding linear problem, we can construct a Green’s function, which acts as the kernel

of an integral operator that fully encapsulates the properties of the linear differential operator and the associated boundary conditions.

Consider the linear fractional BVP with an arbitrary continuous source term z(t):

CDβ
t w(t)+ z(t) = 0, t ∈ (0,1), (3)

subject to the same boundary constraints:

w(0) = w′′(0) = 0, σw′(0)+(1−σ)w(1) =
∫ 1

0
w(s)ds. (4)

Theorem 1. For 2 < β ≤ 3 and any continuous function z ∈C[0,1], the unique solution w ∈C2[0,1] to the linear BVP (3)-(4) is given by

the integral representation:

w(t) =
∫ 1

0
G (t,s)z(s)ds, (5)

where the Green’s function G (t,s) is defined as:

G (t,s) =


2t(1−s)β−1[β (1−σ)−(1−s)]−β (t−s)β−1

Γ(β+1) , 0 ≤ s ≤ t ≤ 1;
2t(1−s)β−1[β (1−σ)−(1−s)]

Γ(β+1) , 0 ≤ t ≤ s ≤ 1.
(6)

Proof. Our starting point is the general solution of the FDE (3). Applying the fractional integral operator Iβ to the equation CDβ w(t)=−z(t)

and using Lemma 1 with n = ⌈β⌉= 3, we find:

w(t) =−Iβ (z(t))+ k0 + k1t + k2t2 =− 1
Γ(β )

∫ t

0
(t − s)β−1z(s)ds+ k0 + k1t + k2t2. (7)

The boundary conditions w(0) = 0 and w′′(0) = 0 allow us to determine the constants k0 and k2. We have k0 = w(0)/0! = 0 and k2 =

w′′(0)/2! = 0. This reduces the solution form to:

w(t) =− 1
Γ(β )

∫ t

0
(t − s)β−1z(s)ds+w′(0)t. (8)

The remaining unknown is the initial slope w′(0), which must be determined by the nonlocal integral condition. From (8), the value of the

solution at t = 1 is w(1) =− 1
Γ(β )

∫ 1
0 (1− s)β−1z(s)ds+w′(0). Substituting this into the integral condition gives:

σw′(0)+(1−σ)

[
− 1

Γ(β )

∫ 1

0
(1− s)β−1z(s)ds+w′(0)

]
=

∫ 1

0
w(s)ds. (9)
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Solving this equation for w′(0), we obtain:

w′(0) =
∫ 1

0
w(s)ds+

1−σ
Γ(β )

∫ 1

0
(1− s)β−1z(s)ds. (10)

At this point, the expression for w(t) contains the term
∫ 1

0 w(s)ds, which itself depends on w(t). To resolve this, we employ a self-consistency

argument. Let us denote this unknown integral by Cw =
∫ 1

0 w(s)ds. Substituting the expression for w′(0) into (8), we have:

w(t) =− 1
Γ(β )

∫ t

0
(t − s)β−1z(s)ds+ t

(
Cw +

1−σ
Γ(β )

∫ 1

0
(1− s)β−1z(s)ds

)
. (11)

To find an explicit value for Cw, we integrate both sides of this equation with respect to t from 0 to 1. This yields:

Cw =− 1
Γ(β )

∫ 1

0

∫ t

0
(t − s)β−1z(s)dsdt +Cw

∫ 1

0
tdt +

(
1−σ
Γ(β )

∫ 1

0
(1− s)β−1z(s)ds

)∫ 1

0
tdt.

After evaluating the time integrals and changing the order of integration in the double integral, we get:

Cw =− 1
Γ(β +1)

∫ 1

0
(1− s)β z(s)ds+

1
2

Cw +
1−σ
2Γ(β )

∫ 1

0
(1− s)β−1z(s)ds.

Solving this simple algebraic equation for Cw gives the desired explicit expression:

Cw =
1−σ
Γ(β )

∫ 1

0
(1− s)β−1z(s)ds− 2

Γ(β +1)

∫ 1

0
(1− s)β z(s)ds. (12)

The final step is to substitute this result for Cw back into (11). This eliminates all implicit dependencies and provides the explicit integral

representation of the solution w(t) in terms of the source z(t):

w(t) =− 1
Γ(β )

∫ t

0
(t − s)β−1z(s)ds+

t(1−σ)

Γ(β )

∫ 1

0
(1− s)β−1z(s)ds+ t

(
1−σ
Γ(β )

∫ 1

0
(1− s)β−1z(s)ds− 2

Γ(β +1)

∫ 1

0
(1− s)β z(s)ds

)
.

The final manipulation involves restructuring this expression to clearly identify the Green’s function kernel. By combining integral terms

and splitting the domain of integration, we arrive at:

w(t) =
∫ t

0

2t(1− s)β−1 [β (1−σ)− (1− s)]−β (t − s)β−1

Γ(β +1)
z(s)ds+

∫ 1

t

2t(1− s)β−1 [β (1−σ)− (1− s)]
Γ(β +1)

z(s)ds

=
∫ 1

0
G (t,s)z(s)ds.

This completes the construction of the Green’s function and the proof of the theorem.

4 Transformation to a Fixed-Point Problem
The integral representation derived in the previous section is the key to analyzing the nonlinear BVP. We now define the appropriate

functional setting and formulate the problem as a fixed-point equation. Our analysis is set in the Banach space E =C2[0,1], the space of all

twice continuously differentiable functions on the interval [0,1]. We equip this space with the norm ∥w∥E = ∥w∥∞+∥w′∥∞+∥w′′∥∞, where

∥ · ∥∞ is the standard supremum norm. The completeness of this space is essential for the application of the Banach fixed-point theorem.

By formally replacing the linear source term z(t) with the nonlinear function h(t,w(t),w′(t),w′′(t)) in Theorem 1, we observe that a

function w(t) is a solution to the nonlinear BVP (1) if and only if it satisfies the nonlinear integral equation:

w(t) =
∫ 1

0
G (t,s)h(s,w(s),w′(s),w′′(s))ds. (13)

This equivalence allows us to define an operator A : E → E by

(A w)(t) =
∫ 1

0
G (t,s)h(s,w(s),w′(s),w′′(s))ds. (14)

This operator, often called the solution operator, takes a function w ∈ E as input and returns a new function (A w) that solves the linear

problem with the source term evaluated at w. A fixed point of this operator, a function w∗ such that A w∗ = w∗, is therefore a solution to the

full nonlinear problem. Our task is thus reduced to proving that this operator A has a unique fixed point.
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5 The Main Existence and Uniqueness Result
We are now in a position to present and prove the central theorem of this paper. This theorem provides sufficient conditions on the

nonlinearity h to guarantee that the BVP (1) is well-posed, meaning it has exactly one solution. For clarity, we define the following constant,

which encapsulates the influence of the Green’s function and depends only on the parameters β and σ :

K =
4

Γ(β +2)
+

1
Γ(β +1)

+
1

Γ(β )
+

1
Γ(β −1)

+
4(1−σ)

Γ(β +1)
.

Theorem 2. Suppose the nonlinear function h(t,w1,w2,w3) meets the following requirement:

(H1) There exists a constant Lh > 0 such that h satisfies a Lipschitz condition with respect to its last three variables. That is, for all t ∈ [0,1]

and all ui,vi ∈ R (i = 1,2,3):

|h(t,u1,u2,u3)−h(t,v1,v2,v3)| ≤ Lh
(
|u1 − v1|+ |u2 − v2|+ |u3 − v3|

)
. (15)

If the Lipschitz constant is sufficiently small such that LhK < 1, then the BVP (1) has a unique solution w∗ within the closed ball

BR = {w ∈C2[0,1] | ∥w∥E ≤ R}.

The radius R of this ball must satisfy the condition R ≥ NhK
1−LhK

, where Nh = sup
t∈[0,1]

|h(t,0,0,0)|.

Proof. The proof relies on showing that the operator A defined in (14) is a contraction mapping on the closed set BR ⊂ E. The proof

consists of two logical steps.

Step 1: Show that A maps the ball BR into itself (i.e., A (BR)⊆ BR). Let w ∈ BR, so ∥w∥E ≤ R. We first establish a uniform bound on the

nonlinear term. Using the triangle inequality and the Lipschitz condition (H1):

|h(t,w(t),w′(t),w′′(t))| ≤ |h(t,w(t),w′(t),w′′(t))−h(t,0,0,0)|+ |h(t,0,0,0)|

≤ Lh(|w(t)|+ |w′(t)|+ |w′′(t)|)+Nh

≤ Lh(∥w∥∞ +∥w′∥∞ +∥w′′∥∞)+Nh = Lh∥w∥E +Nh.

Since ∥w∥E ≤ R, we have the bound ∥h(·,w(·), . . .)∥∞ ≤ LhR+Nh. Now we must show that ∥A w∥E ≤ R. This involves bounding the

norms of (A w), (A w)′, and (A w)′′. The calculations follow the same integral estimations used in the proof of Step 1 of Theorem 5.1

in the previous provided source, but we summarize the outcome for completeness. By bounding the integrals involving the Green’s

function and its derivatives, we obtain the cumulative bound:

∥A w∥E = ∥(A w)∥∞ +∥(A w)′∥∞ +∥(A w)′′∥∞

≤ (LhR+Nh)

[
4

Γ(β +2)
+

1
Γ(β +1)

+
1

Γ(β )
+

1
Γ(β −1)

+
4(1−σ)

Γ(β +1)

]
= (LhR+Nh)K .

This inequality shows that the norm of the output (A w) is bounded by a quantity related to the norm of the input w. For the operator

to map the ball BR to itself, we need this output norm to not exceed the radius R. The condition imposed on R in the theorem

statement, R ≥ NhK
1−LhK

, is precisely equivalent to R ≥ (LhR+Nh)K . Therefore, we have demonstrated that ∥A w∥E ≤ R, which

confirms the invariance of the ball BR.

Step 2: Show that A is a contraction mapping on BR. Here, we show that the operator A uniformly shrinks the distance between any two

functions in our space. This is the crucial property that guarantees convergence to a unique fixed point. Let w,v ∈ BR be two arbitrary

functions. We examine the norm of their difference after applying the operator:

|(A w)(t)− (A v)(t)| ≤
∫ 1

0
|G (t,s)||h(s,w(s), . . .)−h(s,v(s), . . .)|ds
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≤ Lh

∫ 1

0
|G (t,s)|

(
|w(s)− v(s)|+ |w′(s)− v′(s)|+ |w′′(s)− v′′(s)|

)
ds

≤ Lh∥w− v∥E

∫ 1

0
|G (t,s)|ds.

By performing similar estimations for the derivatives (A w)′− (A v)′ and (A w)′′− (A v)′′ and summing the resulting norm bounds,

we arrive at the inequality: ∥(A w)− (A v)∥E ≤ Lh∥w− v∥EK . By the central hypothesis of the theorem, we have LhK < 1. This

inequality establishes that A is a strict contraction mapping on the space BR with the contraction constant LhK . Since BR is a closed

subset of the Banach space E, it is a complete metric space. The conclusion of the Banach Fixed-Point Theorem now applies directly,

guaranteeing that A has a unique fixed point in BR. This fixed point is the unique solution to our BVP, and the proof is complete.

6 An Illustrative Example
To ground our abstract theorem in a tangible context, we now apply it to a specific BVP. This example will demonstrate how to verify the

conditions of the theorem and determine the constraints on the problem’s parameters. Consider the following BVP:{
CD2.5

t w(t)+ γ
(

sin(w(t))
5 +

arctan(w′(t))
4 +

w′′(t)
3+w′′(t)2 + e−t

)
= 0,

w(0) = w′′(0) = 0, 0.25w′(0)+0.75w(1) =
∫ 1

0 w(s)ds,
(16)

where γ > 0 is a parameter representing the strength of the nonlinearity. This problem fits our general form (1) with parameters β = 2.5 and

σ = 0.25. The nonlinear function is:

h(t,w,w′,w′′) = γ
(

sin(w)
5

+
arctan(w′)

4
+

w′′

3+(w′′)2 + e−t
)
.

First, we must verify the Lipschitz condition (H1). We use the Mean Value Theorem. The derivatives of the component functions with

respect to their arguments are bounded:

| d
du

(
sinu

5
)| ≤ 1/5, | d

du
(

arctanu
4

)| ≤ 1/4,

and

| d
du

(
u

3+u2 )| ≤ 1/3.

This implies:

|h(t,u1,u2,u3)−h(t,v1,v2,v3)| ≤ γ
(

1
5
|u1 − v1|+

1
4
|u2 − v2|+

1
3
|u3 − v3|

)
≤ γ

3
(
|u1 − v1|+ |u2 − v2|+ |u3 − v3|

)
.

Thus, condition (H1) holds with a Lipschitz constant Lh = γ/3.

Next, we calculate the constants Nh and K .

Nh = sup
t∈[0,1]

|h(t,0,0,0)|= sup
t∈[0,1]

|γe−t |= γ.

For β = 2.5 and σ = 0.25, the constant K is:

K =
4

Γ(4.5)
+

1
Γ(3.5)

+
1

Γ(2.5)
+

1
Γ(1.5)

+
4(1−0.25)

Γ(3.5)
=

4
Γ(4.5)

+
4

Γ(3.5)
+

1
Γ(2.5)

+
1

Γ(1.5)
.

Using the values of the Gamma function, we find K ≈ 3.47.

The condition for a unique solution from Theorem 2 is LhK < 1. Substituting our values, we need (γ/3) ·3.47 < 1, which simplifies

to γ < 3/3.47 ≈ 0.86. This result provides a practical guideline: if the parameter γ is kept below this threshold, the BVP is guaranteed to

have a unique, stable solution. For example, if we set γ = 0.5, the condition is met. A unique solution exists in any ball BR where

R ≥ NhK

1−LhK
=

0.5 ·3.47
1− (0.5/3) ·3.47

≈ 1.735
0.421

≈ 4.12.



A Fixed-Point Theoretic Approach to a Nonlinear Fractional BVP 259 of 260

7 Conclusion and Future Directions
In this paper, we have successfully developed and presented a comprehensive framework for establishing the existence and uniqueness of

solutions to a high-order nonlinear fractional differential equation subject to nonlocal integral boundary conditions. Our approach, rooted in

the principles of functional analysis, involved transforming the BVP into a fixed-point problem for an integral operator. The kernel of this

operator, the Green’s function, was explicitly constructed. The Banach contraction principle then provided a powerful and direct path to

proving our main result. The theorem offers a clear, practical criterion based on the Lipschitz constant of the nonlinear term that guarantees

the well-posedness of the problem.

The significance of this work lies in its contribution to the rigorous mathematical theory of nonlocal fractional boundary value problems.

By providing explicit conditions for unique solvability, our results offer a foundation upon which further qualitative and numerical studies

can be built. The methodology employed is robust and demonstrates the synergy between classical analytical techniques and modern

fixed-point theory.

This research also opens up several promising avenues for future investigation:

• Weaker Conditions for Existence: The Banach principle requires a contraction, which is a strong condition and guarantees

uniqueness. It would be valuable to explore existence results under weaker conditions on the nonlinearity, such as sub-linear growth.

This would involve applying different fixed-point theorems, such as Krasnoselskii’s theorem for the sum of a contraction and a

compact operator, or the Leray-Schauder nonlinear alternative.

• Different Fractional Operators: The analysis could be extended to problems involving other types of fractional derivatives, such

as the Hadamard, Erdélyi-Kober, or Caputo-Fabrizio operators. Each of these operators has different mathematical properties and is

suited to different classes of problems, and the construction of the corresponding Green’s functions would present new and interesting

challenges.

• Development of Numerical Methods: The integral operator A derived in our work is constructive. This naturally suggests the

development of numerical schemes based on the Picard iteration, wn+1 = A wn. A future study could focus on the implementation

and convergence analysis of such a scheme to provide numerical approximations of the unique solution.

• Extension to Systems and Inclusions: A natural generalization would be to consider systems of coupled fractional differential

equations with similar nonlocal boundary conditions. Furthermore, one could investigate the corresponding problem for fractional

differential inclusions, where the single-valued nonlinear term is replaced by a set-valued map, requiring the tools of multi-valued

analysis.

In summary, this paper provides a solid and complete analysis for a specific class of fractional BVPs, while also highlighting the rich

potential for further research in this dynamic and important area of mathematics.
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