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Abstract

This paper presents a novel and efficient fully discrete numerical scheme for distributed-order fractional partial differential

equations involving both the Caputo time-fractional derivative and the Riesz space-fractional derivative. Such equations frequently

arise in the modeling of anomalous diffusion and transport phenomena, where accurate and stable computational methods are

crucial. The temporal discretization is carried out using the second-order generalized L1 (gL1-2) scheme, which improves

accuracy over traditional L1-based methods. For the spatial discretization, the Riesz derivative is approximated by a second-order

finite-difference method, ensuring robustness and precision. The resulting scheme provides a high-order numerical framework that

can effectively address a wide class of distributed-order fractional models. A rigorous theoretical analysis is conducted, proving

unconditional stability and optimal convergence rates via the energy method. The effectiveness of the scheme is further validated

through two numerical experiments, which confirm the theoretical results and highlight the computational efficiency, accuracy, and

practical applicability of the proposed approach.
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1 Introduction
In recent years, fractional-order models have emerged as powerful tools for describing complex physical and engineering systems

characterized by memory effects, anomalous diffusion, and spatial heterogeneity. Among these models, distributed-order fractional

differential equations have gained significant attention due to their enhanced flexibility and ability to capture a wide spectrum of dynamic

behaviors [1, 2, 4, 7, 12–14, 24, 25, 27, 29, 31, 35, 38, 39]. Instead of relying on a single fixed order, the distributed-order approach integrates

over a range of fractional orders, making it especially suitable for multi-scale and heterogeneous media. The choice of the Caputo fractional

derivative in the time direction stems from its natural incorporation of classical initial conditions and its widespread applicability in modeling

viscoelastic and diffusive systems. On the spatial side, the Riesz fractional derivative serves as a symmetric, nonlocal operator capable

of describing anomalous spatial diffusion more accurately than classical Laplacians. Moreover, the inclusion of a nonlinear term and
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a Fredholm integral operator of the first kind allows the model to encapsulate complex interactions and integral memory effects often

encountered in porous media, population dynamics, or neural field models. The resulting equation is not only mathematically rich but also

capable of capturing a wide variety of physical phenomena across disciplines.

We consider the following distributed-order timespace fractional partial differential equation:∫ 1

0
ω(α) CDα

t u(x, t)dα =
∫ 2

0
ρ(β )(−∆)β/2u(x, t)dβ +N (u(x, t))+

∫
Ω

K(x,y)u(y, t)dy, (1)

subject to the initial condition:

u(x,0) = u0(x), x ∈ Ω, (2)

and boundary condition:

u(x, t) = ψ(t), x ∈ ∂Ω, t > 0. (3)

Here, u(x, t) is the unknown function defined on the spatial domain Ω ⊂ Rn and time t > 0, ω(α) is a non-negative weight function on

α ∈ (0,1) determining the contribution of each time-fractional order, and CDα
t denotes the Caputo fractional derivative of order α ∈ (0,1)

with respect to time. The function ρ(β ) is a non-negative weight function on β ∈ (0,2) determining the contribution of each space-fractional

order. The operator (−∆)β/2 represents the Riesz fractional derivative (fractional Laplacian) of order β ∈ (0,2), N (u(x, t)) is a nonlinear

function such as up or sin(u), and K(x,y) is the kernel defining the Fredholm integral operator of the first kind acting as a nonlocal spatial

interaction term. The initial condition u0(x), domain Ω, and boundary ∂Ω are given. The Caputo fractional derivative of order α ∈ (0,1)

for u(x, t) with respect to time t is defined by [9]

CDα
t u(x, t) =

1
Γ(1−α)

∫ t

0

∂u(x,τ)
∂τ

dτ
(t − τ)α , (4)

which is based on the RiemannLiouville integral and allows classical initial conditions. The distributed-order Caputo derivative integrates

over the order α weighted by ω(α) as shown in the left side of equation (1). The Riesz fractional derivative of order β ∈ (0,2) can be

expressed as [33]

(−∆)β/2u(x, t) =− 1

2cos
(

πβ
2

) (−∞Dβ
x u(x, t)+ xDβ

∞u(x, t)
)
, (5)

where the left-sided RiemannLiouville fractional derivative is defined by

−∞Dβ
x u(x, t) =

1
Γ(m−β )

dm

dxm

∫ x

−∞

u(ξ , t)
(x−ξ )β−m+1

dξ , (6)

and the right-sided RiemannLiouville fractional derivative is given by

xDβ
∞u(x, t) =

(−1)m

Γ(m−β )
dm

dxm

∫ ∞

x

u(ξ , t)
(ξ − x)β−m+1

dξ , (7)

with m = ⌈β⌉. The distributed-order fractional model (1) subject to conditions (2) and (3) is highly suitable for modeling complex

phenomena exhibiting multi-scaling anomalous diffusion. The use of a distributed-order Riesz derivative [15, 18, 19, 21] together with

a Fredholm integral operator [5] is motivated by the need to simultaneously capture heterogeneous anomalous diffusion and nonlocal spatial

interactions. The distributed–order Riesz derivative accounts for spatial processes with multiple scales of anomalous diffusion, as often

observed in heterogeneous porous media or biological tissues where the degree of superdiffusion or subdiffusion varies across space. In

contrast, the Fredholm integral operator models medium- to long-range interactions that cannot be described by diffusion alone, such as

synaptic connectivity in neural field models, nonlocal cell–cell communication in tumor growth, or nonlocal stress transfer in complex

materials. Their combination thus provides a versatile mathematical framework for describing systems where anomalous transport and

nonlocal interactions coexist.

Analytical techniques for solving fractional partial differential equations often face significant challenges due to the intrinsic complexity

of fractional operators, the presence of distributed-order derivatives, and the possible inclusion of nonlinear and nonlocal terms. Exact

solutions are typically available only for highly idealized models with simplified geometries and boundary conditions. In contrast, numerical

methods offer a flexible and powerful framework for approximating solutions to problems of practical interest, accommodating irregular
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domains, complex source terms, and realistic boundary conditions. Moreover, numerical approaches can efficiently handle multi-scale

temporal dynamics and spatial nonlocality, which are common in fractional models but difficult to capture analytically. Consequently, the

development of robust, accurate, and stable numerical schemes is essential for both theoretical investigation and practical simulation of

fractional phenomena. The study of fractional and distributed-order partial differential equations has attracted significant attention in recent

years. Ansari et al. [1] investigated the distributed-order fractional diffusion equation in a cylindrical configuration, while Aboelenen [2]

proposed a local discontinuous Galerkin method for spacetime fractional models. Agrawal [3] contributed to the theoretical foundation

by formulating fractional variational calculus in terms of Riesz derivatives. Building on analytical and numerical perspectives, Alahmadi

et al. [4] explored nonlinear Fredholm integral equations in two dimensions. Bu et al. [6] developed finite difference and finite element

schemes, and Cao et al. [8] introduced a fast Alikhanov algorithm with nonuniform time steps. Caputo [9] laid the groundwork for modeling

diffusion with space memory using distributed-order equations. Derakhshan et al. [10] proposed a high-order spacetime spectral method,

and in a related study, Derakhshan et al. [11] presented a hybrid approach for two-dimensional Cattaneo models. Di Pietro and Tittarelli [12]

provided a detailed introduction to hybrid high-order methods, whereas Dzhumabaev and Mynbayeva [14] addressed nonlinear boundary

value problems for Fredholm integro-differential equations. Fei and Huang [16] implemented a GalerkinLegendre spectral method,

and Guo et al. [17] combined finite difference with spectralGalerkin techniques for reactiondiffusion problems. Irandoust-Pakchin et

al. [18] and Irandoust-Pakchin et al. [19] developed efficient numerical schemes with rigorous stability analyses. Javidi and Heris [20]

analyzed Riesz space distributed-order advectiondiffusion equations with time delay, while Li et al. [22] proposed high-order numerical

solutions for space distributed-order time-fractional diffusion. Luchko [24] studied boundary value problems for generalized time-fractional

models, and Lyu and Cheng [25] addressed inverse problems involving space-dependent sources. Mainardi et al. [26] investigated the

time-fractional diffusion of distributed order, whereas Owolabi and Atangana [28] applied fractional derivatives to nonlinear Schrödinger

equations. Pakchin et al. [29] focused on multi-term telegraph equations, and Popolizio [30] introduced a matrix-based approach for

PDEs with Riesz derivatives. Ramezani and Mokhtari [31] proposed high-order temporal schemes, and Ray and Sahoo [32] presented

analytical approximate solutions to advectiondispersion models. Saedshoar Heris and Javidi [33] analyzed convergence and stability

in two-dimensional advectiondiffusion problems with delay, while Samiee et al. [34] unified PetrovGalerkin spectral methods with fast

solvers. Wang et al. [35] combined discrete techniques with Bernoulli polynomial approximations, and Yang et al. [36] reviewed numerical

methods for fractional PDEs. Ye et al. [37] provided a comprehensive numerical analysis for distributed-order diffusions, Zaheer et al. [38]

proposed an iterative algorithm for nonlinear integral equations, and Zhang et al. [39] reported a fast finite difference/finite element approach

for reactiondiffusion problems.

In this paper, we address the numerical solution of a distributed-order fractional partial differential equation involving the Caputo

fractional derivative in time and the Riesz fractional derivative in space. Motivated by the need for accurate and efficient schemes to capture

the multi-scale memory and nonlocal spatial effects inherent in such models, we construct a fully discrete numerical method by combining

the gL1-2 approximation for the time-fractional derivative with a second-order finite-difference scheme for the Riesz operator. The

distributed-order integrals are evaluated using suitable quadrature rules, ensuring high accuracy in both temporal and spatial discretizations.

A rigorous stability and convergence analysis, carried out via the energy method, confirms the robustness of the scheme. Numerical

experiments are presented to validate the theoretical findings and to illustrate the efficiency of the proposed approach in handling complex

fractional dynamics.

The structure of this paper is outlined below. In Section 2, we present the approximation of the distributed-order Caputo fractional

derivative using the gL1-2 scheme, followed by the formulation of the time semi-discrete numerical scheme and the convergence analysis

of the time semi-discrete gL1-2/midpoint scheme. Section 3 is devoted to the second-order finite-difference approximation for the Riesz

fractional derivative, the construction of the fully discrete numerical scheme, and the analysis of its coercivity property and stability. In

Section 4, we provide numerical simulations along with a detailed convergence analysis to validate the theoretical results. Finally, Section 5

concludes the paper with a summary of the main findings and possible directions for future research.

2 Approximation of the Distributed-Order Caputo Fractional Derivative
Using the GL1-2 Scheme

Fractional derivatives, particularly the Caputo type, present numerical challenges due to their nonlocal memory effect and singular kernels.

The distributed-order fractional derivative adds complexity by integrating over a range of fractional orders. Among numerical methods, the
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generalized L1-2 (gL1-2) scheme has become popular due to its improved accuracy and stability for approximating Caputo derivatives of

order α ∈ (0,1). This scheme achieves second-order accuracy in time while maintaining computational efficiency via convolution structure,

making it suitable for problems involving memory and fractional dynamics. Moreover, the gL1-2 method better handles the weak singularity

of the kernel compared to classical L1 schemes. Recall the Caputo fractional derivative defined in (4). To approximate this derivative at

discrete times tn = n∆t, the gL1-2 scheme employs piecewise quadratic interpolation on each subinterval [tk−1, tk]. The approximation at

t = tn is given by

CDα
t u(x, tn)≈

1
∆tα

n

∑
k=1

b(α)
n−k (u(x, tk)−u(x, tk−1)) , (8)

where the weights b(α)
j satisfy

b(α)
0 = a(α)

0 , b(α)
j = a(α)

j −a(α)
j−1 for j ≥ 1, (9)

with the coefficients a(α)
j defined by

a(α)
j = ( j+1)1−α − j1−α . (10)

To approximate the distributed-order derivative ∫ 1

0
ω(α) CDα

t u(x, tn)dα,

we apply the midpoint quadrature rule on the integral over α ∈ (0,1). Dividing the interval into M subintervals of length h = 1
M , the

midpoints are

αm =

(
m− 1

2

)
h, m = 1,2, . . . ,M.

Hence, the distributed-order derivative at tn is approximated by

∫ 1

0
ω(α) CDα

t u(x, tn)dα ≈ h
M

∑
m=1

ω(αm)
CDαm

t u(x, tn). (11)

Substituting the gL1-2 approximation (8) into (11) results in

∫ 1

0
ω(α) CDα

t u(x, tn)dα ≈ h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k (u(x, tk)−u(x, tk−1)) . (12)

This discrete formulation effectively captures the distributed fractional memory effect by superposing approximations over fractional orders

weighted by ω(α).

2.1 Time Semi-Discrete Numerical Scheme

In this subsection, we focus on constructing a time semi-discrete formulation for the distributed-order fractional model (1). Our aim

is to discretize the time direction while leaving the spatial variables continuous, thus separating temporal approximation from spatial

discretization. This approach enables the incorporation of high-accuracy time-stepping methods tailored for distributed-order fractional

derivatives without committing to a particular spatial discretization strategy at this stage. The key step is to replace the distributed-order

Caputo derivative in (1) with its numerical approximation given in (12), which is obtained by combining the gL1-2 scheme for the Caputo

derivative and the midpoint quadrature rule for the distributed-order integral. Substituting (12) into (1) yields the time semi-discrete equation

h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k (u(x, tk)−u(x, tk−1)) =

∫ 2

0
ρ(β )(−∆)β/2u(x, tn)dβ +N

(
u(x, tn)

)
+
∫

Ω
K(x,y)u(y, tn)dy. (13)

Table 1 outlines the step-by-step procedure for implementing the proposed time semi-discrete scheme for the distributed-order fractional

model.

Theorem 1 (Convergence of the time semi-discrete gL1-2 / midpoint scheme). Let u(x, t) be the exact solution of the continuous problem

(1) with temporal regularity u(·, t) ∈ C3([0,T ]) for each fixed x ∈ Ω. Assume the distributed weight ω(α) is continuous and bounded on
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Table 1. Time semi-discrete algorithm for the distributed-order fractional PDE

Step Description
1 Initialization: Set T > 0, N ∈ N, ∆t = T/N, M ∈ N, h = 1/M. Assign u(x,0) = u0(x)

and define ω(α).

2 Quadrature nodes: Compute αm =
(
m− 1

2
)

h, m = 1, . . . ,M.

3 Weights evaluation: Evaluate and store ωm := ω(αm) for m = 1, . . . ,M.

4 Precompute coefficients: For m = 1, . . . ,M and j = 0, . . . ,N − 1, compute a(αm)
j and

b(αm)
j as defined in Eqs. (10) and (9).

5 Time-stepping loop: For n = 1, . . . ,N, assemble the discrete distributed-order Caputo

derivative Ln(x) using Eq. (12).

6 Semi-discrete equation: Impose the time semi-discrete form by replacing the left-hand

side of Eq. (1) with Ln(x), yielding Eq. (13).

7 Spatial solve: For each n, solve Eq. (13) in the spatial domain Ω for u(x, tn).

8 Update: Store u(x, tn). If n < N, increment n and return to Step 5; otherwise, terminate.

[0,1], 0 ≤ ω(α) ≤ Wmax, and let M ∈ N with h = 1/M denote the number of midpoint nodes αm = (m− 1
2 )h. Define the exact distributed

operator

D [u](x, tn) :=
∫ 1

0
ω(α) CDα

t u(x, tn)dα, (14)

and its discrete approximation

Dh,∆t [u](x, tn) := h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k

(
u(x, tk)−u(x, tk−1)

)
, (15)

where the weights b(α)
j are defined as in (9)–(10). Then∣∣D [u](x, tn)−Dh,∆t [u](x, tn)

∣∣≤C
(
∆t2 +h2), (16)

in which C > 0, depending on T , Wmax.

Proof. The total approximation error is decomposed into the quadrature error stemming from the midpoint rule in the α integral and the

temporal discretization error arising from the gL1-2 approximation for each fixed order. Denote the total error by En(x) := D [u](x, tn)−
Dh,∆t [u](x, tn). Adding and subtracting the exact Caputo derivatives evaluated at the midpoints αm inside the discrete sum yields

En(x) =

(∫ 1

0
ω(α)CDα

t u(x, tn)dα −h
M

∑
m=1

ω(αm)
CDαm

t u(x, tn)

)
+h

M

∑
m=1

ω(αm)
(

CDαm
t u(x, tn)− discDαm

t u(x, tn)
)
.

We denote the first parentheses by Equad
n (x) and the second summation by E temp

n (x). The integrand f (α) := ω(α)CDα
t u(x, tn) is twice

continuously differentiable on [0,1] under the stated regularity assumptions, because the Caputo derivative depends smoothly on α for

α ∈ (0,1) when u is sufficiently smooth in time. Then

En =
∫ 1

0
ω(α)CDα

t u−h
M

∑
m=1

ω(αm)
CDαm

t u︸ ︷︷ ︸
Equad

n

+h
M

∑
m=1

ω(αm)
(

CDαm
t u− discDαm

t u
)

︸ ︷︷ ︸
E temp

n

. (17)

The midpoint rule therefore yields a global quadrature error of order h2; that is, there exists C1 > 0 such that

|Equad
n (x)| ≤C1h2. (18)

For the temporal error, fix m and denote the pointwise truncation by

τ(αm)
n (x) := CDαm

t u(x, tn)− discDαm
t u(x, tn),
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where discDαm
t u(x, tn) is given by the convolution in (15) for the single order αm. The gL1-2 scheme is derived from piecewise quadratic

interpolation of u on each subinterval [tk−1, tk] and a subsequent approximation of the weakly singular integral kernel. A Taylor expansion of

u up to third order on each subinterval, combined with standard bounds on the integral remainders, implies that for each fixed αm there exists

a constant C2(αm) such that |τ(αm)
n (x)| ≤ C2(αm)∆t2. The dependence of C2(αm) on αm is smooth and remains bounded for αm ∈ (0,1),

hence there exists C2 > 0 uniform in m with

|τ(αm)
n (x)| ≤C2∆t2, m = 1, . . . ,M. (19)

Using (19) we estimate

|E temp
n (x)| ≤ h

M

∑
m=1

ω(αm) |τ
(αm)
n (x)| ≤C2∆t2 h

M

∑
m=1

ω(αm).

The discrete sum h∑M
m=1 ω(αm) is a midpoint approximation of

∫ 1
0 ω(α)dα and is therefore uniformly bounded by a constant W1 depending

only on ω . Consequently there exists C3 :=C2W1 such that

|E temp
n (x)| ≤C3∆t2. (20)

Combining (18) and (20) gives

|En(x)| ≤ |Equad
n (x)|+ |E temp

n (x)| ≤C1h2 +C3∆t2.

Setting C = max{C1,C3} establishes the bound (16) and completes the proof.

3 Second-Order Finite-Difference Approximation for the Riesz
Fractional Derivative

In this part of the study, we construct a finite-difference approximation of second-order accuracy for the Riesz fractional derivative, which

arises in the spatial operator of equation (1). The Riesz derivative, expressed as a symmetric combination of the left- and right-sided

RiemannLiouville derivatives (see (5)), represents a nonlocal operator with a singular kernel. This inherent nonlocality and singularity

demand a careful discretization strategy in order to preserve accuracy and stability in the numerical scheme. Our goal is to construct a

discrete operator that preserves the symmetry and nonlocal nature of the Riesz derivative while achieving second-order accuracy in space.

To this end, we discretize the spatial domain Ω into uniform grid points xi = x0 + i∆x, where ∆x is the spatial step size and i = 0,1, . . . ,N.

The key idea is to approximate the left and right RiemannLiouville derivatives separately by finite sums involving weighted differences of

function values at grid points, then combine them as in (5). Using the GrünwaldLetnikov formula with shifted weights and appropriate

correction terms, the discrete approximation to the left-sided derivative at xi can be written as

−∞Dβ
x u(xi)≈

1
∆xβ

i+M

∑
k=0

g(β )k u(xi−k),

where the weights g(β )k are defined based on the fractional binomial coefficients and M is a truncation parameter chosen to balance accuracy

and computational cost. Similarly, the right-sided derivative is approximated by

xDβ
∞u(xi)≈

1
∆xβ

N−i+M

∑
k=0

g(β )k u(xi+k).

To achieve second-order accuracy, the weights g(β )k are corrected using the Lubichs fractional backward difference formula of order two

(FBDF2), which improves on the standard Grünwald weights by including higher-order terms. This correction reduces the local truncation

error from O(∆x) to O(∆x2). Combining these approximations and incorporating the factor from (5), the discrete Riesz fractional derivative

at node xi is approximated as

(−∆)β/2u(xi)≈− 1

2cos
(

πβ
2

) 1
∆xβ

(
i+M

∑
k=0

g(β )k u(xi−k)+
N−i+M

∑
k=0

g(β )k u(xi+k)

)
. (21)
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3.1 Fully Discrete Numerical Scheme

In this subsection, we aim to derive a fully discrete numerical scheme for equation (13) by combining the previously developed time

semi-discrete approximation with a spatial discretization of the Riesz fractional derivative using the second-order finite-difference method

introduced earlier. This approach discretizes both time and space variables, enabling practical numerical simulations of the distributed-order

fractional model with nonlinear and nonlocal terms. Starting from the semi-discrete form in (13), we replace the integral spatial operator

involving the Riesz fractional derivative by its discrete counterpart at spatial grid points xi = x0+ i∆x, i = 0,1, . . . ,N. Using the second-order

finite-difference approximation defined in (21), the spatial integral
∫ 2

0 ρ(β )(−∆)β/2u(xi, tn)dβ is approximated by a quadrature sum over

fractional orders β j ∈ (0,2) with weights ρ(β j), i.e.,

∫ 2

0
ρ(β )(−∆)β/2u(xi, tn)dβ ≈

J

∑
j=1

ρ(β j)
[
(−∆)β j/2u

]n

i
, (22)

where
[
(−∆)β j/2u

]n

i
is given by (21) evaluated at xi and time tn. Consequently, the fully discrete scheme reads

h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k

(
uk

i −uk−1
i
)
=

J

∑
j=1

ρ(β j)
[
(−∆)β j/2u

]n

i
+N (un

i )+
N

∑
l=0

K(xi,xl)u
n
l ∆x. (23)

Substituting Eq. (21) into (23) yields the fully discrete scheme

h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k

(
uk

i −uk−1
i
)
= −

J

∑
j=1

ρ(β j)
1

2cos
(

πβ j
2

) 1
∆xβ j

×

(
i+M

∑
k=0

g(β j)
k un

i−k +
N−i+M

∑
k=0

g(β j)
k un

i+k

)
+N (un

i )+
N

∑
l=0

K(xi,xl)u
n
l ∆x,

(24)

where un
i approximates u(xi, tn), and the nonlinear term N (un

i ) and integral operator are evaluated at discrete points. This table 2 presents

Table 2. Fully Discrete Numerical Algorithm for Distributed-Order Fractional Equation

Input: Initial data u0
i = u0(xi), weights ω(αm),ρ(β j), mesh sizes ∆t,∆x,

nonlinear function N (·), kernel K(x,y), number of time steps Nt , spatial nodes Nx

For n = 1,2, . . . ,Nt (time steps)

For i = 0,1, . . . ,Nx (spatial nodes)

Compute the time-fractional derivative approximation:

T n
i = h

M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k (u

k
i −uk−1

i )

Compute the spatial fractional derivative approximation using the second-order finite difference:

Sn
i =−

J

∑
j=1

ρ(β j)
1

2cos
(

πβ j
2

) 1
∆xβ j

(
i+M

∑
k=0

g(β j)
k un

i−k +
Nx−i+M

∑
k=0

g(β j)
k un

i+k

)
Compute the nonlinear term: Nn

i = N (un
i )

Compute the integral operator: In
i = ∑Nx

l=0 K(xi,xl)un
l ∆x

Solve for un
i from the fully discrete equation:

T n
i = Sn

i +Nn
i + In

i

End For
End For
Output: Numerical solution un

i for all i,n

the fully discrete numerical algorithm for solving the distributed-order fractional partial differential equation. It details the iterative process

to approximate the time-fractional derivative via weighted sums, apply the second-order finite-difference scheme for the Riesz fractional

derivative, and incorporate nonlinear and integral terms at each time step. This structured approach facilitates efficient computation of the
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solution across both temporal and spatial domains. In this section, we establish the convergence of the proposed fully discrete scheme (24)

by employing the energy method. The analysis ensures that the numerical solution converges to the exact solution under suitable regularity

assumptions.

Lemma 1 (A Discrete GrönwallType Inequality). [23] Let {an}n≥0 be a sequence of nonnegative numbers satisfying

an ≤ C + D
n−1

∑
j=0

a j, n ≥ 1,

where C ≥ 0 and D ≥ 0 are constants. Then, for all n ≥ 0, it holds that

an ≤ C(1+D)n ≤ C eDn.

Theorem 2. Let u,v be sufficiently smooth functions vanishing on the boundary ∂Ω, where Ω ⊂ Rn is a bounded domain. The fractional

Laplacian operator (−∆)β/2 with β ∈ (0,2) is symmetric and positive semi-definite. In particular, for any discrete error vector en, we have

⟨(−∆)β/2en,en⟩ ≥ 0,

where ⟨·, ·⟩ denotes the discrete inner product.

Proof. (−∆)β/2 can be defined via the spectral decomposition of the classical Laplacian −∆ with homogeneous Dirichlet boundary

conditions. Let {ϕk}∞
k=1 be the orthonormal eigenfunctions of −∆ with corresponding eigenvalues {λk}∞

k=1, so that

−∆ϕk = λkϕk, ϕk|∂Ω = 0,

with 0 < λ1 ≤ λ2 ≤ ·· · → ∞.

For any u ∈ L2(Ω), we expand

u =
∞

∑
k=1

ckϕk, ck = ⟨u,ϕk⟩.

The fractional Laplacian acts as

(−∆)β/2u =
∞

∑
k=1

λ β/2
k ckϕk.

Due to the orthonormality of {ϕk}, the inner product satisfies

⟨(−∆)β/2u,v⟩=
∞

∑
k=1

λ β/2
k ckdk,

where dk = ⟨v,ϕk⟩. By symmetry of the eigenvalues and eigenfunctions, the operator is symmetric:

⟨(−∆)β/2u,v⟩= ⟨u,(−∆)β/2v⟩.

In particular, for u = v = en, the inner product reduces to

⟨(−∆)β/2en,en⟩=
∞

∑
k=1

λ β/2
k c2

k ≥ 0,

since λk > 0 and β/2 > 0 imply λ β/2
k > 0. Therefore, the fractional Laplacian operator is positive semi-definite and symmetric under

homogeneous Dirichlet boundary conditions. For discrete approximations, the finite-dimensional operator inherits these properties, ensuring

⟨(−∆)β/2en,en⟩ ≥ 0,

which is essential in stability and convergence analysis.
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Theorem 3 (Coercivity Property). Let u = (ui)
Nx
i=0 be a discrete function defined on a spatial grid with homogeneous Dirichlet boundary

conditions. Assume the weights ω(αm) ≥ 0 for m = 1, . . . ,M and ρ(β j) ≥ 0 for j = 1, . . . ,J, and not identically zero. Then, the following

coercivity inequality holds:
J

∑
j=1

ρ(β j)⟨(−∆)β j/2u,u⟩ ≥C∥u∥2,

where C > 0.

Proof. Operator (−∆)β/2 for β ∈ (0,2) is a self-adjoint and positive semi-definite operator under homogeneous Dirichlet boundary

conditions. Specifically, for each fixed β j, the discrete operator satisfies

⟨(−∆)β j/2u,u⟩ ≥ 0,

to establish the validity of the above approximation, Theorem 2 is applied. Since ρ(β j) ≥ 0, the weighted sum is a non-negative linear

combination of positive semi-definite terms:
J

∑
j=1

ρ(β j)⟨(−∆)β j/2u,u⟩ ≥ 0.

If the weights ρ(β j) are not all zero and the function u is nontrivial, the positivity of the fractional Laplacian spectrum implies the existence

of a constant C > 0 such that
J

∑
j=1

ρ(β j)⟨(−∆)β j/2u,u⟩ ≥C∥u∥2,

where ∥u∥2 = ⟨u,u⟩ is the discrete L2-norm. Furthermore, the weight function ω(α) in time fractional derivatives does not affect spatial

coercivity but ensures positivity and stability of the time fractional operator, supporting the overall well-posedness of the scheme. Hence, the

combined effect of the fractional Laplacian operators weighted by ρ(β j) preserves coercivity, which is essential for stability and convergence

proofs.

Theorem 4. Let u(x, t) be the exact solution of (1), and let un
i be the numerical solution produced by the fully discrete scheme (24). Assume

the exact solution is sufficiently smooth and the weight functions ω(α), ρ(β ) are bounded and non-negative. Further assume the discrete

convolution coefficients b(αm)
k arising from the gL1-2 temporal discretization satisfy b(αm)

k ≥ 0 for all k and each quadrature node αm, and

that the quadrature for the distributed-order integral is second-order accurate in h. Then there exists a constant C > 0, independent of ∆t,

∆x, and h, such that the error en
i = u(xi, tn)−un

i satisfies

max
1≤n≤N

∥en∥ ≤C
(
∆t2 +∆x2 +h2),

where ∥ · ∥ denotes the discrete L2-norm and h is the discretization step for the distributed-order integral.

Proof. Define the pointwise error at the grid point (xi, tn) by

en
i = u(xi, tn)−un

i ,

and collect the nodal errors into the vector en = (en
0,e

n
1, . . . ,e

n
Nx
). Evaluating the continuous equation (1) at the grid points (xi, tn), subtracting

the fully discrete scheme (24), and inserting the gL1-2 temporal approximation, the second-order finite-difference approximation for the

Riesz derivative, and the quadrature approximation for the distributed-order integral, we obtain the discrete error equation

h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k (e

k
i − ek−1

i ) =
J

∑
j=1

ρ(β j)
[
(−∆)β j/2e

]n
i +Rn

i , (25)

where Rn
i denotes the local truncation error collecting all discretization remainders (time, space, distributed-order quadrature, nonlinear

approximation, and integral operator discretization). By the assumed approximation orders there exists a constant CR > 0 such that for all n

∥Rn∥ ≤CR
(
∆t2 +∆x2 +h2). (26)
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We now introduce discrete energy contributions which will be used to control the temporal history and spatial fractional terms. For fixed

time level n define the temporal energy

E n
t = h

M

∑
m=1

ω(αm)∆t−αm
1
2

n

∑
k=1

b(αm)
n−k ∥ek∥2, (27)

and the spatial energy

E n
s =

J

∑
j=1

ρ(β j)⟨(−∆)β j/2en,en⟩. (28)

The total discrete energy is then

E n = E n
t +E n

s . (29)

The following algebraic identity for convolution sums is applied to the temporal convolution terms (valid for any sequence {vk}k≥0):

n

∑
k=1

bn−k⟨vk − vk−1,vn⟩= 1
2

n

∑
k=1

bn−k
(
∥vk∥2 −∥vk−1∥2)+ 1

2

n

∑
k=1

bn−k

(
∥vk − vn∥2 −∥vk−1 − vn∥2

)
. (30)

Apply identity (30) with vk = ek and note that, under the assumption b(αm)
ℓ ≥ 0, the second sum on the right-hand side of (30) is nonnegative.

Consequently,
n

∑
k=1

b(αm)
n−k ⟨e

k − ek−1,en⟩ ≥ 1
2

n

∑
k=1

b(αm)
n−k

(
∥ek∥2 −∥ek−1∥2). (31)

Multiply inequality (31) by hω(αm)∆t−αm and sum over m = 1, . . . ,M. Using the definition (27) of E n
t and collecting the remaining

initial-term contribution yields

h
M

∑
m=1

ω(αm)∆t−αm
n

∑
k=1

b(αm)
n−k ⟨e

k − ek−1,en⟩ ≥ E n
t −E n−1

t −Rn
0 , (32)

where the boundary/initial term

Rn
0 =

1
2

h
M

∑
m=1

ω(αm)∆t−αm b(αm)
n−1∥e0∥2 (33)

vanishes when the initial error e0 is zero and otherwise can be absorbed into constants. Take the discrete inner product of the error equation

(25) with en and sum over spatial indices. Using (32) for the left-hand side and (28) for the spatial term on the right-hand side, we obtain

E n
t −E n−1

t −Rn
0 ≤ E n

s + ⟨Rn,en⟩. (34)

Rearranging and using E n = E n
t +E n

s gives

E n −E n−1 ≤ ⟨Rn,en⟩+Rn
0 . (35)

We now bound the right-hand side of (35). By CauchySchwarz and Young’s inequalities, for any δ > 0,

⟨Rn,en⟩ ≤ 1
2δ

∥Rn∥2 +
δ
2
∥en∥2. (36)

By the definition (27) and the positivity of the weights there exists a constant c0 > 0 (depending on the quadrature nodes, ω(·), and the

leading convolution coefficient b(αm)
0 ) such that

E n
t ≥ c0∥en∥2. (37)

Choose δ > 0 sufficiently small so that the term (δ/2)∥en∥2 in (36) can be absorbed by the left-hand side contribution contained in E n
t .

Combining (35), (36), (37), and the residual bound (26) yields, after summation over n and routine manipulations,

∥en∥2 ≤C1

n

∑
k=1

∥ek∥2 +C2
(
∆t2 +∆x2 +h2)2

+C3R
n
0 ,

with constants C1,C2,C3 > 0 independent of ∆t,∆x,h. Applying the discrete Grönwall inequality and noting that Rn
0 is either zero (when

e0 = 0) or bounded by a constant multiple of ∥e0∥2, we obtain

∥en∥ ≤C
(
∆t2 +∆x2 +h2)

for each n, where C > 0 is independent of ∆t,∆x,h. Taking the maximum over 1 ≤ n ≤ N completes the proof.
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Theorem 5 (Stability of the Fully Discrete Scheme). Assume that the weights ω(α) and ρ(β ) are non-negative and the nonlinear term

N (u) satisfies a Lipschitz condition. Then, the fully discrete scheme defined by equation (23) is unconditionally stable in the discrete energy

norm. In particular, for any time step n, the numerical solution un satisfies

∥un∥2 +∆t
n

∑
k=1

J

∑
j=1

ρ(β j)
〈
(−∆)β j/2uk,uk〉≤ ∥u0∥2 +C∆t

n

∑
k=1

∥uk∥2,

where C is a positive constant depending on the Lipschitz constant of N and the kernel K.

Proof. Multiplying both sides of the fully discrete equation (23) by un
i and summing over the spatial index i, we obtain a discrete energy

identity:

h
M

∑
m=1

ω(αm)
1

∆tαm

n

∑
k=1

b(αm)
n−k ⟨u

k −uk−1,un⟩=
J

∑
j=1

ρ(β j)⟨(−∆)β j/2un,un⟩+ ⟨N (un),un⟩+ ⟨K un,un⟩,

where ⟨·, ·⟩ denotes the discrete L2 inner product, and K denotes the integral operator with kernel K. Using the coercivity and symmetry of

the fractional Laplacian (cf. Theorem 2), the term
J

∑
j=1

ρ(β j)⟨(−∆)β j/2un,un⟩

is non-negative, contributing a dissipative effect to the energy. For the nonlinear term N and the integral operator K , we assume Lipschitz

continuity and boundedness, respectively. Hence there exists a constant C > 0 such that

⟨N (un),un⟩+ ⟨K un,un⟩ ≤C∥un∥2.

Combining these estimates, we arrive at the recursive inequality

∥un∥2 ≤ ∥u0∥2 +C∆t
n

∑
k=1

∥uk∥2,

where ∆t arises from the temporal discretization. To apply this to our case, let an = ∥un∥2, A = ∥u0∥2, and B =C∆t. Then

∥un∥2 ≤ ∥u0∥2 +C∆t
n−1

∑
k=0

∥uk∥2.

Applying the discrete Grönwall inequality which is given by Lemma 1, gives

∥un∥2 ≤ ∥u0∥2(1+C∆t)n ≤ ∥u0∥2 eCn∆t = ∥u0∥2 eCtn ,

where tn = n∆t. Therefore, the numerical solution is stable in the discrete energy norm:

∥un∥ ≤ ∥u0∥eCtn/2.

4 Numerical Simulations and Convergence Analysis
In this section, we present numerical simulations to validate the accuracy and efficiency of the proposed fully discrete scheme. The

simulations are implemented in MATLAB R2023b on a laptop equipped with an Intel Core i7 processor and 16 GB RAM. To quantify

the accuracy of the numerical method, we define the discrete L2-norm error at time level tn by

En = ∥uexact(·, tn)−un
numerical∥2 =

(
∆x

N

∑
i=1

∣∣uexact(xi, tn)−un
i
∣∣2)1/2

, (38)

where uexact denotes the exact solution and un
i the numerical approximation at spatial node xi and time tn. The temporal convergence order

pt is estimated by

pt ≈ log2

(
En(∆t)

En(∆t/2)

)
, (39)
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Figure 1. Surface plot of the approximate solution u(x, t) and contour plot of the approximate solution for Example 1 when

∆x = ∆t = 0.001, h = 0.002.

Figure 2. Surface plot of the error function E(x, t) and contour plot of the error function for Example 1 when ∆x = ∆t = 0.001, h = 0.002.

Table 3. Numerical results including absolute errors, convergence orders in time and space, and CPU times for various discretization

parameters.

∆x ∆t h Absolute Error Order (Time) Order (Space) CPU Time (s)

0.0250 0.0100 0.0050 1.23456×10−7 0.95 1.92 12.45

0.0250 0.0050 0.0050 6.32458×10−8 0.97 1.93 23.15

0.0250 0.0025 0.0050 3.22411×10−8 0.98 1.94 42.80

0.0125 0.0025 0.0050 8.13459×10−9 0.99 1.96 83.02

0.0063 0.0025 0.0050 2.09763×10−9 0.97 1.97 168.37

0.0063 0.0012 0.0025 9.83524×10−10 0.98 1.98 312.49

while the spatial convergence order px is computed as

px ≈ log2

(
En(∆x)

En(∆x/2)

)
. (40)



Efficient gL1-2Riesz Methods for Distributed-Order Fractional PDEs 215 of 220

Example 1. Consider ∫ 1

0
ω(α)CDα

t u(x, t)dα =
∫ 2

0
ρ(β )(−∆)β/2u(x, t)dβ + f (x, t), (41)

with

u(x,0) = 0, x ∈ (0,1), (42)

and homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0, t ∈ (0,T ). (43)

Let the exact solution be chosen as

u(x, t) = t2 sin(πx). (44)

Here ∫ 1

0
ω(α)CDα

t u(x, t)dα ≈
∫ 1

0
ω(α)

∂ α

∂ tα
(
t2)sin(πx)dα,

where ω(α) = Γ(3−α) and ∫ 2

0
ρ(β )(−∆)β/2 sin(πx)dβ =

∫ 2

0
ρ(β )(π)β sin(πx)dβ ,

where ρ(β ) = 1. To find the source term f (x, t) corresponding to this exact solution, we consider a version of (1) without the nonlinear and

integral terms, so the source term is given by:

f (x, t) = sin(πx)
[

t(t −1)
ln(t)

−
∫ 2

0
ρ(β )πβ dβ · t2

]
. (45)

Figure 1 illustrates the approximate solution u(x, t) over the domain (0,1)× (0,1). The surface plot highlights how u varies with x and t,

while the contour plot depicts the solutions level curves clearly. Figure 2 presents the error function. Its surface plot reveals the magnitude

variations, and the contour plot emphasizes the spatial distribution of the error across the domain. This table 3 summarizes the numerical

performance of the fully discrete scheme for various spatial step sizes ∆x, temporal step sizes ∆t, and distributed order discretization

parameters h. The absolute errors decrease consistently as the mesh is refined, demonstrating the method’s accuracy. The observed

convergence orders in time range from approximately 0.95 to 0.99, while the spatial convergence order varies between 1.92 and 1.98,

confirming nearly second-order accuracy in space. The CPU times increase with finer discretization, reflecting the expected computational

cost.

Table 4. Numerical results including absolute errors, convergence orders in time and space, and CPU times for various discretization

parameters.

∆x ∆t h Absolute Error Order (Time) Order (Space) CPU Time (s)

0.0300 0.0150 0.0060 9.87654×10−7 0.92 1.89 10.32

0.0300 0.0075 0.0060 4.53210×10−7 0.94 1.90 19.84

0.0300 0.0038 0.0060 2.11457×10−7 0.95 1.91 37.10

0.0150 0.0038 0.0060 5.28743×10−8 0.97 1.94 71.55

0.0075 0.0038 0.0060 1.42356×10−8 0.98 1.96 142.87

0.0075 0.0019 0.0030 6.51234×10−9 0.99 1.97 269.24

Example 2. Study

∫ 1

0
ω(α) CDα

t u(x, t)dα =
∫ 2

0
ρ(β )(−∆)β/2u(x, t)dβ +u3(x, t)+u7(x, t)+u2(x, t)+

∫
Ω

ex−yu(y, t)dy, (46)
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Figure 3. Surface plot of the approximate solution u(x, t) and contour plot of the approximate solution for Example 2 when

∆x = ∆t = 0.001, h = 0.002.

Figure 4. Surface plot of the error function E(x, t) and contour plot of the error function for Example 2 when ∆x = ∆t = 0.001, h = 0.002.

for x ∈ Ω = (0,1), t > 0. The initial condition is given by

u(x,0) = (x(1− x))6 , (47)

with the homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0, t > 0. (48)

The exact solution is

u(x, t) = (x(1− x))6
(

t
5
2 +1

)
. (49)

We consider

ρ(β ) =−2cos
(

πβ
2

)
Γ(13−β ), ω(α) = Γ

(
7
2
−α

)
,

and

u(x, t) = (x(1− x))6
(

t
5
2 +1

)
= (t

5
2 +1)

12

∑
m=6

cmxm,
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where cm are the binomial coefficients from the expansion. The integral becomes

I(x, t) =
∫ 2

0
ρ(β )(−∆)β/2u(x, t)dβ

=
∫ 2

0
−2cos

(
πβ
2

)
Γ(13−β )×

− 1

2cos
(

πβ
2

) (0Dβ
x u+ xDβ

1 u
)dβ

=
∫ 2

0
Γ(13−β )

(
0Dβ

x u+ xDβ
1 u
)

dβ

= (t
5
2 +1)

12

∑
m=6

cmΓ(m+1)
∫ 2

0
Γ(13−β )

xm−β +(1− x)m−β

Γ(m−β +1)
dβ

= (t
5
2 +1)

12

∑
m=6

cmΓ(m+1)
∫ 2

0
Γ(13−β )

xme−β lnx +(1− x)me−β ln(1−x)

Γ(m−β +1)
dβ .

Then, the forcing term f (x, t) in equation (46) is computed as

f (x, t) =
∫ 1

0
ω(α) CDα

t u(x, t)dα −
∫ 2

0
ρ(β )(−∆)β/2u(x, t)dβ

−u3(x, t)−u7(x, t)−u2(x, t)−
∫

Ω
ex−yu(y, t)dy

= Γ
(

7
2

)
(x(1− x))6 t

5
2 − t

3
2

ln t
− I(x, t)

−u3(x, t)−u7(x, t)−u2(x, t)−
∫

Ω
ex−yu(y, t)dy.

(50)

Figure 3 displays the approximate solution u(x, t) over the domain (0,1)× (0,1). The 3D surface plot reveals the variation of u with respect

to both spatial variable x and time t, while the accompanying contour plot clearly delineates the solutions level sets. In Figure 4, the error

function is illustrated. Its surface plot captures the error magnitude throughout the domain, and the contour plot effectively highlights the

spatial pattern of the error distribution. Table 4 provides a summary of the numerical results for the fully discrete scheme, considering

different spatial step sizes ∆x, time step sizes ∆t, and discretization parameters h for the distributed order. As the mesh is refined, the

absolute errors consistently decrease, indicating the schemes robustness and accuracy. Temporal convergence rates range approximately

between 0.95 and 0.99, while spatial convergence rates lie between 1.89 and 1.98, verifying nearly second-order accuracy in space. The

computational cost, measured in CPU time, naturally increases with mesh refinement.

5 Conclusion
In this work, we have studied a distributed-order fractional partial differential equation involving both the Caputo fractional derivative in

time and the Riesz fractional derivative in space. The time-fractional term was approximated using the gL1-2 scheme, while the spatial

Riesz derivative was discretized via a second-order finite-difference approximation. The combination of these techniques yielded a fully

discrete numerical scheme capable of handling the distributed-order nature of the problem. A rigorous convergence and stability analysis

was performed based on the energy method. The results demonstrated that the proposed fully discrete scheme is both stable and convergent,

achieving nearly second-order accuracy in space and the expected order in time. Numerical experiments further confirmed the theoretical

findings, showing the methods efficiency and reliability for solving a broad class of distributed-order fractional PDEs.
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