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Abstract

The FokkerPlanck equation is widely used to describe how systems evolve when randomness plays a role. It appears in many

fields, including physics, finance, biology, and engineering. Classical numerical methods usually require discretization, which can

make the computation expensive, unstable, or less accurate. In this work, we present a direct method for solving these equations

using Least Squares Support Vector Regression (LSSVR) with Legendre kernels. Our approach avoids discretization and provides

global optimization, which helps overcome the difficulties faced by loss-based methods such as Physics-Informed Neural Networks

(PINNs). The use of Legendre kernels gives strong approximation properties and ensures high accuracy in the solutions. We tested

the method on several problems and found that it achieves very precise results while being faster and more stable than PINNs. To

further improve reliability, we also applied automatic hyperparameter tuning, which adapts the method to each problem without

manual adjustment. These results show that LSSVR with Legendre kernels is a simple, accurate, and efficient tool for scientists

and engineers who need to solve FokkerPlanck equations.

Keywords: Fokker-Planck equation, Least squares support vector regression, Legendre kernels, Physics-informed machine learning,

Kernel methods

Mathematics Subject Classification (2020): 35Q84, 65M70, 68T07, 33C45

1 Introduction
The Fokker-Planck equation is one of the most important partial differential equations in statistical physics and stochastic processes. It

describes how probability density functions change over time for systems with random fluctuations [1, 2]. It has been widely used in many

fields, including financial modeling [3], population dynamics [4], quantum mechanics [5], and engineering systems [6].

The general form of the linear Fokker-Planck equation can be written as:

∂ p(x, t)
∂ t

=− ∂
∂x

[A(x, t)p(x, t)]+
1
2

∂ 2

∂x2 [B(x, t)p(x, t)], (1)

where p(x, t) is the probability density function, A(x, t) is the drift coefficient, and B(x, t) is the diffusion coefficient. For linear cases, these

coefficients depend only on space and time, not on the probability density function itself [7, 8].
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Traditional numerical methods for solving Fokker-Planck equations include finite difference methods [9], finite element methods [10],

spectral methods [11], and Monte Carlo approaches [12]. However, these methods face several challenges: they require spatial and temporal

discretization, which increases computational complexity; they can be unstable for certain parameter ranges; and they may not provide

sufficient accuracy for complex problems [13].

Recent advances in machine learning and kernel-based methods have opened new ways to solve partial differential equations. Least

Squares Support Vector Regression (LSSVR) has emerged as a powerful tool for solving ODEs and PDEs due to its strong theoretical

foundations and computational efficiency [14, 15]. LSSVR transforms the PDE problem into a convex optimization problem, offering

advantages in finding global solutions and avoiding local minima common in neural network-based methods. Several studies have

successfully applied LSSVR for various PDE problems, demonstrating high accuracy at relatively low computational cost [16]. Recent

developments in kernel design have further enhanced the performance of kernel-based methods. Behdani and Darehmiraki demonstrated

that Wendland functions with compact support can significantly improve kernel ridge regression models, offering computational advantages

through sparsity while maintaining high approximation accuracy [17]. Notably, Rad et al. introduced fractional orthogonal kernel classifiers

in support vector machines, highlighting the effectiveness of orthogonal kernels for solving integral and differential equations [18]. Similarly,

optimization-based metaheuristic approaches have been applied for solving differential and integral equations efficiently [19–22].

Physics-Informed Neural Networks (PINNs) have also gained attention for PDE solving [23, 24]. However, PINNs face several

challenges: they rely on loss function minimization, which can get trapped in local minima; require careful tuning of loss function weights;

and can be slow and computationally expensive to train [25]. These limitations make PINNs less reliable for applications requiring fast and

accurate solutions [26, 27].

Legendre polynomials and their associated kernels are valuable in numerical analysis due to their excellent approximation properties

and orthogonality [28, 29]. They form a complete orthogonal basis in the space of square-integrable functions, making them suitable for

spectral and kernel-based methods [30]. Recent studies have demonstrated the effectiveness of Legendre kernels in machine learning and

differential equation solvers [31–33]. Complementary to Legendre-based approaches, pseudo-spectral methods using Lagrange polynomials

have shown promise for solving fractional differential equations, as demonstrated by Mirzaei and Shokri in their work on fractional cable

equations [34].

The motivation for developing the proposed LSSVRLegendre framework is to provide a PDE solver that combines the accuracy of

spectral methods, the stability of kernel-based approaches, and the efficiency of convex optimization. Unlike classical discretization methods,

which suffer from grid-induced errors and high computational cost, our approach represents the solution globally without spatialtemporal

meshing. Compared to PINNs, which rely on non-convex loss minimization and often face convergence and hyperparameter tuning

challenges, LSSVR guarantees a unique global solution through convex optimization. Incorporating Legendre kernels further enhances

numerical stability and approximation accuracy due to their orthogonality and spectral-like convergence properties, making the framework

robust and efficient for solving FokkerPlanck equations and related PDEs across scientific and engineering domains.

Although numerical methods have progressed, critical challenges remain. Traditional methods require domain discretization, increasing

computational cost and introducing numerical errors. Ensuring numerical stability and convergence is difficult, and loss-based methods

like neural networks can get trapped in local minima, compromising solution quality. Current methods often force a trade-off between

computational efficiency and solution accuracy [35].

Addressing these challenges is important across multiple scientific domains. In financial modeling, accurate solutions to Fokker-Planck

equations are crucial for option pricing and risk assessment [3]. In biological systems, these equations model population dynamics and

evolutionary processes, where traditional methods may be insufficient [4, 36]. In engineering, understanding stochastic system behavior

requires robust numerical tools [6].

This research investigates whether LSSVR with Legendre kernels can provide a more efficient and accurate approach than traditional

discretization and neural network methods. Our method solves the PDE directly without spatial-temporal grid discretization, converges

faster than PINNs, avoids local minima, and leverages Legendre kernels for high accuracy. Hyperparameter optimization ensures optimal

performance across different problem types.

The remainder of this paper is organized as follows. Section 2 presents the methodology, including the LSSVR framework, Legendre

kernel formulation, and algorithm. Section 3 provides numerical results and comparisons to existing methods. Finally, Section 4 concludes

with a discussion of findings and future research directions.
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2 Methodology
In this section, we present the theoretical foundation and algorithmic framework for solving Fokker-Planck equations using least squares

support vector regression with Legendre kernels.

2.1 Least Squares Support Vector Regression for PDEs

LSSVR is a powerful machine learning technique that can be adapted for solving differential equations. For a linear Fokker-Planck equation,

we seek an approximate solution in the form:

u(x, t) =
Nint

∑
i=1

αiK((xi, t j),(x, t))+b. (2)

Here, K((xi, t j),(x, t)) is the kernel function, αi are the support vector coefficients, and b is the bias term.

The LSSVR formulation for PDE solving involves minimizing the following objective function:

J(α,b,e) =
1
2

Nint

∑
i=1

α2
i +

γ
2

Nint

∑
i=1

e2
i . (3)

This is subject to the equality constraints:

L

[
Nint

∑
j=1

α jK((x j, t j),(xi, ti))+b

]
= f (xi, t j)+ ei, i = 1,2, . . . ,Nint. (4)

Here, L is the linear differential operator for the Fokker-Planck equation, f (xi, t j) represents the known right-hand side terms, and ei are

the error variables.

Using the method of Lagrange multipliers, we introduce multipliers λi and form the Lagrangian:

L (α,b,e,λ ) =
1
2

Nint

∑
i=1

α2
i +

γ
2

Nint

∑
i=1

e2
i

−
Nint

∑
i=1

λi

[
L

(
Nint

∑
j=1

α jK((x j, t j),(xi, ti))+b

)
− f (xi, t j)− ei

]
. (5)

Applying the Karush-Kuhn-Tucker (KKT) optimality conditions:

∂L

∂αk
= 0 ⇒ αk =

Nint

∑
i=1

λi Z [K((xk, tk),(xi, t j))], k = 1, . . . ,Nint, (6)

∂L

∂b
= 0 ⇒

Nint

∑
i=1

λi = 0, (7)

∂L

∂ei
= 0 ⇒ γei = λi, i = 1, . . . ,Nint, (8)

∂L

∂λi
= 0 ⇒ Z

[
Nint

∑
j=1

α jK((x j, t j),(xi, t j))+b

]
= f (xi, t j)+ ei. (9)

The dual formulation leads to the linear system: [
Ω+ γ−1I KT

bnd

Kbnd Kbnd,bnd

][
α
β

]
=

[
0

ybnd

]
. (10)

Here, Ωi j = L
[
L
[
K((xi, ti),(x j, t j))

]]
is the operator matrix for interior points, Kbnd is kernel evaluations between boundary and interior

points, and Kbnd,bnd shows kernel evaluations between boundary points. The vector ybnd contains boundary and initial condition values,

while α are coefficients for interior points and β are coefficients for boundary points.
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2.2 Legendre Kernels

Legendre polynomials provide an excellent basis for approximating smooth functions due to their orthogonality properties and convergence

characteristics. The Legendre kernel is constructed using the generating function of Legendre polynomials:

KL(x,y) =
∞

∑
n=0

Pn(x)Pn(y)
2n+1

. (11)

Here, Pn(x) are the Legendre polynomials of degree n, defined by Rodrigues’ formula:

Pn(x) =
1

2nn!
dn

dxn

[
(x2 −1)n

]
. (12)

For practical implementation, we use a truncated version:

KL(x,y) =
M

∑
n=0

Pn(x)Pn(y)
2n+1

. (13)

Here, M is the maximum degree of polynomials considered.

The Legendre kernel has several advantageous properties. Legendre polynomials satisfy orthogonality:∫ 1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn.

They provide uniform convergence for smooth functions and allow efficient computation of derivatives required for differential operators.

The derivatives of the Legendre kernel can be computed analytically:

∂KL(x,y)
∂x

=
M

∑
n=0

P′
n(x)Pn(y)
2n+1

, (14)

∂ 2KL(x,y)
∂x2 =

M

∑
n=0

P′′
n (x)Pn(y)
2n+1

. (15)

For two-dimensional problems with variables (x, t), we construct the tensor product kernel:

K2D((xi, t j),(xk, tl)) = Kx
L(xi,xk) ·Kt

L(t j, tl), (16)

where Kx
L and Kt

L are one-dimensional Legendre kernels with degrees Mx and Mt , respectively.

2.3 Algorithm for LSSVR with Legendre Kernels

The complete algorithm for solving linear Fokker-Planck equations combines LSSVR with Legendre kernels using the dual formulation.

Algorithm 2.3 shows the main steps of our approach. [1] Input: Fokker-Planck equation, domain Ω, boundary conditions, initial conditions

Parameters: Degrees Mx,Mt , regularization γ , collocation points nx,nt Generate Collocation Points: Interior points {(xi, t j)}
Nx,int,Nt,int
i=1, j=1

Boundary points {(xi, t j)}
Nx,bnd,Nt,bnd
i=1, j=1 for initial and boundary conditions Construct Kernel Matrices: Compute Ω(i, j),(k,l) =

L [K2D((xi, t j),(xk, tl))] for interior points Compute Kbnd,int between boundary and interior points Compute Kbnd,bnd between

boundary points Assemble System Matrix: M =

[
Ω+ γ−1I KT

bnd,int

Kbnd,int Kbnd,bnd

]
Assemble Right-Hand Side: b =

[
0

ybnd

]
where ybnd

contains boundary/initial values Solve Linear System: Solve M

[
α
β

]
= b Construct Solution: u(x, t) = ∑i, j αi jK2D((x, t),(xi, t j))+

∑k,l βklK2D((x, t),(xk, tl)) Output: Approximate solution u(x, t) For optimal performance, we use hyperparameter optimization to

determine the best values for polynomial degrees Mx and Mt , the regularization parameter γ , and the number of collocation points nx

and nt . The optimization process uses the Optuna framework to minimize validation error across parameter space [37]. This ensures

optimal accuracy for each specific problem type.

The computational complexity of the algorithm is O(N3) where N = Nint +Nbnd is the total number of collocation points. This is due

to the linear system solution. The method requires only a single solve without iterative procedures, making it computationally efficient

compared to neural network approaches that require many training epochs.
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3 Numerical Results
In this section, we present comprehensive numerical experiments to validate the effectiveness of our proposed LSSVR method with Legendre

kernels for solving Fokker-Planck equations. To evaluate the accuracy of our numerical solutions, we use three standard error metrics:

• Root Mean Square (RMS) Error:

RMS =

√√√√ 1
NxNt

Nx

∑
i=1

Nt

∑
j=1

(
uexact(xi, t j)−uapprox(xi, t j)

)2 (17)

• Mean Absolute Error (MAE):

MAE =
1

NxNt

Nx

∑
i=1

Nt

∑
j=1

∣∣uexact(xi, t j)−uapprox(xi, t j)
∣∣ (18)

• Relative L2 Error:

Relative L2 =

√
∑Nx

i=1 ∑Nt
j=1
(
uexact(xi, t j)−uapprox(xi, t j)

)2√
∑Nx

i=1 ∑Nt
j=1
(
uexact(xi, t j)

)2
(19)

Here, Nx and Nt denote the total number of spatial and temporal test points, respectively.

Example 1. We consider the Fokker-Planck equation:

∂u(x, t)
∂ t

=
∂u(x, t)

∂x
+

∂ 2u(x, t)
∂x2 , (x, t) ∈ [0,1]× [0,1]. (20)

The initial condition is u(x,0) = x, and the boundary conditions are u(0, t) = t, u(1, t) = 1+ t. The exact solution is u(x, t) = x+ t [38].

The optimal parameters obtained through Optuna optimization are Mx = 9, Mt = 5, γ = 5×107. We use collocation points ncollocx = 19

and ncolloct = 30. The total number of training points is 600. We used 8000 test points for validation.

The present method achieves exceptional accuracy for this linear problem, as shown in Table 1. This method outperforms both B-spline

methods [38] and Physics-Informed Neural Networks (PINNs) [39]. Figure 1 shows the method solution compared to the exact solution.

Table 1. Error and timing comparison for example 1 using different methods

Method
Present Method

B-Spline [38] PINN [39]
Train Test

Relative L2 1.379581e-11 8.284437e-12 ∼ 10−6* 1.0617e-04

RMS Error 1.528015e-11 8.962584e-12 - 1.1567e-04

MAE Error 8.942321e-12 5.136961e-12 - 1.0073e-04

Solver Time (s) 0.070 - -

Test Eval Time (s) 0.499 - -

*Estimated from absolute errors in Table I

Example 2. Consider the Fokker-Planck equation:

∂u(x, t)
∂ t

=− ∂
∂x

[
A(x, t)u(x, t)

]
+

∂ 2

∂x2

[
B(x, t)u(x, t)

]
, (21)

where A(x, t) = 4
x −

x
3 and B(x, t) = u(x, t). The exact solution is u(x, t) = x2et [40].

The optimized parameters are Mx = 3, Mt = 15, γ = 1× 105, tolerance = 1× 10−10. We use collocation points ncollocx = 24 and

ncolloct = 20. The training set consists of 600 points. We used 8000 test points.

As presented in Table 2, the present method shows good performance compared to the Adomian Decomposition Method (ADM) [40]

by approximately two orders of magnitude. It outperforms PINNs [39] by more than six orders of magnitude. The Solution and error

distribution shown in Figure 2.
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(a) LSSVR-Legendre solution (b) Exact solution (c) Error distribution

Figure 1. Comparison of solutions for Example 1. Subfigure (a) shows the approximate solution obtained using the proposed

LSSVR-Legendre method, (b) presents the exact analytical solution, and (c) illustrates the error distribution across the domain.

Table 2. Error and timing comparison for example 2 using different methods

Method
Present Method

ADM [40] PINN [39]
Train Test

Relative L2 3.171752e-10 3.092609e-10 5.61e-08 4.0720e-04

RMS Error 3.066744e-10 2.492252e-10 - 4.2857e-04

MAE Error 1.548611e-10 1.556033e-10 - 3.2648e-04

Solver Time (s) 0.635 - -

Test Eval Time (s) 0.381 - -

(a) LSSVR-Legendre solution (b) Exact solution (c) Error distribution

Figure 2. Comparison of solutions for Example 2. Subfigure (a) shows the numerical solution obtained with the proposed framework, (b)

gives the exact solution, and (c) displays the error distribution.
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Example 3 (Backward Kolmogorov Equation). We consider the backward Kolmogorov equation:

∂u(x, t)
∂ t

=−A(x, t)
∂u(x, t)

∂x
+B(x, t)

∂ 2u(x, t)
∂x2 , (22)

where A(x, t) =−(x+1) and B(x, t) = x2et . The exact solution is u(x, t) = (x+1)et [41].

The optimal parameters are Mx = 8, Mt = 12, γ = 1× 106. We use collocation points ncollocx = 19 and ncolloct = 21. The training set

contains 600 points and 8000 test points.

As presented in Table 3, the present method achieves significantly better accuracy than both ADM [40] and Hermite Radial Basis

Functions (HRBF) [41] methods. The solution quality is maintained consistently across both training and test datasets. The error distribution

in Figure 3 shows well-controlled deviations throughout the computational domain.

Table 3. Error and timing comparison for example 3 (Backward Kolmogorov Equation) using different methods

Method
Present Method

ADM [40] HRBF [41]
Train Test

Relative L2 1.122994e-09 1.209307e-09 5.61e-08 5.9848e-04

RMS Error 3.161359e-09 3.316910e-09 - 6.2988e-04

MAE Error 2.280776e-09 2.682391e-09 - 5.1315e-04

Solver Time (s) 0.076 - -

Test Eval Time (s) 0.516 - -

(a) LSSVR-Legendre solution (b) Exact solution (c) Error distribution

Figure 3. Comparison of solutions for Example 3 (Backward Kolmogorov equation). Subfigure (a) shows the approximate solution

obtained with the proposed LSSVR-Legendre method, (b) presents the exact analytical solution, and (c) displays the pointwise error across

the domain.

4 Conclusion
This research successfully demonstrates the effectiveness of combining least squares support vector regression with Legendre kernels for

solving linear FokkerPlanck equations. We developed a direct solution approach using LSSVR specifically tailored for these equations.

The method solves the PDE without requiring spatialtemporal discretization and achieves high accuracy due to the strong approximation

properties of Legendre kernels. The single-step LSSVR formulation provides computational advantages over iterative approaches and avoids

the convergence issues of loss-based neural networks. Our numerical experiments confirm the reliability, generalization, and stability of the

proposed framework across multiple test problems.
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While the proposed framework offers several advantages, it also has some limitations. The current formulation has been tested primarily

on linear one-dimensional problems, and its direct extension to nonlinear or high-dimensional FokkerPlanck equations may face challenges

related to kernel expressiveness and computational scalability. The computational cost, though lower than training deep neural networks,

still scales as O(N3) with the number of collocation points, which may restrict its use in very large-scale simulations. In addition, the choice

of kernel parameters and truncation degree in Legendre expansions can significantly influence performance, and a systematic strategy for

selecting these parameters is still an open problem.

Future research will therefore focus on extending this approach to nonlinear and higher-dimensional FokkerPlanck equations, where the

benefits of global kernel representations could be even more significant. Exploring alternative kernel functions or hybrid formulations may

further enhance flexibility and accuracy. To address computational scalability, parallel and GPU-based implementations will be investigated.

Finally, applying the framework to real-world problems in finance, physics, and engineering will be an important step toward demonstrating

its practical value beyond benchmark cases.
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