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Abstract

In this paper, we investigate the real roots of a special class of square matrices, leveraging the properties of involutory and

idempotent matrices. We focus on determining real roots for real orthogonal and symmetric matrices, demonstrating how involutory

matrices facilitate this process. Our results show that a real involutory matrix of order n with a positive determinant always

admits a real root. Furthermore, for real symmetric matrices, we establish that a real root exists if every negative eigenvalue

appears with even multiplicity. We also explore the structure of idempotent matrices, presenting a general block form derived

through similarity transformations. Specifically, we prove that for invertible submatrices A and D, along with arbitrary block

matrices B and C, a constructed matrix P exhibits idempotency. An illustrative example is provided to clarify this construction,

highlighting its application in generating idempotent and involutory matrices from simpler components. Additionally, we examine

the root-approximability of orthogonal matrices, showing that certain sequences of matrices converge to the identity while their

powers approximate the original matrix. This work extends existing results on matrix functions and diagonalization, offering

practical insights into the analysis and computation of matrix roots. Our findings contribute to the broader understanding of matrix

theory, with potential applications in numerical linear algebra and functional analysis.
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1 Introduction and Preliminaries
Let Mn denote the C∗−algebra of all n−square matrices. We know that two matrices A and B are similar, if there exists an invertible matrix

T such that A = T−1BT , and A is diagonalizable if there exist λ1, . . . ,λn such that A = T−1diag(λ1, . . . ,λn)T and unitarily diagonalizable if

T =U ∈ Un, A =U∗diag(λ1, . . . ,λn)U . Furthermore, matrix C is a root of A, if A =C2, and it can also be said that A is root - approximable

if there exists a sequence {Ck} such that Ck −→ I and C2k

k = A, for each k = 0,1,2, . . . [1, 2]. Matrix functions have been studied in [3–5].

In this paper, the matrix function f (A) =
√

A for specific matrices is studied.

The square matrix A is said to be idempotent or a projection, if A2 = A, and involutory if A2 = I. In this article, we need the following

propositions which are from [6–8].

Proposition 1. Let A be an n−square complex matrix. Then
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1. A is idempotent if and only if A is similar to a diagonal matrix of the form diag(1, . . . ,1,0, . . . ,0).

2. A is involutory if and only if A is similar to a diagonal matrix of the form diag(1, . . . ,1,−1, . . . ,−1).

Proposition 2. Let A and B be real square matrices of the same size. If P is a complex invertible matrix such that P−1AP = B, then there

exists a real invertible matrix Q such that Q−1AQ = B.

Proposition 3. Let A and B be real square matrices of the same size. If A = UBU∗ for some unitary matrix U, then there exists a real

orthogonal matrix Q such that A = QBQT .

Proposition 4. Every real orthogonal matrix is real orthogonally similar to a direct sum of real orthogonal matrices of order at most 2.

2 Involution Matrices
In this section, we obtain some properties of the involutory matrices and by applying them we derive the real root of some special matrices.

We start with matrices of order 2.

Lemma 1. The class of all real involutory matrices of order 2 is as follows:{(
a b

1−a2

b −a

)
; a,b ∈ R, b ̸= 0

}
∪

{(
±1 0

c ∓1

)
; c ∈ R

}
∪{±I2} .

Lemma 2. The class of all real matrices A such that A2 =−I2 is as follows:{(
a −b

1+a2

b −a

)
; a,b ∈ R, b ̸= 0

}
.

Herein after we refer to

(
a −b

1+a2

b −a

)
as Ψ(a,b).

Remark 1. In the Lemma (2.1), if |a| ≤ 1 and b =
√

1−a2, then(
cosθ sinθ
sinθ −cosθ

)
; θ ∈ R.

Remark 2.

(
±1 0

0 ±i

)
are the only roots of

(
1 0

0 −1

)
.

Theorem 1. Suppose A is a real involutory matrix of order n and detA > 0, then A has a real root.

Proof. Since A is a real involutory matrix, then by Propositions 1 and 2, there is an invertible real matrix B such that

A = B−1diag(1, . . . ,1,−1, . . . ,−1)B,

thus detA = 1 or detA =−1. By assumption detA = 1, then the number of eigenvalues −1 is even. Therefore

C = diag(1, . . . ,1,−1, . . . ,−1)

= Ik ⊕

(
−1 0

0 −1

)
⊕·· ·⊕

(
−1 0

0 −1

)
,

has many real roots, for instance, for arbitrary real numbers a1, . . . ,at and non-zero real numbers b1, . . . ,bt , if

D = diag(±1, · · · ,±1)⊕Ψ(a1,b1)⊕·· ·⊕Ψ(at ,bt),

then A = B−1D2B = (B−1DB)2.
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Theorem 2. Let A be a real symmetric matrix of size n with the eigenvalues λ1 ≥ ·· · ≥ λn. if every negative eigenvalue is repeated twice or

an even number of times, then A has a real root.

Proof. Given A is real symmetric, then by Proposition 3 there is a real orthogonal matrix Q such that A = QT diag(λ1, . . . ,λn)Q. If λn ≥ 0,

we have nothing to prove. Now if

λ1 ≥ ·· · ≥ λk ≥ 0 > λk+1 ≥ ·· · ≥ λn,

then by assumption, each λ j , k+1 ≤ j ≤ n is repeated twice or even times, therefore

C = diag(λ1, · · · ,λk)⊕

(
λk+1 0

0 λk+1

)
⊕·· ·⊕

(
λn 0

0 λn

)
.

Thus for all real numbers ak+1, . . . ,an and non-zero real numbers bk+1, . . . ,bn,

D = diag(±
√

λ1, · · · ,±
√

λk)⊕
√

−λk+1Ψ(ak+1,bk+1)⊕·· ·⊕
√

−λnΨ(an,bn),

are real roots of C and A = (QT DQ)2.

In this case, note that this matrix has no symmetric root.

If

R(θ) =

(
cosθ sinθ
−sinθ cosθ

)
, and E = R(

π
2
) =

(
0 1

−1 0

)
. (1)

For the roots of orthogonal matrices, we need the following lemmas:

Lemma 3. Let A and B be two matrices as follows:

A =

(
cosα sinα
sinα −cosα

)
, B =

(
cosβ sinβ
sinβ −cosβ

)
.

Then we have

(A⊕B)1/2 = Tαβ (I2 ⊕E)T−1
αβ ,

where

Tαβ =


cos α

2 0 −sin α
2 0

sin α
2 0 cos α

2 0

0 cos β
2 0 −sin β

2

0 sin β
2 0 cos β

2

 .

Proof. Suppose that

Sαβ =

(
cos α

2 −sin α
2

sin α
2 cos α

2

)
⊕

(
cos β

2 −sin β
2

sin β
2 cos β

2

)
.

Then we have

A⊕B = Sαβ

((
1 0

0 −1

)
⊕

(
1 0

0 −1

))
S−1

αβ

= Sαβ I2,3 (I2 ⊕−I2) I2,3S−1
αβ = Tαβ (I2 ⊕−I2)T−1

αβ

where

I2,3 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , and Tαβ = Sαβ I2,3. (2)
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This gives us

(A⊕B)1/2 = Tαβ (I2 ⊕E)T−1
αβ .

Let

A =

(
a1 b1

c1 d1

)
B =

(
a2 b2

c2 d2

)
,

then

A⊙B =


a1 0 b1 0

0 a2 0 b2

c1 0 d1 0

0 c2 0 d2

 ,

we see that A⊙B = I2,3(A⊕B)I2,3 where I2,3 is in (2). Let A and B be in Lemma 3, then A⊙B has a real root, in general let

Ai =

(
cosθi sinθi

sinθi −cosθi

)
, i = 1,2, . . . ,2n, (3)

we have A1⊙A2⊙·· ·⊙A2n =U(A1⊕A2⊕·· ·⊕A2n)UT , where U =(e1,e3, . . . ,e4n−1,e2,e4, . . . ,e4n)
T [8]. Therefore we have the following

corollary:

Corollary 1. Let Ai, i = 1,2, . . . ,2n be in (3), then A1 ⊙A2 ⊙·· ·⊙A2n has a real root.

Lemma 4. Let A be the matrix in Lemma 3. Then

(−1⊕A)1/2 =Vα (1⊕E)V−1
α ,

where

Vα =

 0 1 0

cos α
2 0 −sin α

2

sin α
2 0 cos α

2

 .

Proof. If

Sα =

(
cos α

2 −sin α
2

sin α
2 cos α

2

)
,

then

(−1)⊕A = (−1)⊕Sα

(
1 0

0 −1

)
S−1

α

= (1⊕Sα )

(
(−1)⊕

(
1 0

0 −1

))
(1⊕S−1

α )

= (1⊕Sα )

0 1 0

1 0 0

0 0 1


1 0 0

0 −1 0

0 0 −1


0 1 0

1 0 0

0 0 1

(1⊕Sα )
−1

=Vα (1⊕−I2)V−1
α ,

we have ((−1)⊕A)1/2 =Vα (1⊕E)V−1
α .
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According to proposition 4, for any real orthogonal matrix A there exist α1, . . . ,αs and β1 . . . ,βt such that A is similar to matrix

C = PT AP

= Ik ⊕−Il ⊕R(α1)⊕R(α2)⊕·· ·⊕R(αs)⊕

(
cosβ1 sinβ1

sinβ1 −cosβ1

)
⊕·· ·⊕

(
cosβt sinβt

sinβt −cosβt

)
,

(4)

where s and t are non-negative integer numbers. In the following theorem, we will show the roots of orthogonal matrices.

Theorem 3. Suppose A is a real orthogonal matrix with det(A)> 0, then A1/2 is real.

Proof. Let C be in the (4) where l and t have the same parity (i.e., are both even or both odd), according to the last lemmas we have two

cases:

(i) if l and t are even, then we have

C1/2 = Ik ⊕R(
π
2
)diag(

l/2︷ ︸︸ ︷
I2, . . . , I2)⊕R(

α1

2
)⊕R(

α2

2
)⊕·· ·⊕R(

αs

2
)

⊕Tβ1β2
(I2 ⊕E)T−1

β1β2
⊕·· ·⊕Tβt−1βt

(I2 ⊕E)T−1
βt−1βt

,

(ii) If l and t are odd numbers, then

C1/2 = Ik ⊕R(
π
2
)diag(

l−1
2︷ ︸︸ ︷

I2, . . . , I2)

⊕R(
α1

2
)⊕R(

α2

2
)⊕·· ·⊕R(

αs

2
)⊕Vβ1

(1⊕E)V−1
β1

⊕Tβ2β3
(I2 ⊕E)T−1

β2β3
⊕·· ·⊕Tβt−1βt

(I2 ⊕E)T−1
βt−1βt

.

Both cases yield that A1/2 = (PCPT )1/2 = PC1/2PT , where A1/2 is real.

Of course, there are many solutions to the real roots of orthogonal matrices, as stated in the remark below.

Remark 3. For an even number l

D = diag(±1, . . . ,±1)⊕R(
π
2
)diag(

l/2︷ ︸︸ ︷
±I2, . . . ,±I2)

⊕±R(
α1

2
)⊕±R(

α2

2
)⊕·· ·⊕±R(

αs

2
)⊕

Tβ1β2
(±I2 ⊕Ψ(a1,b1))T−1

β1β2
⊕·· ·⊕Tβt−1βt

(±I2 ⊕Ψ(at ,bt))T−1
βt−1βt

,

and for an odd number l

D = diag(±1, . . . ,±1)⊕R(
π
2
)diag(

l−1
2︷ ︸︸ ︷

±I2, . . . ,±I2)

⊕±R(
α1

2
)⊕±R(

α2

2
)⊕·· ·⊕±R(

αs

2
)⊕Vβ1

(exp(±1⊕Ψ(a0,b0))V−1
β1

⊕Tβ2β3
(±I2 ⊕Ψ(a1,b1))T−1

β2β3
⊕·· ·⊕Tβt−1βt

(±I2 ⊕Ψ(at ,bt))T−1
βt−1βt

,

where arbitrary real numbers a1, . . . ,at and non-zero real numbers b1, . . . ,bt . Then A = (PDPT )2.

Remark 4. If

Dk = Ir ⊕

(
cos π

2k sin π
2k

−sin π
2k cos π

2k

)
⊕·· ·⊕

(
cos π

2k sin π
2k

−sin π
2k cos π

2k

)

⊕

(
cos α1

2k sin α1
2k

−sin α1
2k cos α1

2k

)
⊕·· ·⊕

(
cos αs

2k sin αs
2k

−sin αs
2k cos αs

2k

)
,

then Dk −→ I and (PDkPT )2k
= A, i.e. A is root-approximable.
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Remark 5. With the above given if

PT AP = Ir ⊕−Il ⊕

(
cosβ1 sinβ1

sinβ1 −cosβ1

)
⊕·· ·⊕

(
cosβt sinβt

sinβt −cosβt

)
,

then A is an involutory matrix.

3 Idempotent Matrices

By Proposition 1, if P is an idempotent matrix, then it is similar to

(
I O

O O

)
where I is an identity matrix, i.e. there are matrices A,B,C

and D such that A and D are square, A and I are of the same size, then M =

(
A B

C D

)
is invertible [9, 10] and

P = M

(
I O

O O

)
M−1.

If M−1 =

(
X Y

U V

)
and A is invertible, then we have

X = A−1 +A−1B(D−CA−1B)−1CA−1, Y =−A−1B(D−CA−1B)−1,

U =−(D−CA−1B)−1CA−1, V = (D−CA−1B)−1,

P =

(
A B

C D

)(
I O

O O

)(
X Y

U V

)
=

(
AX AY

CX CY

)

=

(
I +B(D−CA−1B)−1CA−1 −B(D−CA−1B)−1

CA−1 +CA−1B(D−CA−1B)−1CA−1 −CA−1B(D−CA−1B)−1

)
,

and if D is invertible, we have

A−1 +A−1B(D−CA−1B)−1CA−1 = (A−BD−1C)−1.

Consider S = (D−CA−1B)−1 and T = (A−BD−1C)−1. We get

P =

(
AT −BS

CT −CA−1BS

)
=

(
A O

C O

)(
T O

O O

)
−

(
O B

O CA−1B

)(
O O

O S

)
.

Thus we have proved the following theorem:

Theorem 4. Let A and D be two invertible matrices of orders n and m respectively, while B and C are two matrices of orders n×m and

m×n respectively. Then

P =

(
A(A−BD−1C)−1 −B(D−CA−1B)−1

C(A−BD−1C)−1 −CA−1B(D−CA−1B)−1

)
is an idempotent.

Example 1. Let a,b,c and d be real numbers, with bc ̸= ad ̸= 0, and

A = aIn,B = b

(
Im

O

)
,C = c

(
Im O

)
,D = dIm, (n ≥ m),

M =

 aIn b

(
Im

O

)
c
(

Im O
)

dIm

 ,
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S =
a

ad −bc
Im, T =

(
d

ad−bc Im O

O 1
a In−m

)
,

therefore

P =
1

ad −bc


(

adIm O

O (ad −bc)In−m

) (
−abIm

O

)
(

cdIm O
)

−bcIm


is idempotent and

T = 2P− I =
2

ad −bc


(

ad+bc
2 Im O

O ad−bc
2 In−m

) (
−abIm

O

)
(

cdIm O
)

− ad+bc
2 Im


is an involutory matrix.
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