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Abstract

In this research, we consider the linear and nonlinear Volterra integral equations (VIEs). The main aims of research is to

approximate the integral by Gauss-Turán quadrature rule and then using extended cubic B-spline as the bases function. The

unknown coefficients in combination determine by collocation method. The arising system of linear and nonlinear can be solved

via iterative method. Error analysis is investigated theoretically. Numerical text problems are considered to justify the applicability

and efficient nature of our approach, comparison of the results justify the considerable accuracy and efficiency proposed methods.

The extended parameter in valued in the spline can be chosen in such a way to improve the accuracy also.

Keywords: Linear and nonlinear VIEs, Extended cubic spline, Gauss-Turán quadrature rule, Error analysis

Mathematics Subject Classification (2020): 45D05, 45G15, 65D05, 65R20

1 Introduction
It is well known that VIEs are of the form

U(ξ ) = g(ξ )+
∫ ξ

α
K(ξ ,y,U(y))dy, ξ ∈ [α,ξ f ], (1)

where K(ξ ,y,U(y)) is continuous on [α,ξ f ] and satisfies a uniform Lipschitz condition. VIE(1) arise in varies filed of science and dynamics

such as spread of epidemics, and semi-conductor devices [1–4]. For solution of the VIE (1), several numerical approaches have been

proposed such as, the Homotopy-perturbation method [5–8], the wavelet basis [9–12], the collocation method basis [13,14], the converting to

optimization problem [15], an approach based on Lipschitz-continuity [16], the collocation iterated method and their discretizations [17,18],

the Taylor-series expansion methods [19], the Newton-Kantorovich-quadrature method [20], the Tau approximation [21], the trapezoidal

quadrature rule [22], the Fibonacci polynomials [23], the improved cuckoo optimization algorithm [24], the natural Runge-Kutta methods

[25], the Bernstein polynomial [26, 27], the quadrature approach based on B-spline [28]. We develop a collocation by using extended cubic

spline to approximate in VIE(1).
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2 Extended Cubic Spline Collocation Approach
Extended cubic spline is an extension of spline [29]. One free parameter, θ , is introduced within the basis function where this parameter

can be used to alter the shape of the generated curve. The value of θ can be varied to obtain different numerical results. In this study, this

value is optimized to produce approximate solutions with the least error.

2.1 Extended Cubic Spline

We apply extended cubic spline collocation method to approximate solution of VIE(1). Let ∆M : {α = y0 < y1 < .. . < yM = β} be a uniform

partition of the interval [α,β ] with step size h = β−α
M . The extended cubic spline Br(y,θ) is defined as:

Br(y,θ) =
1

24h4



4k(1−θ)(y− yr−2)
3 +3θ(y− yr−2)

4, yr−2 < y ≤ yr−1

(4−θ)k4 +12k3(y− yr−1)+6k2(2+θ)(y− yr−1)
2

−12k(y− yr−1)
3 −3θ(y− yr−1)

4, yr−1 < y ≤ yr

(4−θ)k4 +12k3(yr+1 − y)+6k2(2+θ)(yr+1 − y)2

−12k(yr+1 − y)3 −3θ(yr+1 − y)4, yr < y ≤ yr+1

4k(1−θ)(yr+2 − y)3 +3θ(yr+2 − y)4, yr+1 < y ≤ yr+2

0 otherwise.

(2)

The extended cubic spline function has one arbitrary parameter θ ,when θ tends to zero the extended cubic spline reduced to convectional

cubic spline function. For θ ⩾−2, spline and extended spline share the same properties: local support, non-negativity, partition of unity and

C2 continuity. The parameter θ control the tension of the solution curve [30, 31]. we consider a extended cubic spline S(y) of the form [32]

S(y) =
M+1

∑
r=−1

trBr(y,θ) =
B−1(y,θ)
B−1(y0,θ)

W0 +
BM+1(y,θ)

BM+1(yM ,θ)
W1 +

M

∑
r=0

trBr(y,θ), (3)

where W0 =U(α) , W1 =U(β ) and the functions Br(y,θ) as follows:

Br(y,θ) = Br(y,θ)− Br(y0,θ)
B−1(y0,θ)B−1(y,θ), r = 0,1,

Br(y,θ) = Br(y,θ), r = 2, . . . ,M−2,

Br(y,θ) = Br(y,θ)− Br(yM ,θ)
BM+1(yM ,θ)BM+1(y,θ), r = M−1,M.

(4)

Br(y,θ), r = 0, . . . ,M is as the new set of redefined extended cubic spline functions which vanish on the Dirichlet,s boundary conditions.

3 On Quadrature Rules of Gauss-Turán
Let Pn be the set of all algebraic polynomials of degree at most n. The Gauss-Turán quadrature rule in [33, 34] is

∫ β

α
g(y)dχ(y) =

m

∑
τ=1

2p

∑
r=0

φτ,rg(r)(ντ )+Em,2p+1(g), (5)

where m ∈ M, p ∈ M0 and dχ(y) is a nonnegative measure on the interval (α,β ) which can be the real axis E, with compact or infinite

support for which all moments:

ηκ =
∫ β

α
yκ dχ(y), κ = 0,1, . . . , (6)

exists, are finite, more over η0 > 0, and

φτ,r =
∫ β

α
γτ,r(y)dχ(y), r = 0, . . . ,2p, τ = 1, . . . ,m,

and γτ,r(y) are the fundamental polynomials of Hermite interpolation. The nodes ντ (τ = 1, . . . ,m) in Eq. (5) are the zeros of monic

polynomial ψm(y) = ym +bm−1ym−1 + · · ·+b1x+b0 which minimizes the integral.

G(b0,b1, . . . ,bm−1) =
∫ β

α
[ψm(y)]2p+2dχ(y), (7)
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then the rule Eq. (5) is exact for all polynomials of degree at most 2(p+1)m−1, that is, Em,2p+1(g) = 0,∀g ∈ P2(p+1)m−1. The condition

Eq.(7) is equivalent with the following conditions:

∫ β

α
[ψm(y)]2p+1yκ dχ(x) = 0, κ = 0, . . . ,m−1, (8)∫ 1

−1
[ψ4(y)]5yκ dy = 0, κ = 0,1,2,3, (9)

where ψ4(y) = y4 +b3y3 +b2y2 +b1y+b0, by solving system Eq. (9) we can obtain br,(r = 0,1,2,3,4) coefficients, on the other hand we

have

ψτ+1(y) = (y−ρτ )ψτ (yx)−δτ ψτ−1(y), τ = 0,1,2,3,

ψ−1(y) = 0, ψ0(y) = 1,

where

ρτ = ρτ (2,4) =
(yψτ ,ψτ )

(ψτ ,ψτ )
=

∫ 1
−1 yψ2

τ (y)ψ
2p
m (y)dy∫ 1

−1 ψ2
τ (y)ψ

2p
m (y)dy

=

∫ 1
−1 yψ2

τ (y)ψ4
4 (y)dy∫ 1

−1 ψ2
τ (y)ψ4

4 (y)dy
,

δτ = δτ (2,4) =
(ψτ ,ψτ )

(ψτ−1,ψτ−1)
=

∫ 1
−1 ψ2

τ (y)ψ
2p
m (y)dy∫ 1

−1 ψ2
τ−1(y)ψ

2p
m (y)dy

=

∫ 1
−1 ψ2

τ (y)ψ4
4 (y)dy∫ 1

−1 ψ2
τ−1(y)ψ

4
4 (y)dy

,

δ0 =
∫ 1

−1
ψ4

4 (y)dy,

so that we can obtain the zeros of monic polynomial ψ2,4
4 (y) of eigenvalue Jocobian matrix

J4 =


ρ0

√
δ 1√

δ 1 ρ1
√

δ 2√
δ 2 ρ2

√
δ 3√

δ 3 ρ3

 ,

and the values of ντ ,ρτ and δτ which are tabulated in Table 1.

Table 1. Determined values of ντ ,βτ and δτ .

ν ντ βτ δτ

0 -0.899829212560986 0 0.132703088805391(-03)1

1 -0.365924354691640 0 0.424102581549750

2 0.365924354691679 0 0.263848849055045

3 0.899829212650986 0 0.255641814691793

Finally to determine φτ,r, we use the following polynomial for approximation of function g(y),

gκ,τ (y) = (y−ντ )
κ Φτ (y) = (y−ντ )

κ ∏
r ̸=τ

(y−νr)
2p+1, (10)

where 0 ≤ κ ≤ 2w, 1 ≤ τ ≤ m and

Φτ (y) = (
ψm(y)
y−ντ

)2p+1 = ∏
r ̸=τ

(y−νr)
2p+1,τ = 1, . . . ,m,

since Eq. (5) is exact for all polynomials of degree at most 2(p+1)m−1 then accuracy degree gκ,τ is

deggκ,τ = (m−1)(2p+1)+κ ≤ (2p+1)m−1.

10.132703088805391(−03) = 0.132703088805391×10−03
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Then Eq. (5) is exact for polynomials Eq. (10), that is, E(gκ,τ ) = 0, (0 ≤ κ ≤ 2p,1 ≤ τ ≤ m) then by replacing gκ,τ (y) instead of g(y) in

Eq. (5) we have

∑m
l=1 ∑2p

r=0 φl,rg(r)κ,τ (νl) =
∫ β

α gκ,τ (y)dχ(y) = ηκ,τ ,

therefore for each τ = l, we get the following linear system (2p+1)× (2p+1), where φτ,r are unknowns r = 0, . . . ,2w, τ = 1, . . . ,m,


g0,τ (ντ ) g′0,τ (ντ ) . . . g(2p)

0,τ (ντ )

g′1,τ (ντ ) . . . g(2p)
1,τ (ντ )

. . .

g(2p)
2p,τ (ντ )




φτ,0

φτ,1
...

φτ,2p

=


η0,τ

η1,τ
...

η2p,τ

 ,

solving the above system for p = 2 and τ = 1,2,3,4, we obtain the values of φτ,r, τ = 1, . . . ,4, r = 0, . . . ,4, which are tabulated in Table 2.

Table 2. Determined values of φτ,r, τ = 1, . . . ,4, r = 0, . . . ,4.

φ1,0 = 0.315604206062624 φ1,2 = 0.001213976533015

φ2,0 = 0.684395793937405 φ2,2 = 0.0104801638359508

φ3,0 = 0.684395793937377 φ3,2 = 0.010480163835949

φ4,0 = 0.315604206062603 φ4,2 = 0.00121397653301490

φ1,1 = 0.0151791927277847 φ1,3 = 2.67403743470878×10−5

φ2,1 = 0.013556093515529 φ2,3 = 0.0001128025099388

φ3,1 =−0.135560935155336∗10−1 φ3,3 =−0.11280250993880×10−3

φ4,1 =−0.151791927277821×10−1 φ4,3 =−0.267403743470821×10−4

φ1,4 = 5.42643518348675×10−7 φ2,4 = 0.00002636423549605

φ3,4 = 0.000026364235496 φ4,4 = 5.42643518348595×10−7

4 Nonlinear Volterra Integral Equation
In the given nonlinear VIE(1), we can approximate the unknown function by extended cubic spline Eq. (3), we have:

S(ξ ) = g(ξ )+
∫ ξ

α
K(ξ ,y,S(y))dy. (11)

Now collocated Eq. (11) for a fixted t in α ≤ ξ ≤ ξ f at the points ξr = α + rh, h =
ξ f −α

M , r = 0,1, . . . ,M, we obtain

∫ ξr
α K(ξr,y,(

B−1(y,θ)
B−1(y0,θ)W0 +

BM+1(y,θ)
BM+1(yM ,θ)W1 +∑M

r=0 trBr(y,θ)))dy+g(ξr)

=
B−1(ξr ,θ)
B−1(ξ0,θ)

W0 +
BM+1(ξr ,θ)
BM+1(ξM ,θ)W1 +∑M

r=0 trBr(ξr,θ), r = 0,1, . . . ,M.

(12)

By partitioning the interval [α,ξ f ] to M equal subintervals we obtain

∑r−1
j=0

∫ ξ j+1

ξ j
K(ξr,y,(

B−1(y,θ)
B−1(y0,θ)W0 +

BM+1(y,θ)
BM+1(yM ,θ)W1 +∑M

r=0 trBr(y,θ)))dy+g(ξr)

=
B−1(ξr ,θ)
B−1(ξ0,θ)

W0 +
BM+1(ξr ,θ)
BM+1(ξM ,θ)W1 +∑M

r=0 trBr(ξr,θ), r = 0,1, . . . ,M.

(13)

For using the Gauss-Turán rule we need to change each subinterval [ξ j,ξ j+1] to the interval [−1,1]. Then by the following change of

variable, we have

y =
1
2
[(ξ j+1 −ξ j)u+(ξ j+1 −ξ j)], dy =

ξ j+1 −ξ j

2
du =

h
2

du.
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To approximate the integral Eq. (13), we can use the Gauss-Turán quadrature rule in the case m = 4 and w = 2, then we get the following

(M+1)× (M+1), nonlinear system

B−1(ξr ,θ)
B−1(ξ0,θ)

W0 +
BM+1(ξr ,θ)
BM+1(ξM ,θ)W1 +∑M

r=0 trBr(ξr,θ) = h
2 ∑r−1

j=0 ∑4
τ=1 ∑4

γ=0 φτ,γ

×(K(ξr,ζ jτ ,(
B−1(ζ jτ ,θ)
B−1(ξ0,θ)

W0 +
BM+1(ζ jτ ,θ)
BM+1(ξM ,θ)W1 +∑M

r=0 trBr(ζ jτ ,θ))))(γ)+g(ξr), r = 0,1, . . . ,M,

(14)

where ζ jτ =
(ξ j+1−ξ j)ντ+(ξ j+1+ξ j)

2 and ντ we have the nodes and coefficients φτ,γ of previous section. By solving the above nonlinear system

via iterative method we determine the coefficients tr,r = 0, . . . ,M by setting tr in Eq. (3), we obtain the approximate solution for VIE(1).

5 Error Analysis
To obtain the error estimation of our approach, the first of all we recall the following definition and Theorem in [33–35].

Definition 1. The Gauss-Turán quadrature rule with multiple nodes,

∫ β

α
g(y)χ(y)dy =

m

∑
τ=1

2p

∑
r=0

φτ,rg(r)(ντ )+Em,2p+1(g), (15)

is exact for all polynomials of degree at most 2(p+1)m−1, that is,

Em,2p+1(g) = 0, ∀ g ∈ P2(p+1)m−1.

Theorem 1. Let U(ξ ) ∈C4[α,β ],△ be the partition of [α,β ] and S(ξ ) be the spline interpolation function U(ξ ), we have

∥Dr(S−U)∥∞ ≤ ϕrh4−r, r = 0, . . . ,3. (16)

For the proof [35].

Next, we will prove the following theorem for convergence of our method in Eq.(14).

Theorem 2. The approximate method Eq. (14)

S(ξr) =
h
2 ∑r−1

j=0 ∑4
τ=1 ∑4

γ=0 φτ,γ (K(ξr,ζ jτ ,S(ζ jτ )))
(γ)+g(ξr),r = 0,1, . . . ,M, (17)

for solution of the nonlinear VIE (1) is converge and the error bounded is

|Er| ≤
hL
2

r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

|φτ,γ ||E jτ |, (18)

where E jτ = S jτ −U jτ ,Er = Sr −Ur,r = 0, . . . ,M and kernel K satisfy Lipschitz condition in their third argument with L Lipschitz constant.

Proof. We suppose that for a fixted ξ f in α < ξ f ≤ β at the points ξr = α +rh, h =
ξ f −α

M , r = 0,1, . . . ,M, the corresponding approximation

method for nonlinear VIE(1) is

S(ξr) =
h
2

r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

φτ,γ (K(ξr,ζ jτ ,S(ζ jτ )))
(γ)+g(ξr), r = 0,1, . . . ,M. (19)

By discrediting VIE(1) and approximate the integral by the Gauss-Turán rule, we can obtain

U(ξr) =
h
2

r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

φτ,γ (K(ξr,ζ jτ ,U(ζ jτ )))
(γ)+g(ξr), r = 0,1, . . . ,M. (20)
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By subtracting Eq.(20) from Eq.(19) and using interpolatory condition of cubic spline, we get

S(ξr)−U(ξr) =
h
2

r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

φτ,γ [K(γ)(ξr,ζ jτ ,S(ζ jτ ))−K(γ)(ξr,ζ jτ ,U(ζ jτ ))],

we suppose that, S(yr) = Sr, U(yr) =Ur, r = 0, . . . ,M, and kernel K(γ) satisfy Lipschitz condition in their third argument of the form

∀ µ1,µ2 ∈ R : |K(γ)(y,ζ ,µ1)−K(γ)(y,ζ ,µ2)| ≤ L|µ1 −µ2|,

where L is independent of y,ζ ,µ1 and µ2. We get

|Sr −Ur| ≤
h
2

L
r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

|φτ,γ ||S jτ −U jτ |,

|Er| ≤
hL
2

r−1

∑
j=0

4

∑
τ=1

4

∑
γ=0

|φτ,γ ||E jτ |,

where Er = Sr −Ur, r = 0, . . . ,M.

When h → 0 then the above terms are zero and also these terms are due to interpolating of U(ξ ) by cubic spline (Theorem (1)). We get for

a fixed r,

|Er| → 0 as h → 0.

6 Numerical Examples
We consider text problems of nonlinear and linear VIEs. Our numerical results are compared with methods in [36–40], program preformed

by Mathematica for examples, the running time is also reported in seconds (CPU time).

Example 1. Consider the following nonlinear VIE with exact solution U(ξ ) = cosξ ,

U(ξ ) = 1+ sin2ξ −
∫ ξ

0
3sin(ξ − y)U2(y)dy, ξ ∈ [0,1]. (21)

We apply the presented method Eq.(14), the maximum absolute errors(MAEs) in the solutions for θ = 0 with M = 20 are tabulated in Table

3, and compared with the results [36,37]. The MAEs in the solution for the different values of θ =−1.99,−1,1,3 with M = 20 are tabulated

in Table 4.

Table 3. The MAEs at particular points for M = 20.

ξr our Method θ = 0 Method in [36] Method in [37]

CPU time=92.67s

0.1 2.58750(-10) 2.547(-08) 2.17003(-06)

0.2 1.01165(-09) 3.448(-07) 4.03803(-06)

0.3 2.19251(-09) 9.190(-07) 5.67601(-06)

0.4 3.69934(-09) 1.444(-06) 6.94326(-06)

0.5 5.40590(-09) 1.881(-06) 7.76212(-06)

0.6 7.17495(-09) 2.181(-06) 8.09813(-06)

0.7 8.86762(-09) 1.839(-06) 7.95528(-06)

0.8 1.03004(-08) 6.412(-06) 7.37153(-06)

0.9 1.05758(-08) 1.004(-04) 6.41454(-06)

1 0 9.255(-04) 5.12360(-06)



Quadrature rule extended spline method 7 of 11

Table 4. The MAEs at particular points for M = 20.

ξr θ =−1.99 θ =−1 θ = 1 θ = 3

CPU time=126.69s CPU time=126.42s CPU time=120.16s CPU time=113.28s

0.1 1.23301(-06) 6.20599(-07) 6.20826(-07) 1.86105(-06)

0.2 4.75197(-06) 2.42717(-06) 2.42812(-06) 7.27883(-06)

0.3 1.00713(-05) 5.26034(-06) 5.26276(-06) 1.57765(-05)

0.4 1.63959(-05) 8.87381(-06) 8.88002(-06) 2.66204(-05)

0.5 2.26731(-05) 1.29564(-05) 1.29770(-05) 3.89029(-05)

0.6 2.76230(-05) 1.71355(-05) 1.72251(-05) 5.16392(-05)

0.7 2.97513(-05) 2.08639(-05) 2.13026(-05) 6.38673(-05)

0.8 2.73210(-05) 2.27310(-05) 2.48961(-05) 7.47357(-05)

0.9 1.82629(-05) 1.75413(-05) 2.68933(-05) 8.33706(-05)

1 0 0 0 0

Example 2. Consider the following linear VIE with exact solution U(ξ ) = 1− sinhξ ,

U(ξ ) = 1−ξ − ξ 2

2
+

∫ ξ

0
(ξ − y)U(y)dy, ξ ∈ (0,1]. (22)

We apply the presented method Eq.(14), the MAEs in the solutions for θ = 0 with M = 20 are tabulated in Table 5, and compared with the

results [37–39]. The MAEs in the solution for the different values of θ =−1.99,−1,1,3 with M = 20 are tabulated in Table 6.

Table 5. The MAEs at particular points for M = 20.

ξr our Method θ = 0 Method in [37] Method in [38] Method in [39]

CPU time=2.66 s

0.1 1.07436(-12) 1.21734(-07) 5.6389(-06) 8.33(-08)

0.2 1.07924(-11) 2.35882(-07) 2.2020(-05) 3.09(-07)

0.3 3.81101(-11) 3.54854(-07) 4.8210(-05) 6.75(-07)

0.4 9.22727(-11) 4.77841(-07) 8.3330(-05) 1.19(-06)

0.5 1.83052(-10) 6.05697(-07) 1.2656(-04) 1.87(-06)

0.6 3.20912(-10) 7.39627(-07) 1.7715(-04) 2.73(-06)

0.7 5.16804(-10) 8.80948(-07) 2.3436(-04) 3.77(-06)

0.8 7.76730(-10) 1.03101(-06) 2.9745(-04) 5.02(-06)

0.9 1.02327(-09) 1.19095(-06) 3.6566(-04) 6.50(-06)

Example 3. Consider the following linear VIE with exact solution U(ξ ) = 1
3 (2cos

√
3ξ +1),

U(ξ ) = cos(ξ )−
∫ ξ

0
(ξ − y)cos(ξ − y)U(y)dy, ξ ∈ (0,1]. (23)

We apply the presented method Eq.(14), the MAEs in the solutions for θ = 0 for the different values of M are tabulated in Table 7, and

compared with the results [39] and then the MAEs in the solutions for θ = 0 with M = 16 are tabulated in Table 8, and compared with the

results [40]. The MAEs in the solution for the different values of θ =−1.99,−1,1,3 with M = 16 are tabulated in Table 9.

7 Conclusions
We developed a method to find the solution of linear and nonlinear VIEs the overall approach is based on the Gauss-Turán quadrature rule

and then using extended cubic spline as the bases function. The unknown coefficients in combination determine by collocation method. The

arising system of linear and nonlinear can be solved. Numerical text problems are considered to justify the applicability and efficient nature

of our approach, comparison of the results justify the considerable accuracy and efficiency proposed methods.
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Table 6. The MAEs at particular points for M = 20.

ξr θ =−1.99 θ =−1 θ = 1 θ = 3

CPU time=10.73s CPU time=3.34s CPU time=3.34s CPU time=3.28s

0.1 5.33949(-08) 2.11738(-09) 2.64738(-09) 9.20950(-09)

0.2 1.80994(-07) 2.50146(-08) 2.59522(-08) 8.04554(-08)

0.3 3.46693(-07) 9.01255(-08) 9.14858(-08) 2.76501(-07)

0.4 5.17139(-07) 2.19582(-07) 2.21424(-07) 6.69902(-07)

0.5 6.61174(-07) 4.36480(-07) 4.39216(-07) 1.32506(-06)

0.6 7.49387(-07) 7.63945(-07) 7.70044(-07) 2.31957(-06)

0.7 7.53758(-07) 1.21766(-06) 1.24122(-06) 3.73573(-06)

0.8 6.47409(-07) 1.76140(-06) 1.87986(-06) 5.66394(-06)

0.9 4.04457(-07) 2.05264(-06) 2.61665(-06) 8.18089(-06)

1 0 0 0 0

Table 7. The MAEs for the different values of M.

M CPU time(s) our Method θ = 0 Method in [39]

5 0.297 7.26(-05) 9.42(-04)

10 1.328 9.18(-06) 1.76(-04)

12 2.094 5.30(-06) 1.00(-04)

15 3.469 2.71(-06) 5.30(-05)

20 10.187 1.14(-06) 2.40(-05)

25 36.766 5.84(-07) 1.40(-05)

29 60.532 3.74(-07) 1.00(-05)

35 127.516 2.13(-07) 6.35(-06)
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Table 8. The MAEs at particular points for M = 16.

ξr our Method θ = 0 Hybrid function method Haar function method

CPU time = 4.11s in [40] in [40]

0 0 0 0

0.0625 2.59961(-07) 2.92469(-03) 1.10664(-03)

0.125 6.52776(-07) 3.04161(-05) 8.61508(-03)

0.1875 9.99323(-07) 2.86431(-03) 8.87786(-03)

0.25 1.34046(-06) 1.19870(-04) 1.40576(-02)

0.3125 1.65830(-06) 2.74709(-03) 1.48130(-02)

0.375 1.95098(-06) 2.63148(-04) 2.00688(-02)

0.4375 2.21275(-06) 2.57987(-03) 1.60562(-02)

0.5 2.43916(-06) 4.51845(-04) 1.60428(-02)

0.5625 2.62653(-06) 2.37245(-03) 1.89578(-02)

0.625 2.76923(-06) 6.74887(-04) 2.51250(-02)

0.6875 2.87138(-06) 2.13708(-03) 2.05799(-02)

0.75 2.90314(-06) 9.19080(-04) 1.89545(-02)

0.8125 2.96390(-06) 1.88771(-03) 1.10394(-02)

0.875 2.67346(-06) 1.16988(-03) 6.44360(-03)

0.9375 3.44471(-06) 1.63927(-03) 7.71887(-03)

1 0 1.41219(-03) 1.63518(-02)

Table 9. The MAEs at particular points for M = 16.

ξr θ = 3 θ = 1 θ =−1 θ =−1.99

CPU time= 8.656s CPU time= 4.812s CPU time= 7.296s CPU time= 8.265s

0 0 0 0 0

0.0625 8.08921(-07) 4.92831(-07) 1.26654(-07) 4.78849(-06)

0.125 2.59497(-06) 1.43495(-06) 5.03594(-07) 8.55075(-06)

0.1875 5.07508(-06) 2.56868(-06) 1.12144(-06) 1.21636(-05)

0.25 8.19924(-06) 3.90973(-06) 1.96159(-06) 1.45916(-05)

0.3125 1.18871(-05) 5.41967(-06) 3.00406(-06) 1.68809(-05)

0.375 1.60415(-05) 7.06271(-06) 4.21146(-06) 1.78741(-05)

0.4375 2.05495(-05) 8.79667(-06) 5.56815(-06) 1.88149(-05)

0.5 2.52846(-05) 1.05754(-05) 6.98914(-06) 1.83921(-05)

0.5625 3.01089(-05) 1.23493(-05) 8.53920(-06) 1.80778(-05)

0.625 3.48758(-05) 1.40655(-05) 9.91387(-06) 1.63680(-05)

0.6875 3.94327(-05) 1.56751(-05) 1.16777(-05) 1.49979(-05)

0.75 4.36236(-05) 1.70957(-05) 1.23199(-05) 1.22241(-05)

0.8125 4.72984(-05) 1.84373(-05) 1.52657(-05) 1.00839(-05)

0.875 5.01770(-05) 1.86929(-05) 1.21920(-05) 6.53991(-06)

0.9375 5.49039(-05) 2.33778(-05) 2.27409(-05) 3.97707(-06)

1 0 0 0 0
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