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Abstract In this study, we present the existence of solutions for Urysohn
integral equations. By using the techniques of noncompactness measures, we
employ the basic fixed point theorems such as Petryshyn’s fixed point theorem
to obtain the mentioned aim in Banach algebra. Then this paper presents a nu-
merical approach based on Haar wavelets to solve the equation. This numerical
method does not lead to a nonlinear algebraic equations system. Conducting
numerical experiments confirm the theoretical results of the applied method
and endorse the accuracy of the method.
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1 Introduction

The mathematical modeling of physical phenomena, many problems in applied
mathematics, engineering, mechanics, mathematical physics and many other
fields can be turned into integral equations of the second type [1–5]. In this
research, we will consider nonlinear Urysohn Fredholm integral equations of
the second kind (NUFIEs) of the form

u(s) = f(s) + λ

∫ b

a

h(s, x, u(x))dx, s ∈ [a, b], (1)
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where the functions f(s) and h(s, x, u(x)) are known and u(s) is a solution
to be determined. Investigation on existence theorems for some nonlinear
functional–integral equations has been presented in other references such as
[6–13].

First of all, we try to prove the existence of the solution for Eq. 1. To
get these results, we use the technique of measure of noncompactness and
Petryshyn’s fixed point theorem [14] (instead of Darbo’stheorem) that has
been analyzed as a generalization of Darbos fixed theorem [15]. The idea of
using the Petryshyn fixed point theorem in order to investigate the existence of
solution of nonlinear functional integral equations for the first time was intro-
duced in [13] by Kazemi et al. (2016). Regarding the fact that we cannot solve
the nonlinear Urysohn Fredholm integral equations defined by Eq. (1) to find
an exact solution, numerical techniques are employed to estimate an approxi-
mated solution. Recently, some the numerical methods including, block-pulse
functions (BPFs) [16], operational matrices [17], triangular functions (TFs)
[18], Chebyshev polynomials [19], Least squares approximation method [20],
wavelet method [21] and Bernoulli polynomials [22] have been proposed to
obtain approximate solutions of these equations. In the methods mentioned
above, the integral equation is transformed into a system of nonlinear algebraic
equations which has to be solved with iterative methods. It is cumbersome to
solve these systems, or the solution may be unreliable. So, in the present paper,
we apply the successive approximations method based on the Haar wavelets
to estimate a numerical solution for Eq. (1). Our method does not consist
of reducing the solution of Eq. (1) to a set of algebraic equations. Also, nu-
merical methods have been presented for solving integral equations including
successive approximations method based on quadrature rules [23–28].

The structure of this article is divided into five sections. In Section 2, we
present some definitions and preliminary results about the concept of measure
of noncompactness. In Section 3, using the technique of a suitable measure of
noncompactness in the Banach algebra, we prove an existence theorem for Eq.
(1). Also, the convergence of the method of successive approximations used
to approximate the solution of the Eq. (1), is described in this section. In
order to confirm the theoretical results and show the accuracy of the method,
some numerical examples in Section 4 are considered. Section 5 includes the
conclusion of the proposed method.

2 Preliminaries

In this section, we recall some notations, definitions and theorems to obtain
all results of this work. Let (E, ∥.∥) be a Banach space. We write

B̄r = {x ∈ E :∥ x ∥≤ r}

for the closed ball and ∂B̄r = {x ∈ E :∥ x ∥= r} for the sphere in E around 0
with radius r > 0.
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The symbol M̄, ConvM will denote the closure and closed convex hull of
a subset M of E, respectively. We denote the standard algebraic operations
on sets by the symbols λM and M +N . Moreover, let mE indicate the family
of all nonempty and bounded subsets of E and nE indicate the family of all
nonempty and relatively compact subsets.

Definition 1 [29] If M is a bounded subset of a Banach space E, let α(M)
denote the (Kuratowski) measure of noncompactness of M , that is,

α(M) = inf{σ > 0 :M may be covered by finitely many sets of diameter ≤ σ}.
(2)

Definition 2 [30] The Hausdorff (or ball) measure of noncompactness

µ(M) = inf{ϵ > 0 : there exists a finite ϵ− net for M in E}, (3)

where by a finite ε-net for M in E we mean, as usual, a set {r1, r2, . . . , rm} ⊂ E
such that the balls Bε(E; r1), Bε(E; r2), . . . , Bε(E; rm) over M . These mea-
sures of noncompactness are mutually equivalent in the sense that

µ(M) ≤ α(M) ≤ 2µ(M) (4)

for any bounded set M ⊂ E.

Theorem 1 [14] Let E be a Banach space, λ ∈ R and M,N ∈ mE bounded.
Then
(i) µ(M) = 0 if and only if M ∈ nE;

(ii) µ(M) = 0 if and only if M ∈ nE;

(iii) M ⊆ N implies µ(M) ≤ µ(N) ;

(iv) µ(M̄) = µ(ConvM) = µ(M);

(v) µ(M ∪N) = max{µ(M), µ(N)};

(vi) µ(λM) =| λ | µ(M), where λM = {λm : m ∈M,λ ∈ R};

(vii) µ(M +N) ≤ µ(M) + µ(N), where M +N = {m+ n : m ∈M,n ∈ N}.

In what follows, we will work in the space C[a, b] consisting of all real-valued
functions and continuous on the interval [a, b]. The space C[a, b] is equipped
with the standard norm

∥x∥ = sup{|x(t)| : t ∈ [a, b]}. (5)

Recall that the modulus of continuity of a function u ∈ C[a, b] is defined by

ω(u, σ) = sup{|u(x)− u(y)| : |x− y| ≤ σ}. (6)

We have then w(u, σ) → 0, as σ → 0, since u is uniformly continuous on [a, b].
More generally, if this limit relation holds uniformly for u running over some
bounded set M ⊂ C, then M is equicontinuous, and vice versa.
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Theorem 2 [30] On the space C[a, b], the measures of noncompactness (3) is
equivalent to

µ(M) = lim
σ→0

sup
u∈M

ω(u, σ) (7)

for all bounded sets M ⊂ C[a, b].

For our purpose we use equation (7) in the rest of the paper. Closely associated
with the measures of noncompactness is the concept of k-set contraction.

Definition 3 [31] Let Γ : E → E be a continuous mapping of E. Γ is called
a k-set contraction if for all B ⊂ E with B bounded, Γ (B) is bounded and
β(ΓB) ≤ kβ(B), 0 < k < 1. if

β(ΓB) < β(B), for all β(B) > 0, (8)

then Γ is called densifying or condensing map. A k-set contraction with k ∈
(0, 1), is densifying, but converse is not true.

Theorem 3 [14] Assume that Γ : B̄r → E be a densifying mapping which
satisfying the boundary condition,

If Γ (x) = kx, for some x in ∂ Br then k ≤ 1, (9)

then the set of fixed points of Γ in B̄r is nonempty. This is known by Petryshyn’s
fixed point theorem.

This property allows us to characterize solution of the integral Eq. (1) and
will be used in the next section.

3 Main results

In this section, we will study the existence of the nonlinear functional Eq. (1)
for u ∈ C[a, b] under the following assumptions:

(H1) f ∈ C(R,R), u ∈ C([a, b],R), h ∈ C([a, b]× [a, b]×R,R),

(H2) There exists a constant c such that
|h(s, x, u(x))− h(s, x, ū(x))| ≤ c|u(x)− ū(x)|;

(H3) (Bounded condition) There exists r0 ≥ 0 such that the following bounded
condition is satisfied
sup{|f(s) + λ

∫ b

a
h(s, x, u(x))dx| : s, x ∈ I, u ∈ [−r0, r0]} ≤ r0,

The following result is obtained by using the above hypotheses.

Theorem 4 Under the assumption (H1)-(H3) above, Eq. (1) has at least one
solution in the Banach space E = C([a, b]).
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Proof To prove this result using Theorem 3 as our main tool, we need to define
operator T : Br0 → E in the following way

(Tx)(t) = f(s) + λ

∫ b

a

h(s, x, u(x))dx, (10)

Now, we show that the operator T is continuous on the ball Br0 . To do this,
consider σ > 0 and take arbitrary u, v ∈ Br0 such that ∥ u− v ∥≤ σ. Then for
s ∈ I, we get

|(Tu)(s)− (Tv)(s)| = |λ
∫ b

a

h(s, x, u(x))dx− λ

∫ b

a

h(s, x, v(x))dx|

≤ λ

∫ b

a

|h(s, x, u(x))− h(s, x, v(x))|dx

≤ λc(b− a)∥u− v∥

Thus, the above estimate shows that the operator T is continuous on Br0 .
Now, we will prove that the operator T satisfies densifying condition with
respect to the measure µ as defined in (7). To do this, we choose a fixed
arbitrary σ > 0 . Let us take u ∈ M and M is bounded subset of E, s1, s2 ∈
[a, b] such that without loss of generality we may assume that s1 ≤ s2 with
s2 − s1 ≤ σ, we obtain

|(Tu)(s2)− (Tu)(s1)| = |f(s2) + λ

∫ b

a

h(s2, x, u(x))dx− f(s1)− λ

∫ b

a

h(s1, x, u(x))dx|

≤ |f(s2)− f(s1)|+ λ

∫ b

a

|h(s2, x, u(x))− h(s1, x, u(x))|dx

For simplicity we use the following notations:
ωh([a, b], σ) = sup{|h(s2, x, u)−h(s1, x, u)| : |s2−s1| ≤ σ, s2, s1 ∈ Ia, u ∈ [−r0, r0]},

(11)
and

ωf ([a, b], σ) = sup{f(s2)− f(s1)| : |s2 − s1| ≤ σ, s2, s1 ∈ Ia} (12)
The above inequality yields the following estimate

ω(Tu, σ) ≤ (b− a)λωh([a, b], σ) + ωf ([a, b], σ),

In view of our assumptions we infer that the functions f(s) and h(s, x, u(x))
are continuous on the sets [a, b] and [a, b] × [a, b] ×R, respectively. Hence we
deduce that ωf ([a, b], σ) and ωh([a, b], σ) → 0 as σ → 0. This means T is
a densifying map. Finally, investigation of condition 9 is remained. Suppose
x ∈ ∂B̄r0 .
If Tx = kx then we have kr0 = k∥x∥ = ∥Tx∥ and by condition (H3) we
concluded that

|Tx(t)| = |f(s) + λ

∫ b

a

h(s, x, u(x))dx| ≤ r0, (13)

for all t ∈ Ia, hence ∥Tx∥ ≤ r0, so this shows k ≤ 1. The proof is complete.
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3.1 Haar wavelet

In the previous section, we proved the existence of solution for Eq. (1). Now, we
are going to approximate the solution of Eq. (1) by successive approximations
method based on the Haar wavelets.
Definition 4 [32] The Haar scaling function also, called the father wavelet,
is defined on the interval [a, b) as

φ(x) =

{
1, a ≤ x < b,

0, otherwise.
(14)

Definition 5 [32] The mother wavelet for Haar wavelets family is also defined
on the interval [a, b) as follows

ψ(x) =


1, a ≤ x < a+b

2 ,

−1, a+b
2 ≤ x < b,

0, otherwise.
(15)

All the other functions in the Haar wavelets family are defined on subintervals
of [a, b) and are generated from ψ(x) by the operations of dilation and trans-
lation. Each function in the Haar wavelets family defined for x ∈ [a, b) except
the scaling function can be expressed as

Hi(x) = Ψ(2j − k) =


1, ζ ≤ x < η,

−1, η ≤ x < ξ,

0, otherwise,
(16)

where i = 2, 3, . . . , 2N and

ζ = a+ (b− a)
k

n
, η = a+ (b− a)

k + 0.5

n
, ξ = a+ (b− a)

k + 1

n
. (17)

In the above definition the integer n = 2j , j = 0, 1, . . . , J shows the level of
the wavelet and k = 0, 1, . . . , n− 1 is the translation parameter. The maximal
level of resolution is the integer J .

The wavelet numbers i is calculated according the formula i = n + k + 1.
In the case of minimal values n = 1, k = 0, we have i = 2. The maximum of
i is i = 2N = 2J+1. For i = 1, 2, the function H1(x) is called scaling function
whereas H2(x) is the mother wavelet for the Haar wavelet family.
Proposition 1 [21] Let f : [a, b] → R be continuous integrable function.
Consider the integral

I =

∫ b

a

f(x)dx (18)

over the [a, b]. Using the quadrature formula with respect to Haar wavelets the
above integral can be approximated as follows:

I ≃ (b− a)

2N

2N∑
i=1

f(a+ (b− a)
2i− 1

4N
), i = 1, 2, . . . , 2N. (19)
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Definition 6 For L ≥ 0, the function f : R → R is L-Lipschitz if

|f(x1)− f(x2)| ≤ L|x1 − x2|, ∀x1, x2 ∈ [a, b] (20)

Theorem 5 Let f : [a, b] → R be integrable function on [a, b] of L-Lipschitz
type. Then the following inequality holds:∣∣∣∣∣

∫ b

a

f(x)dx− (b− a)

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)∣∣∣∣∣ ≤ L
(b− a)2

4N
, (21)

where N = 2J is the maximal level of resolution of Haar wavelets.

Proof ∣∣∣∣∣
∫ b

a

f(x)dx − (b− a)

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

f(x)dx−
∫ b

a

1

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)
dx

∣∣∣∣∣
≤ 1

2N

∫ b

a

2N∑
i=1

∣∣f(x)− f
(
a+ (b− a)

2i− 1

4N

)∣∣dx
≤ 1

2N

∫ b

a

2N∑
i=1

(
L|x− (a+ (b− a)

2i− 1

4N
)|
)
dx

According to the x ∈ [a+ (b− a) 2i−1
4N , a+ b−a

4N (2i)) we get∣∣∣∣∣
∫ b

a

f(x)dx− (b− a)

2N

2N∑
i=1

f
(
a+ (b− a)

2i− 1

4N

)∣∣∣∣∣≤ L
(b− a)2

4N
. (22)

Thus, the proof is complete.

3.2 Numerical method

Here, for solving the equation

u(s) = f(s) + λ

∫ b

a

h(s, x, u(x))dx, s ∈ [a, b], (23)

we try to discretize the integral equation by the quadrature formula for the
above integral as∫ b

a

h(s, x, u(x))dx = δ

2N∑
i=1

h
(
s, ti, u(ti)

)
+ L

(b− a)2

4N
, (24)
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where
ti = a+

b− a

4N
(2i− 1), i = 1, . . . , 2N, (25)

with
δ =

b− a

2N
. (26)

Then by substituting in the Hammerstein integral equation, we have

SN (u) ≃ f(s) + λδ

2N∑
i=1

h
(
s, ti, u(ti)

)
, s ∈ [a, b]. (27)

Now, let

u0(s) = f(s),

um(s) = f(s) + δ

2N∑
i=1

h
(
s, a+

b− a

4N
(2i− 1), um−1(a+

b− a

4N
(2i− 1))

)
.

It is easy to derive from numerical examples that

lim
m→∞

um(s) = u(s), s ∈ [a, b].

4 Numerical experiments

We have applied our method on some numerical examples, to observe the
accuracy and efficiency of the present method for solving NUFIEs. In order to
analyze the error of the method we introduce notations

∥eN∥∞ := ∥u∗ − u(N)
m ∥∞ = max{| u∗(sj)− um(sj) | j = 0, 2N} (28)

The experimental rate of convergence for the following examples is also calcu-
lated which is difined as (Chapter 2, [33]):

Ratio =
∥u∗ − u

(N)
m ∥∞

∥u∗ − u
(2N)
m ∥∞

, (29)

and
ρN = log2

(
∥eN∥∞
∥e2N∥∞

)
(30)

where ρN estimates the convergence rate. Also u∗ and ūm are the exact solution
and approximate solution of the Eq. (1), respectively. Moreover, the number
of iterations, m, and the error ∥en∥∞ are inserted in Tables 2 and 4. The
absolute value of the errors for different values of N, is reported. These tables
show that increasing N the error significantly is reduced. In all examples, we
choose the tolerance ε = 10−15 to stop the iterations, i.e. fixed point iterations
stop when ∥um − um−1∥ < ε.
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Table 1 Absolute errors of the itrative method for Example 1.

s Exact solution ej , 2N = 8 ej , 2N = 16 ej , 2N = 32

0.1 1.99 1.1274 ×10−7 2.7122 ×10−7 2.8641 ×10−8

0.3 1.91 2.8843 ×10−7 5.0062 ×10−7 7.3253 ×10−8

0.5 1.75 6.0475 ×10−7 8.4570 ×10−7 1.5354 ×10−7

0.7 1.51 1.1165 ×10−6 1.3381 ×10−6 2.8342 ×10−7

0.9 1.19 1.8865 ×10−6 2.0131 ×10−6 4.7881 ×10−7

Table 2 Rate of convergence and order of convergence for Example 1.

J N 2N m ∥eN∥∞ Ratio ρN

1 2 4 6 3.5629× 10−5 − −
2 4 8 7 1.1253× 10−5 3.1661 1.6627
3 8 16 7 2.9856× 10−6 3.7690 1.9141
4 16 32 7 7.5763× 10−7 3.9407 1.9784
5 32 64 7 1.9012× 10−7 3.9850 1.9945

Example 1 Consider nonlinear Fredholm integral equation ([34], Example 3)

u(s, t) = f(s) +

∫ 1

0

sx
√
u(x)dx, (s) ∈ [0, 1], (31)

where

f(s) = 2− 1

3
(2
√
2− 1)s− s2,

and exact solution

u(s) = 2− s2.

In order to find an approximation solution of u∗ using above numerical scheme,
we choose 2N = 8, 2N = 16, 2N = 32 and ε = 10−15. The exact solution and
the absolute errors e2N (sj) = ej are displayed in Table 1.
Also, for N ∈ {2, 4, 8, 16, 32}, we test the rate of convergence, the order of
convergence and computational results are given in Table 2.

Example 2 Consider the nonlinear integral equation [35]

u(s, t) = f(s) +

∫ 1

0

es−2x(u(x))3dx, (s) ∈ [0, 1], (32)

where

f(s) = es+1,

and exact solution

u(s) = es.
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Table 3 Absolute errors of the itrative method for Example 2.

s Exact solution ej , 2N = 8 ej , 2N = 16 ej , 2N = 32

0.1 1.1051 1.3836 ×10−8 3.4843 ×10−9 8.7273 ×10−10

0.3 1.3498 5.0706 ×10−8 1.2767 ×10−8 3.1977 ×10−9

0.5 1.6487 1.2969 ×10−7 3.2652 ×10−8 8.1780 ×10−9

0.7 2.0137 2.7187 ×10−7 6.8440 ×10−8 1.7140 ×10−8

0.9 2.4596 5.0188 ×10−7 1.2632 ×10−7 3.1638 ×10−8

Table 4 Rate of convergence and order of convergence for Example 2.

J N 2N m ∥eN∥∞ Ratio ρN

1 2 4 6 3.3020× 10−6 − −
2 4 8 7 8.4790× 10−7 3.8943 1.9613
3 8 16 7 2.1340× 10−7 3.9732 1.9903
4 16 32 7 5.3445× 10−8 3.9928 1.9974
5 32 64 7 1.3301× 10−8 4.0181 2.0065

For 2N = 8, 2N = 16, 2N = 32, and ε = 10−15, the following results
are obtained (see Table 3). Also, for N ∈ {2, 4, 8, 16, 32}, we test the rate of
convergence, the order of convergence and computational results are given in
Table 4.

5 Conclusions

In this research, numerical method for numerical solution of nonlinear Urysohn
integral equations based on Haar wavelet has been suggested. This method is
very simple and involves lower computation. By using the techniques of non-
compactness measures and Petryshyn’s fixed point, in the Theorem 4 sufficint
conditions for the existence solution of Eq. (1) are presented. To illustrate the
efficiency of the presented method, two examples are given.
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