Regularity of Bounded Tri-Linear Maps and the Fourth Adjoint of a Tri-Derivation

Abotaleb Sheikhali*[∗] ·* **Ali Ebadian** *·* **Kazem Haghnejad Azar**

Received: 24 February 2020 / Accepted: 3 June 2020

Abstract In this Article, we give a simple criterion for the regularity of a tri-linear mapping. We provide if $f : X \times Y \times Z \longrightarrow W$ is a bounded tri-linear mapping and $h: W \longrightarrow S$ is a bounded linear mapping, then *f* is regular if and only if *hof* is regular. We also shall give some necessary and sufficient conditions such that the fourth adjoint *D∗∗∗∗* of a tri-derivation *D* is again tri-derivation.

Keywords Fourth adjoint *·* Regular *·* Tri-derivation *·* Tri-linear

Mathematics Subject Classification (2010) 46H25 *·* 46H20 *·* 47B47 *·* 16W25

1 Introduction and preliminaries

Richard Arens showed in [3] that a bounded bilinear map $m: X \times Y \longrightarrow Z$ on normed spaces, has two natural different extensions *m∗∗∗* , *m^r∗∗∗^r* from *X∗∗×Y ∗∗* into *Z ∗∗*. When these extensions are equal, *m* is called Arens regular. A Banach algebra *A* is said to be Arens regular, if its product $\pi(a, b) = ab$

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran. E-mail: Abotaleb.sheikhali.20@gmail.com

A. Ebadian Faculty of Science, Department of Mathematics, Urmia University, Urmia, Iran. E-mail: Ebadian.ali@gmail.com

K. Haghnejad Azar Department of Mathematics and Applications, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: Haghnejad@aut.ac.ir

*⃝*c 2020 Damghan University. All rights reserved. http://gadm.du.ac.ir/

*[∗]*Corresponding author

A. Sheikhali

considered as a bilinear mapping π : $A \times A \longrightarrow A$ is Arens regular. The first and second Arens products of A^{**} by symbols \Box and \diamondsuit respectively defined by

$$
a^{**} \Box b^{**} = \pi^{***}(a^{**}, b^{**}) \quad , \quad a^{**} \Diamond b^{**} = \pi^{r***r}(a^{**}, b^{**}).
$$

Some characterizations for the Arens regularity of bounded bilinear map *m* and Banach algebra *A* are proved in [1], [2], [3], [4], [5], [9], [11], [14] and [15]. Suppose *X, Y, Z, W* and *S* are normed spaces and $f: X \times Y \times Z \longrightarrow W$ is a bounded tri-linear mapping. In this paper we first define regularity of *f* map and showing that *f* is regular if and only if $f^{***r*}(X^{**}, W^*, Z) \subseteq Y^*$ and $f^{****}(W^*, X^{**}, Y^{**}) \subseteq Z^*$. Also we show that for a bounded tri-linear map *f* : $X \times Y \times Z$ → *W* and a bounded linear operator $h: W \longrightarrow S$, *f* is regular if and only if *hof* is regular.

The natural extensions of *f* are as follows:

- 1. $f^*: W^* \times X \times Y \longrightarrow Z^*$, given by $\langle f^*(w^*, x, y), z \rangle = \langle w^*, f(x, y, z) \rangle$ where $x \in X$, $y \in Y$, $z \in Z$, $w^* \in W^*$ (f^* is said the adjoint of *f* and is a bounded tri-linear map).
- 2. $f^{**} = (f^*)^* : Z^{**} \times W^* \times X \longrightarrow Y^*$, given by $\langle f^{**}(z^{**}, w^*, x), y \rangle =$ $\langle z^{**}, f^*(w^*, x, y) \text{ where } x \in X, y \in Y, z^{**} \in Z^{**}, w^* \in W^*.$
- 3. $f^{***} = (f^{**})^* : Y^{**} \times Z^{**} \times W^* \longrightarrow X^*$, given by $\langle f^{***}(y^{**}, z^{**}, w^*), x \rangle =$ $\langle y^{**}, f^{**}(z^{**}, w^*, x) \rangle$ where $x \in X$, $y^{**} \in Y^{**}$, $z^{**} \in Z^{**}$, $w^* \in W^*$.
- 4. $f^{****} = (f^{***})^* : X^{**} \times Y^{**} \times Z^{**} \longrightarrow W^{**}$, given by $\langle f^{****}(x^{**},y^{**},z^{**})$ $\langle w^* \rangle = \langle x^{**}, f^{***}(y^{**}, z^{**}, w^*) \rangle$ where $x^{**} \in X^{**}, y^{**} \in Y^{**}, z^{**} \in Y^{**}$ *Z ∗∗, w[∗] ∈ W[∗]* .

Now let f^r : $Z \times Y \times X \longrightarrow W$ be the flip of *f* defined by $f^r(z, y, x) = f(x, y, z)$, for every $x \in X, y \in Y$ and $z \in Z$. Then f^r is a bounded tri-linear map and it may extends as above to $f^{r****}: Z^{**} \times Y^{**} \times X^{**} \longrightarrow W^{**}$. When f^{****} and *f ^r∗∗∗∗^r* are equal, then *f* is said to be regular. For bounded tri-linear maps, we have naturally six different Aron-Berner extensions to the bidual spaces based on six different elements in S3 and compeletly regularity should be defined accordingly to the equality of all these six Aron-Berner extensions. See [12].

Suppose *A* is a Banach algebra and $\pi_1 : A \times X \longrightarrow X$ is a bounded bilinear map. The pair (π_1, X) is said to be a left Banach *A−*module when $\pi_1(\pi_1(a, b), x) = \pi_1(a, \pi_1(b, x))$, for each $a, b \in A$ and $x \in X$. A right Banach *A*−module may is defined similarly. Let π_2 : $X \times A \longrightarrow X$ be a bounded bilinear map. The pair (X, π_2) is said to be a right Banach *A−*module if $\pi_2(x, \pi_2(a, b)) = \pi_2(\pi_2(x, a), b)$. A triple (π_1, X, π_2) is said to be a Banach *A−*module if (X, π_1) and (X, π_2) are left and right Banach *A−*modules, respectively, and $\pi_1(a, \pi_2(x, b)) = \pi_2(\pi_1(a, x), b)$. Let (π_1, X, π_2) be a Banach *A*−module. Then $(\pi_2^{r*r}, X^*, \pi_1^*)$ is the dual Banach *A*−module of (π_1, X, π_2) .

A bounded linear mapping $D_1: A \longrightarrow X^*$ is said to be a derivation if for each $a, b \in A$

$$
D_1(\pi(a,b)) = \pi_1^*(D_1(a),b) + \pi_2^{r*r}(a,D_1(b)).
$$

A bounded bilinear map $D_2: A \times A \longrightarrow X$ (or X^*) is called a bi-derivation, if for each a, b, c and $d \in A$

$$
D_2(\pi(a, b), c) = \pi_1(a, D_2(b, c)) + \pi_2(D_2(a, c), b),
$$

\n
$$
D_2(a, \pi(b, c)) = \pi_1(b, D_2(a, c)) + \pi_2(D_2(a, b), c).
$$

Let $D_1: A \longrightarrow A^*$ be a derivation. Dales, Rodriguez and Velasco, in [7] showed that $D_1^{**}: (A^{**}, \Box) \longrightarrow A^{***}$ is a derivation if and only if $\pi^{r****}(D_1^{**}(A^{**}), A^{**})$ *⊆ A[∗]* . In [13], S. Mohamadzadeh and H. Vishki extends this and showed that second adjont D_1^{**} : $(A^{**}, \Box) \longrightarrow A^{***}$ is a derivation if and only if $\pi_2^{***}(D_1^{**}(A^{**}), X^{**}) \subseteq A^*$ and which $D_1^{**} : (A^{**}, \Diamond) \longrightarrow A^{***}$ is a derivation if and only if $\pi_1^{r****}(D_1^{**}(A^{**}), X^{**}) \subseteq A^*$.

A. Erfanian Attar et al, provide condition such that the third adjoint *D∗∗∗* 2 of a bi-derivation $D_2: A \times A \longrightarrow X$ (or X^*) is again a bi-derivation, see [8]. For a Banach *A*−module (π_1, X, π_2) , the fourth adjoint D^{***} of a tri-derivation $D: A \times A \times A \longrightarrow X^*$ is trivially a tri-linear extension of *D*. A problem which is of interest is under what conditions we need that *D∗∗∗∗* is again a tri-derivation. In section 4 we will extend above mentioned result. A bounded trilinear mapping $f : X \times Y \times Z \longrightarrow W$ is said to factor if it is surjective, that is $f(X \times Y \times Z) = W$.

Throughout the article, we usually identify a normed space with its canonical image in its second dual.

2 Regularity of bounded tri-linear maps

Theorem 1 *Let* $f: X \times Y \times Z \longrightarrow W$ *be a bounded tri-linear map. Then* f *is regular if and only if*

$$
w^* - \lim_{\alpha} w^* - \lim_{\beta} w^* - \lim_{\gamma} f(x_{\alpha}, y_{\beta}, z_{\gamma}) = w^* - \lim_{\gamma} w^* - \lim_{\beta} w^* - \lim_{\alpha} f(x_{\alpha}, y_{\beta}, z_{\gamma}),
$$

where $\{x_{\alpha}\}, \{y_{\beta}\}\$ and $\{z_{\gamma}\}\$ are nets in X, Y and Z which converge to $x^{**} \in$ $X^{**}, y^{**} \in Y^{**}$ and $z^{**} \in Z^{**}$ *in the* w^* *-topologies, respectively.*

Proof. For every $w^* \in W^*$ we have

$$
\langle f^{***}(x^{**}, y^{**}, z^{**}), w^* \rangle = \langle x^{**}, f^{***}(y^{**}, z^{**}, w^*) \rangle
$$

\n
$$
= \lim_{\alpha} \langle f^{***}(y^{**}, z^{**}, w^*), x_{\alpha} \rangle = \lim_{\alpha} \langle y^{**}, f^{**}(z^{**}, w^*, x_{\alpha}) \rangle
$$

\n
$$
= \lim_{\alpha} \lim_{\beta} \langle f^{**}(z^{**}, w^*, x_{\alpha}), y_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle z^{**}, f^{*}(w^*, x_{\alpha}, y_{\beta}) \rangle
$$

\n
$$
= \lim_{\alpha} \lim_{\beta} \langle f^{*}(w^*, x_{\alpha}, y_{\beta}), z_{\gamma} \rangle = \lim_{\alpha} \lim_{\beta} \langle f(x_{\alpha}, y_{\beta}, z_{\gamma}), w^* \rangle.
$$

Therefore $f^{****}(x^{**}, y^{**}, z^{**}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} w^* - \lim_{\gamma} f(x_{\alpha}, y_{\beta}, z_{\gamma}).$ In the other hands $f^{r***r}(x^{**},y^{**},z^{**}) = w^* - \lim_{\gamma} w^* - \lim_{\beta} w^* - \lim_{\alpha} f(x_{\alpha},y_{\beta},z_{\gamma}),$ and proof follows. \Box

In the following theorem, we provide a criterion concerning to the regularity of a bounded tri-linear map.

Theorem 2 For a bounded tri-linear map $f: X \times Y \times Z \longrightarrow W$ the following *statements are equivalent:*

1. f is regular. 2. f ∗∗∗∗∗(*W∗∗∗, X∗∗, Y ∗∗*) = *f r∗∗∗∗∗∗∗r* (*W∗∗∗, X∗∗, Y ∗∗*)*.* 3. $f^{****}(X^{**}, W^*, Z) \subseteq Y^*$ and $f^{****}(W^*, X^{**}, Y^{**}) \subseteq Z^*$.

Proof. (1) \Rightarrow (2), if *f* is regular, then $f^{****} = f^{r****r}$. For every $x^{**} \in$ $X^{**}, y^{**} \in Y^{**}, z^{**} \in Z^{**}$ and $w^{***} \in W^{***}$ we have

$$
\langle f^{****}(w^{***}, x^{**}, y^{**}), z^{**} \rangle = \langle w^{***}, f^{****}(x^{**}, y^{**}, z^{**}) \rangle
$$

= $\langle w^{***}, f^{****}(x^{**}, y^{**}, z^{**}) \rangle = \langle f^{*******}(w^{***}, x^{**}, y^{**}), z^{**} \rangle.$

as claimed.

 $(2) \Rightarrow (1)$, let $f^{*****} = f^{r*******r}$, then for every $w^* \in W^*$, $\langle f^{r***r}(x^{**},y^{**},z^{**}),w^*\rangle = \langle f^{r******r}(w^*,x^{**},y^{**}),z^{**}\rangle$ $=\langle f^{****}(w^*,x^{**},y^{**}),z^{**}\rangle =\langle f^{****}(x^{**},y^{**},z^{**}),w^*\rangle.$

It follows that *f* is regular.

 $(1) \Rightarrow (3)$, assume that *f* is regular and $x^{**} \in X^{**}, y^{**} \in Y^{**}, z \in Z, w^* \in \mathbb{R}$ *W[∗]* . Then we have

$$
\langle f^{****r*}(x^{**}, w^*, z), y^{**} \rangle = \langle f^{****}(x^{**}, y^{**}, z), w^* \rangle = \langle f^{rr***r}(x^{**}, y^{**}, z), w^* \rangle = \langle f^{rr*}(x^{**}, w^*, z), y^{**} \rangle.
$$

Therefore $f^{****r}(x^{**},w^*,z) = f^{r**}(x^{**},w^*,z) \in Y^*$. So $f^{****r}(X^{**},W^*,Z) \subseteq$ Y^* . A similar argument shows that $f^{****}(w^*, x^{**}, y^{**}) = f^{r***r}(w^*, x^{**}, y^{**}) \in$ *Z*[∗]. Thus $f^{*****}(W^*, X^{**}, Y^{**}) \subseteq Z^*$, as claimed.

 $(3) \Rightarrow (1)$, let $\{x_{\alpha}\}, \{y_{\beta}\}$ and $\{z_{\gamma}\}\$ are nets in *X*, *Y* and *Z* which converge to x^{**}, y^{**} and z^{**} in the w^* -topologies, respectively. For every $w^* \in W^*$ we have

$$
\langle f^{r***r}(x^{**}, y^{**}, z^{**}), w^* \rangle = \lim_{\gamma} \lim_{\beta} \langle f(x_{\alpha}, y_{\beta}, z_{\gamma}), w^* \rangle
$$

\n
$$
= \lim_{\gamma} \lim_{\beta} \langle f^{***}(y_{\beta}, z_{\gamma}, w^*), x_{\alpha} \rangle = \lim_{\gamma} \lim_{\beta} \langle x^{**}, f^{***}(y_{\beta}, z_{\gamma}, w^*) \rangle
$$

\n
$$
= \lim_{\gamma} \lim_{\beta} \langle x^{**}, f^{****}(w^*, z_{\gamma}, y_{\beta}) \rangle = \lim_{\gamma} \lim_{\beta} \langle f^{****}(x^{**}, w^*, z_{\gamma}), y_{\beta} \rangle
$$

\n
$$
= \lim_{\gamma} \langle f^{****}(x^{**}, w^*, z_{\gamma}), y^{**} \rangle = \lim_{\gamma} \langle x^{**}, f^{****}(w^*, z_{\gamma}, y^{**}) \rangle
$$

\n
$$
= \lim_{\gamma} \langle x^{**}, f^{***}(y^{**}, z_{\gamma}, w^*) \rangle = \lim_{\gamma} \langle f^{****}(x^{**}, y^{**}, z_{\gamma}), w^* \rangle
$$

\n
$$
= \lim_{\gamma} \langle f^{****}(w^*, x^{**}, y^{**}), z_{\gamma} \rangle = f^{****}(w^*, x^{**}, y^{**}), z^{**} \rangle
$$

\n
$$
= \langle f^{****}(x^{**}, y^{**}, z^{**}), w^* \rangle.
$$

It follows that *f* is regular and this completes the proof.

 \Box

Corollary 1 *For a bounded tri-linear map* $f : X \times Y \times Z \longrightarrow W$ *the following statements are equivalent:*

1. f is regular. 2. f ^r∗∗∗∗∗^r = *f ∗∗∗∗∗∗∗ .* 3. $f^{r***r*}(Z^{**}, W^*, X) \subseteq Y^*$ and $f^{*****}(W^*, Z^{**}, Y^{**}) \subseteq X^*$.

Proof. The mapping f is regular if and only if f^r is regular. Therefore by Theorem 2, the desired result is obtained. \Box

Corollary 2 For a bounded tri-linear map $f : X \times Y \times Z \longrightarrow W$, if from *X, Y or Z at least two reflexive then f is regular.*

Proof. Without having to enter the whole argument, let *Y* and *Z* are reflexive. Since *Y* is reflexive, $Y^* = Y^{***}$. Therefore

$$
f^{****r*}(X^{**},W^*,Z^{**})\subseteq Y^{***}=Y^* \qquad \qquad (2-1)
$$

In the other hands, since *Z* is the reflexive space, thus

$$
f^{****}(W^{***}, X^{**}, Y^{**}) \subseteq Z^{***} = Z^* \tag{2-2}
$$

Now Using (2-1), (2-2) and Theorem 2, the result holds.

Corollary 3 Let bounded tri-linear map $f : X \times Y \times Z \longrightarrow W$ be regular. *Then*

- 1. If $f^{***r*}(X^{**}, W^*, Z)$ factors, then Y is reflexive space.
- *2. If f ∗∗∗∗∗*(*W[∗] , X∗∗, Y ∗∗*) *factors, then Z is reflexive space.*
- *3. If f ∗∗∗∗r∗* (*W[∗] , Z, Y*) *factors, then X is reflexive space.*

Proof. (1) Let *f* be regular. It follows that $f^{***r*}(X^{**}, W^*, Z) \subseteq Y^*$. In the other hands, $f^{***r*}(X^{**}, W^*, Z)$ is factor. So for each $y^{***} \in Y^{***}$ there exist $x^{**} \in X^{**}, w^* \in W^*$ and $z \in Z$ such that $f^{****r}(x^{**}, w^*, z) = y^{***}$. Therefore *Y ∗∗∗ ⊆ Y ∗* .

(2) The proof similar to (1).

(3) Enough show that $f^{***r*}(W^*, Z, Y) \subseteq X^*$ whenever f is regular. For every $x^{**} \in X^{**}, y \in Y, z \in Z$ and $w^* \in W^*$ we have

$$
\langle f^{****r*}(w^*, z, y), x^{**} \rangle = \langle w^*, f^{****}(x^{**}, y, z) \rangle = \langle f^{****r}(x^{**}, y, z), w^* \rangle = \langle f^{r*}(w^*, z, y), x^{**} \rangle.
$$

Therefore $f^{***r*}(w^*, z, y) = f^{r*}(w^*, z, y) \in X^*$. The rest of proof has similar argument such as (1). \Box

Corollary 4 *If IX, I^Y and I^Z are weakly compact identity mapping, then all of them and all of their adjoints are regular.*

 \Box

Example 1 1. Let *G* be a compact group. Let $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Then by [10, Sections 2.4 and 2.5], we conclude that $L^1(G) \star L^p(G) \subset L^p(G)$ and $L^p(G) \star L^q(G) \subset L^r(G)$ where $(g \star h)(x) = \int_G g(y)h(y^{-1}x)dy$ for $x \in G$. Since the Banach spaces $L^p(G)$ and $L^q(G)$ are reflexive, thus by corollary 2 we conclude that the bounded tri-linear mapping

$$
f: L^1(G) \times L^p(G) \times L^q(G) \longrightarrow L^r(G)
$$

defined by $f(k, g, h) = (k \star g) \star h$, is regular for every $k \in L^1(G)$, $g \in L^p(G)$ and $h \in L^q(G)$.

- 2. Let *G* be a locally compact group. We know from [16] that $L^1(G)$ is regular if and only if it is reflexive or *G* is finite. It follows that for every finite locally compact group *G*, by corollary 2, the bounded tri-linear mapping $f: L^1(G) \times L^1(G) \times L^1(G) \longrightarrow L^1(G)$ defined by $f(k, g, h) = k * g * h$, is regular for every k, g and $h \in L^1(G)$.
- 3. *C [∗]−*algebras are standard examples of Banach algebras that are Arens regular, see[6]. We know that a *C [∗]−*algebra is reflexive if and only if it is of finite dimension. Since if *A* is a finite dimension *C ∗* -algebra, then by corollary 2, we conclude that the bounded tri-linear mapping $f : A \times A \times A$ $A \longrightarrow A$ is regular.
- 4. Let *G* be a locally compact group and let *M*(*G*) be measure algebra of *G*, see [10, Section 2.5]. Let the convolution for $\mu_1, \mu_2 \in M(G)$ defined by

$$
\int \psi d(\mu_1 * \mu_2) = \int \int \psi(xy) d\mu_1(x) d\mu_2(y), \quad (\psi \in C_0(G)).
$$

We have

$$
\int \psi d(\mu_1 * (\mu_2 * \mu_3)) = \int \int \int \psi(xyz) d\mu_1(x) d\mu_2(y) d\mu_3(z)
$$

$$
= \int \psi d((\mu_1 * \mu_2) * \mu_3)
$$

for μ_1, μ_2 and $\mu_3 \in M(G)$. Therefore convolution is associative. Now we define the bounded tri-linear mapping

$$
f: M(G) \times M(G) \times M(G) \longrightarrow M(G)
$$

by $f(\mu_1, \mu_2, \mu_3) = \int \psi d(\mu_1 * \mu_2 * \mu_3)$. If *G* is finite, then *f* is regular.

3 Some results for regularity

Dales, Rodriguez-Palacios and Velasco in [7, Theorem 4.1], for a bonded bilinear map $m: X \times Y \longrightarrow Z$ have shown that, $m^{r*r***} = m^{*****r}$ if and only if both *m* and *m^r[∗]* are Arens regular. Now in the following we study it in general case.

Remark 1 In the next theorem, f^n is *n*−th adjoint of f for each $n \in N$.

Theorem 3 If *f* and f^{rn} are reular, then $f^{4rnr} = f^{rnr4}$.

Proof. Since *f* is regular, so $f^{4r} = f^{r4}$. Therefore $f^{4rn} = f^{r(n+4)}$. In the other hands, regularity of f^{rn} follows that $f^{r(n+4)} = f^{rnr4r}$. Thus $f^{rnr4r} = f^{4rn}$ and this completes the proof. \Box

Theorem 4 *Let* $f: X \times Y \times Z \longrightarrow W$ *be a bounded tri-linear mapping. Then*

1. $f^{****r**r} = f^{***r****}$ *if and only if both f and* f^{***} *are regular.* 2. $f^{***r***r} = f^{r***r***r}$ *if and only if both* f *and* f^{r***} *are regular.*

Proof. We prove only (1), the other part has the same argument. If both *f* and f^{r**} are regular, then by applying Theorem 3, for $n = 2$, $f^{***r**r} = f^{r***r**r}$.

Conversely, suppose that $f^{***r***} = f^{r***r***}$. First we show that f is regular. Let $\{z_{\gamma}\}\)$ is net in *Z* which converge to $z^{**} \in Z^{**}$ in the w^{*} -topologies. Then for every $x^{**} \in X^{**}, y^{**} \in Y^{**}$ and $w^* \in W^*$ we have

$$
\begin{aligned} &\langle f^{****}(x^{**},y^{**},z^{**}),w^*\rangle =\langle f^{****r}(z^{**},y^{**},x^{**}),w^*\rangle\\ &=\langle f^{****r**}(z^{**},w^*,x^{**}),y^{**}\rangle =\langle f^{****r**}(z^{**},w^*,x^{**}),y^{**}\rangle\\ &=\lim_\gamma\langle y^{**},f^{****}(z_\gamma,w^*,x^{**})\rangle =\langle f^{****r}(x^{**},y^{**},z^{**}),w^*\rangle. \end{aligned}
$$

Therefore *f* is regular. Now we show that f^{r**} is regular. Let $\{x_{\alpha}^{**}\}$ be net in *X*^{**} which converge to x^{***} ∈ X^{***} in the w^* −topologies. Then for every *y*^{**} ∈ *Y*^{**}, z^{**} ∈ *Z*^{**} and w^{***} ∈ *W*^{***} we have

$$
\begin{aligned} &\langle f^{r***r***r}(x^{****},w^{***},z^{**}),y^{**}\rangle=\langle f^{r***r****}(z^{**},w^{***},x^{****}),y^{**}\rangle\\ &=\langle f^{****r**r}(z^{**},w^{***},x^{****}),y^{**}\rangle=\lim_{\alpha}\langle w^{***},f^{****}(x^{**}_\alpha,y^{**},z^{**})\rangle\\ &=\lim_{\alpha}\langle w^{***},f^{r***r}(x^{**}_\alpha,y^{**},z^{**})\rangle=\lim_{\alpha}\langle w^{***},f^{r****}(z^{**},y^{**},x^{**})\rangle\\ &=\langle f^{r******}(x^{****},w^{***},z^{**}),y^{**}\rangle. \end{aligned}
$$

It follows that *f ^r∗∗* is regular and this completes the proof.

 \Box

Arens has shown [3] that a bounded bilinear map *m* is regular if and only if for each z^* ∈ Z^* , the bilinear form z^* *om* is regular. In the next theorem we give an important characterization of regularity bounded tri-linear mappings.

Lemma 1 *Suppose X*, *Y*, *Z*, *W* and *S* are normed spaces and $f: X \times Y \times Y$ *Z −→ W and h* : *W −→ S are bounded tri-linear mapping and bounded linear mapping, respectively. Then we have*

1. $h^{**} \circ f^{****} = (h \circ f)^{****}.$ 2. $h^{**}of^{r****r} = (hof)^{r****r}.$

Proof. Let $\{x_{\alpha}\}, \{y_{\beta}\}\$ and $\{z_{\gamma}\}\$ be nets in *X,Y* and *Z* which converge to $x^{**} \in X^{**}, y^{**} \in Y^{**}$ and $z^{**} \in Z^{**}$ in the w^* -topologies, respectively. For

 \Box

each $s^* \in S^*$ we have

$$
\langle h^{**}of^{****}(x^{**},y^{**},z^{**}),s^*\rangle = \langle h^{**}(f^{****}(x^{**},y^{**},z^{**})),s^*\rangle \n= \langle f^{****}(x^{**},y^{**},z^{**}),h^*(s^*)\rangle = \lim_{\alpha} \lim_{\beta} \frac{\langle h^*(s^*), f(x_{\alpha}, y_{\beta}, z_{\gamma})\rangle}{\gamma} \n= \lim_{\alpha} \lim_{\beta} \frac{\langle h^*(x_{\alpha}, y_{\beta}, z_{\gamma})\rangle}{\gamma} = \lim_{\alpha} \frac{\langle h^*(x_{\alpha}, y_{\beta}, z_{\gamma})\rangle}{\gamma} \n= \langle (hof)^{****}(x^{**},y^{**},z^{**}),s^*\rangle.
$$

Hence $h^{**} \circ f^{****}(x^{**}, y^{**}, z^{**}) = (h \circ f)^{****}(x^{**}, y^{**}, z^{**})$. A similar argument applies for (2). \Box

Theorem 5 *Let* $f: X \times Y \times Z \longrightarrow W$ *and* $h: W \longrightarrow S$ *be bounded tri-linear mapping and bounded linear mapping, respectively. Then f is regular if and only if hof is regular.*

Proof. Assume that *f* is regular. Then for every $x^{**} \in X^{**}, y^{**} \in Y^{**}, z^{**} \in \mathbb{R}$ Z^{**} and $s^* \in S^*$ we have

$$
\begin{aligned} &\langle h^{**}(f^{r***r}(x^{**},y^{**},z^{**})),s^*\rangle = \langle f^{r***r}(x^{**},y^{**},z^{**}),h^*(s^*)\rangle\\ &=\langle f^{****}(x^{**},y^{**},z^{**}),h^*(s^*)\rangle =\langle h^{**}(f^{****}(x^{**},y^{**},z^{**})),s^*\rangle. \end{aligned}
$$

Therefore $h^{**}of^{r***r}(x^{**},y^{**},z^{**}) = h^{**}of^{***}(x^{**},y^{**},z^{**})$ and by applying Lemma 1, we implies that

$$
(hof)^{r***r}(x^{**},y^{**},z^{**})=(hof)^{****}(x^{**},y^{**},z^{**}). \label{eq:3}
$$

It follows that *hof* is regular.

For the converse, suppose that *hof* is regular. By contradiction, let *f* be not regular. Thus there exist $x^{**} \in X^{**}, y^{**} \in Y^{**}$ and $z^{**} \in Z^{**}$ such that $f^{****}(x^{**}, y^{**}, z^{**}) \neq f^{r****r}(x^{**}, y^{**}, z^{**})$. Therefore we have

$$
(hof)^{****}(x^{**}, y^{**}, z^{**}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} w^* - \lim_{\gamma} (hof)(x_{\alpha}, y_{\beta}, z_{\gamma})
$$

\n
$$
= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle f(x_{\alpha}, y_{\beta}, z_{\gamma}), h \rangle = \langle f^{****}(x^{**}, y^{**}, z^{**}), h \rangle
$$

\n
$$
\neq \langle f^{r****} (x^{**}, y^{**}, z^{**}), h \rangle = \lim_{\gamma} \lim_{\beta} \lim_{\alpha} \langle f(x_{\alpha}, y_{\beta}, z_{\gamma}), h \rangle
$$

\n
$$
= w^* - \lim_{\gamma} w^* - \lim_{\beta} w^* - \lim_{\alpha} (hof)(x_{\alpha}, y_{\beta}, z_{\gamma})
$$

\n
$$
= (hof)^{r****} (x^{**}, y^{**}, z^{**}).
$$

It follows that (hof) ^{****} $(x^{**}, y^{**}, z^{**}) \neq (hof)^{r***r}(x^{**}, y^{**}, z^{**}).$

Another interesting case of regularity is in the following.

Theorem 6 *Let* X, Y, Z, W *and S be Banach spaces,* $f : X \times Y \times Z \longrightarrow W$ *be a bounded tri-linear mapping and* $x \in X, y \in Y, z \in Z$ *. Then*

1. Let $g_1 : S \times Y \times Z \longrightarrow W$ be a bounded tri-linear mapping and let h_1 : $X \rightarrow S$ *be a bounded linear mapping such that* $f(x, y, z) = g_1(h_1(x), y, z)$ *. If* h_1 *is weakly compact, then* $f^{***r*}(W^{***}, Z^{**}, Y^{**}) \subseteq X^*$.

- 2. Let $g_2: X \times S \times Z \longrightarrow W$ be a bounded tri-linear mapping and let h_2 : *Y* → *S be a bounded linear mapping such that* $f(x, y, z) = g_2(x, h_2(y), z)$ *. If* h_2 *is weakly compact, then* $f^{***r*}(X^{**}, W^*, Z^{**}) \subseteq Y^*$.
- *3. Let* g_3 : $X \times Y \times S \longrightarrow W$ *be a bounded tri-linear mapping and let* h_3 : $Z \rightarrow S$ *be a bounded linear mapping such that* $f(x, y, z) = g_3(x, y, h_3(z))$ *. If h*₃ *is weakly compact, then* $f^{*****}(W^{***}, X^{**}, Y^{**}) \subseteq Z^*$.

Proof. We prove only (1), the other parts have the same argument. For every $x \in X, y \in Y, z \in Z$ and $w^* \in W^*$ we have

$$
\langle f^*(w^*,x,y),z\rangle=\langle w^*,f(x,y,z)\rangle=\langle w^*,g_1(h_1(x),y,z)\rangle=\langle g_1^*(w^*,h_1(x),y),z\rangle.
$$

Therefore $f^*(w^*, x, y) = g_1^*(w^*, h_1(x), y)$, and implies that for every $z^{**} \in Z^{**}$,

$$
\langle f^{**}(z^{**}, w^*, x), y \rangle = \langle z^{**}, f^*(w^*, x, y) \rangle = \langle z^{**}, g_1^*(w^*, h_1(x), y) \rangle = \langle g_1^{**}(z^{**}, w^*, h_1(x)), y \rangle.
$$

So $f^{**}(z^{**}, w^*, x) = g_1^{**}(z^{**}, w^*, h_1(x))$ and implies that for every $y^{**} \in Y^{**}$,

$$
\langle f^{***}(y^{**}, z^{**}, w^*), x \rangle = \langle y^{**}, f^{**}(z^{**}, w^*, x) \rangle = \langle y^{**}, g_1^{**}(z^{**}, w^*, h_1(x)) \rangle = \langle g_1^{***}(y^{**}, z^{**}, w^*), h_1(x) \rangle = \langle h_1^*(g_1^{***}(y^{**}, z^{**}, w^*)), x \rangle.
$$

Thus $f^{***}(y^{**}, z^{**}, w^*) = h_1^*(g_1^{***}(y^{**}, z^{**}, w^*))$ and implies that for every *x ∗∗ ∈ X∗∗* ,

$$
\langle f^{****}(x^{**}, y^{**}, z^{**}), w^* \rangle = \langle x^{**}, f^{***}(y^{**}, z^{**}, w^*) \rangle = \langle x^{**}, h_1^*(g_1^{***}(y^{**}, z^{**}, w^*)) \rangle = \langle h_1^{**}(x^{**}), (g_1^{***}(y^{**}, z^{**}, w^*)) \rangle = \langle g_1^{****}(h_1^{**}(x^{**}), y^{**}, z^{**}), w^* \rangle.
$$

Therefore for every $w^{***} \in W^{***}$ we have

$$
\begin{aligned} &\langle f^{****r*}(w^{***},z^{**},y^{**}),x^{**}\rangle=\langle w^{***},f^{****r}(z^{**},y^{**},x^{**})\rangle\\ &=\langle w^{***},f^{****r}(x^{**},y^{**},z^{**})\rangle=\langle w^{***},g^{****r}(h^{**}_1(x^{**}),y^{**},z^{**})\rangle\\ &=\langle w^{***},g^{****r}_1(z^{**},y^{**},h^{**}_1(x^{**})))=\langle g^{****r*}(w^{***},z^{**},y^{**}),h^{**}_1(x^{**})\rangle\\ &=\langle h^{***}_1(g^{****r}(w^{***},z^{**},y^{**})),x^{**}\rangle. \end{aligned}
$$

Therefore $f^{****r*}(w^{***}, z^{**}, y^{**}) = h_1^{***}(g_1^{****r*}(w^{***}, z^{**}, y^{**}))$. The weak compactness of h_1 implies that of h_1^* , from which we have $h_1^{***}(S^{***}) \subseteq X^*$. Thus $h_1^{***}(g_1^{****r*}(w^{***}, z^{**}, y^{**})) \in X^*$ and this completes the proof. \Box

This theorem, combined with Theorem 2, yields the next result.

Corollary 5 *With the assumptions Theorem 6, if* h_2 *and* h_3 *are weakly compact, then f is regular.*

 \Box

Proof. Both h_2 and h_3 are weakly compact, so by Theorem 6 we have

$$
f^{****}(X^{**},W^*,Z^{**})\subseteq Y^* \quad , \quad f^{****}(W^{***},X^{**},Y^{**})\subseteq Z^*.
$$

In particular

$$
f^{****r*}(X^{**},W^*,Z)\subseteq Y^*\quad,\quad f^{*****(W^*,X^{**},Y^{**})}\subseteq Z^*.
$$

Now by Theorem 2, *f* is regular.

The converse of previous result is not true in general sense as following corollary.

Corollary 6 *With the assumptions Theorem 6, if f is regular and both* g_2^{****} and g_3^{****} *are factors, then* h_2 *and* h_3 *are weakly compact.*

Proof. Since $f^{****r*}(X^{**}, W^*, Z^{**}) = h_2^{***}(g_2^{****r*}(X^{**}, W^*, Z^{**})),$ so $h_2^{***}(g_2^{****r*})$ (X^{**}, W^*, Z^{**})) $\subseteq Y^*$. In the other hands g_2^{***r*} is factors, so implies that $h_2^{***}(S^{***}) \subseteq Y^*$. Therefore h_2^* is weakly compact and implies that h_2 is weakly compact. The other part has the same argument for h_3 . \Box

4 The fourth adjoint of a tri-derivation

Definition 1 Let (π_1, X, π_2) be a Banach *A−*module. A bounded tri-linear mapping $D: A \times A \times A \longrightarrow X$ is said to be a tri-derivation when

1. $D(\pi(a, d), b, c) = \pi_2(D(a, b, c), d) + \pi_1(a, D(d, b, c)),$

2. $D(a, \pi(b, d), c) = \pi_2(D(a, b, c), d) + \pi_1(b, D(a, d, c)),$

3. $D(a, b, \pi(c, d)) = \pi_2(D(a, b, c), d) + \pi_1(c, D(a, b, d)),$

for each $a, b, c, d \in A$. If (π_1, X, π_2) is a Banach *A−*module, then $(\pi_2^{r*r}, X^*, \pi_1^*)$ is the dual Banach *A*−module of (π_1, X, π_2) . Therefore a bounded tri-linear mapping $D: A \times A \times A \longrightarrow X^*$ is a tri-derivation when

- 1. $D(\pi(a, d), b, c) = \pi_1^*(D(a, b, c), d) + \pi_2^{r*r}(a, D(d, b, c)),$
- 2. $D(a, \pi(b, d), c) = \pi_1^*(D(a, b, c), d) + \pi_2^{r*r}(b, D(a, d, c)),$
- 3. $D(a, b, \pi(c, d)) = \pi_1^*(D(a, b, c), d) + \pi_2^{r*r}(c, D(a, b, d)).$

It can also be written, a bounded tri-linear mapping $D: A \times A \times A \longrightarrow A$ is said to be a tri-derivation when

- 1. $D(\pi(a, d), b, c) = \pi(D(a, b, c), d) + \pi(a, D(d, b, c)),$
- 2. $D(a, \pi(b, d), c) = \pi(D(a, b, c), d) + \pi(b, D(a, d, c)),$
- 3. $D(a, b, \pi(c, d)) = \pi(D(a, b, c), d) + \pi(c, D(a, b, d)).$

Example 2 Let *A* be a Banach algebra, for any $a, b \in A$ the symbol $[a, b] =$ $ab - ba$ stands for multiplicative commutator of *a* and *b*. Let $M_{n \times n}(C)$ be the Banach algebra of all $n \times n$ matrix and $A = \{$ $\begin{cases} x & y \\ 0 & 0 \end{cases} \in M_{n \times n}(C) | x, y \in C$ Then *A* is Banach algebra with the norm

$$
\| a \| = (\Sigma_{i,j} |\alpha_{ij}|^2)^{\frac{1}{2}} \quad , \ (a = (\alpha_{ij}) \in A).
$$

We define $D: A \times A \times A \longrightarrow A$ to be the bounded tri-linear map given by

$$
D(a, b, c) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, abc] \quad , \quad (a, b, c \in A).
$$

Then for
$$
a = \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix}
$$
, $b = \begin{pmatrix} x_2 & y_2 \\ 0 & 0 \end{pmatrix}$, $c = \begin{pmatrix} x_3 & y_3 \\ 0 & 0 \end{pmatrix}$ and $d = \begin{pmatrix} x_4 & y_4 \\ 0 & 0 \end{pmatrix} \in A$ we
\nhave
\n
$$
D(\pi(a,d), b, c) = D(\begin{pmatrix} x_1x_4 & x_1y_4 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} x_3 & y_3 \\ 0 & 0 \end{pmatrix})
$$
\n
$$
= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} x_1x_2x_3x_4 & x_1x_2x_4y_3 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -x_1x_2x_3x_4 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 0 & -x_1x_2x_3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_4 & y_4 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -x_2x_3x_4 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
= (\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & x_1x_2x_3 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_2 & y_2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & x_2x_3x_4 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} x_1x_2x_3 & x_1x_2y_3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_4 & y_4 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
+ \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix}
$$

Similarly, we have $D(a, \pi(b, d), c) = \pi(D(a, b, c), d) + \pi(b, D(a, d, c))$ and $D(a, b, c)$ $\pi(c, d) = \pi(D(a, b, c), d) + \pi(c, D(a, b, d))$. Thus *D* is tri-derivation.

Now, we provide a necessary and sufficient condition such that the fourth adjoint D^{***} of a tri-derivation $D: A \times A \times A \longrightarrow X$ is again a tri-derivation. For the fourth adjoint D^{***} of a tri-derivation $D: A \times A \times A \longrightarrow X$, we are faced with the case eight:

In the following, we prove the state of case 1. The remaining state are proved in the same way.

Theorem 7 *Let* (π_1, X, π_2) *be a Banach A−module and* $D : A \times A \times A \longrightarrow X$ *be a tri-derivation. Then* $D^{***}: (A^{**}, \square) \times (A^{**}, \square) \times (A^{**}, \square) \longrightarrow X^{**}$ *is a tri-derivation if and only if*

 $1. \ \pi_2^{**r*}(D^{***}(A, A, A^{**}), X^*) \subseteq A^*$ $2. \pi_2^{***}(X^*, D^{***}(A, A^{**}, A^{**})) \subseteq A^*,$ *3.* $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$ *4. D∗∗∗∗∗∗*(*A∗∗, π∗∗∗∗* 1 (*X[∗] , A∗∗*)*, A*) *⊆ A[∗] ,* $5. D^{*******}(\mathbb{A}^{**}, \mathbb{A}^{**}, \pi_1^{****}(\mathbb{X}^*, \mathbb{A}^{**})) \subseteq \mathbb{A}^*.$

Proof. Let $D: A \times A \times A \longrightarrow X$ be a tri-derivation and $(1),(2),(3),(4),(5)$ holds. If $\{a_{\alpha}\}, \{b_{\beta}\}, \{c_{\gamma}\}\$ and $\{d_{\tau}\}\$ are bounded nets in *A*, converging in *w*^{*}−topology to a^{**}, b^{**}, c^{**} and $d^{**} \in A^{**}$ respectively, in this case using (2), we conclude that $w^* - \lim_{\alpha} w^* - \lim_{\tau} w^* - \lim_{\beta} w^* - \lim_{\gamma} \pi_2(D(a_{\alpha}, b_{\beta}, c_{\gamma}), d_{\tau}) =$ $\pi_2^{***}(D^{****}(a^{**},b^{**},c^{**}),d^{**})$. Thus for every $x^* \in X^*$ we have

$$
\langle D^{****}(\pi^{***}(a^{**},d^{**}),b^{**},c^{**}),x^{*}\rangle
$$

= $\lim_{\alpha}\lim_{\tau}\lim_{\beta}\lim_{\gamma}\langle x^{*},D(\pi(a_{\alpha},d_{\tau}),b_{\beta},c_{\gamma})\rangle$
= $\lim_{\alpha}\lim_{\tau}\lim_{\beta}\lim_{\gamma}\langle x^{*},\pi_{2}(D(a_{\alpha},b_{\beta},c_{\gamma}),d_{\tau})+\pi_{1}(a_{\alpha},D(d_{\tau},b_{\beta},c_{\gamma}))\rangle$
= $\lim_{\alpha}\lim_{\tau}\lim_{\beta}\lim_{\gamma}\langle x^{*},\pi_{2}(D(a_{\alpha},b_{\beta},c_{\gamma}),d_{\tau})\rangle$
+ $\lim_{\alpha}\lim_{\tau}\lim_{\beta}\langle x^{*},\pi_{1}(a_{\alpha},D(d_{\tau},b_{\beta},c_{\gamma}))\rangle$
= $\langle x^{*},\pi_{2}^{***}(D^{****}(a^{**},b^{**},c^{**}),d^{**})\rangle + \langle x^{*},\pi_{1}^{***}(a^{**},D^{****}(d^{**},b^{**},c^{**}))\rangle$
= $\langle \pi_{2}^{***}(D^{****}(a^{**},b^{**},c^{**}),d^{**}) + \pi_{1}^{***}(a^{**},D^{****}(d^{**},b^{**},c^{**})),x^{*}\rangle.$

Therefore

$$
\begin{split} &D^{****}(\pi^{***}(a^{**},d^{**}),b^{**},c^{**})\\ &=\pi^{***}_2(D^{****}(a^{**},b^{**},c^{**}),d^{**})+\pi^{***}_1(a^{**},D^{****}(d^{**},b^{**},c^{**})). \end{split}
$$

Applying (1) and (3) respectively, we can deduce that $w^* - \lim_{\alpha} w^* - \lim_{\beta} w^* \lim_{\tau} w^* - \lim_{\gamma} \pi_2(D(a_\alpha, b_\beta, c_\gamma), d_\tau) = \pi_2^{***}(D^{****}(a^{**}, b^{**}, c^{**}), d^{**})$ and $w^* \lim_{\alpha} w^* - \lim_{\beta} w^* - \lim_{\tau} \tau^* - \lim_{\gamma} \pi_1(b_{\beta}, D(a_{\alpha}, d_{\tau}, c_{\gamma})) = \pi_1^{***}(b^{**}, D^{****}(a^{**}, d^{**}, d^{**}))$ *c ∗∗*))*.* So in similar way, we can deduce that

$$
D^{****}(a^{**}, \pi^{***}(b^{**}, d^{**}), c^{**})
$$

= $\pi_2^{***}(D^{****}(a^{**}, b^{**}, c^{**}), d^{**}) + \pi_1^{***}(b^{**}, D^{****}(a^{**}, d^{**}, c^{**})).$

Applying (4) and (5), we can write $w^*-\lim_{\alpha} w^*-\lim_{\beta} w^*-\lim_{\gamma} w^*-\lim_{\tau} \tau_1(c_\gamma, D(a_\alpha))$ (a, b_{β}, d_{τ}) = $\pi_1^{***}(c^{**}, D^{***}(a^{**}, b^{**}, d^{**}))$. Thus

$$
D^{****}(a^{**},b^{**},\pi^{***}(c^{**},d^{**}))
$$

= $\pi_2^{***}(D^{****}(a^{**},b^{**},c^{**}),d^{**}) + \pi_1^{***}(c^{**},D^{****}(a^{**},b^{**},d^{**})).$

By comparing equations (4.1), (4.2) and (4.3) follows that D^{***} : $(A^{**}, \Box) \times$ $(A^{**}, \Box) \times (A^{**}, \Box) \longrightarrow X^{**}$ is a tri-derivation.

For the converse, let *D* and $D^{****}: (A^{**}, \Box) \times (A^{**}, \Box) \times (A^{**}, \Box) \longrightarrow X^{**}$ be tri-derivation. We have to show that $(1), (2), (3), (4)$ and (5) hold. We shall only prove (2) the others parts have similar argument. Fourth adjoint *D∗∗∗∗* is tri-derivation, thus we have

$$
D^{****}(\pi^{***}(a, d^{**}), b^{**}, c^{**}) = \pi_2^{***}(D^{****}(a, b^{**}, c^{**}), d^{**}) + \pi_1^{***}(a, D^{****}(d^{**}, b^{**}, c^{**})).
$$

In the other hands, the mapping *D* is tri-derivation, which follows that

$$
D^{****}(\pi^{***}(a, d^{**}), b^{**}, c^{**}) = w^* - \lim_{\tau} w^* - \lim_{\beta} w^* - \lim_{\gamma} \pi_2(D(a, b_{\beta}, c_{\gamma}), d_{\tau})
$$

+ $\pi_1^{***}(a, D^{****}(d^{**}, b^{**}, c^{**})).$

Therefore follows that

$$
\pi_2^{***}(D^{****}(a,b^{**},c^{**}),d^{**})
$$

= $w^* - \lim_{\tau} w^* - \lim_{\beta} w^* - \lim_{\gamma} \pi_2(D(a,b_{\beta},c_{\gamma}),d_{\tau}).$

So, for every $d^{**} \in A^{**}$ we have

$$
\langle \pi_2^{****}(x^*, D^{****}(a, b^{**}, c^{**})), d^{**} \rangle = \langle x^*, \pi_2^{***}(D^{****}(a, b^{**}, c^{**}), d^{**}) \rangle
$$

\n= $\lim_{\tau} \lim_{\beta} \lim_{\gamma} \langle x^*, \pi_2(D(a, b_{\beta}, c_{\gamma}), d_{\tau}) \rangle = \lim_{\tau} \lim_{\beta} \lim_{\gamma} \langle x^*, \pi_2^c(d_{\tau}, D(a, b_{\beta}, c_{\gamma})) \rangle$
\n= $\lim_{\tau} \lim_{\beta} \lim_{\gamma} \langle \pi_2^{r*}(x^*, d_{\tau}), D(a, b_{\beta}, c_{\gamma}) \rangle = \lim_{\tau} \lim_{\beta} \lim_{\gamma} \langle D^{*}(\pi_2^{r*}(x^*, d_{\tau}), a, b_{\beta}), c_{\gamma} \rangle$
\n= $\lim_{\tau} \lim_{\beta} \langle c^{**}, D^{*}(\pi_2^{r*}(x^*, d_{\tau}), a, b_{\beta}) \rangle = \lim_{\tau} \lim_{\beta} \langle D^{**}(c^{**}, \pi_2^{r*}(x^*, d_{\tau}), a), b_{\beta} \rangle$
\n= $\lim_{\tau} \langle b^{**}, D^{**}(c^{**}, \pi_2^{r*}(x^*, d_{\tau}), a) \rangle = \lim_{\gamma} \langle D^{***}(b^{**}, c^{**}, \pi_2^{r*}(x^*, d_{\tau})), a \rangle$
\n= $\lim_{\tau} \langle D^{****}(a, b^{**}, c^{**}), \pi_2^{r*}(x^*, d_{\tau}) \rangle = \lim_{\tau} \langle D^{****}(a, b^{**}, c^{**}), \pi_2^{r*}(d_{\tau}, x^*) \rangle$
\n= $\lim_{\tau} \langle \pi_2^{r*}D^{****}(a, b^{**}, c^{**}), d_{\tau}, x^* \rangle = \lim_{\tau} \langle \pi_2^{r*}D^{****}(x^*, D^{****}(a, b^{**}, c^{**})), d_{\tau} \rangle$
\n= $\langle \pi_2^{r*}D^{****}(x^*, D^{****}(a, b^{**}, c^{**})), d^{**} \rangle$.

As $\pi_2^{r*r**}(x^*, D^{***}(a, b^{**}, c^{**}))$ always lies in A^* , we have reached (2). \Box

For case 2, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

- 1. $\pi_2^{**r*}(D^{****}(A^{**}, A^{**}, A^{**}), X^*) \subseteq A^*$ 2. $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$
- 3. $D^{*******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$ $A. D^{*******}$ $(A^{**}, A^{**}, \pi_1^{****}(X^*, A^{**}))$ \subseteq A^* .

For case 3, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

- 1. $\pi_2^{***}(X^*, D^{***}(A, A^{**}, A^{**})) \subseteq A^*,$
- 2. *D*^{∗∗∗∗∗∗(*A*^{**}, π^{*}^{***}</sub>(*X*^{*}, *A*^{**}), *A*) ⊆ *A*^{*},} 3. $D^{*******}(\mathbb{A}^{**}, \mathbb{A}^{**}, \pi_1^{***}(X^*, \mathbb{A}^{**})) \subseteq \mathbb{A}^*$.

For case 4, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

- 1. $\pi_2^{***}(D^{***}(A, A, A^{**}), X^*) \subseteq A^*$ $\begin{array}{c} \n\mathbf{1.} \ \n\begin{array}{c} \n\mathbf{2.} \ \n\pi_2^{***}(X^*, D^{****}(A, A^{**}, A^{**})) \subseteq A^*, \n\end{array} \n\end{array}$ 3. $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$ $4. D^{*****}(\pi_1^{****}(X^*, A^{**}), A, A) \subseteq A^*,$ $D^{*******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$
- 6. $D^{*******}$ ($A^{**}, A^{**}, \pi_1^{****}$ (X^*, A^{**})) ⊆ A^* .

For case 5, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

- 1. $\pi_2^{**r*}(D^{****}(A^{**}, A^{**}, A^{**}), X^*) \subseteq A^*$ $(2. \pi_2^{***}(X^*, D^{***}(A, A^{**}, A^{**})) \subseteq A^*,$
- 3. $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$
- $A. D^{******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$
- $D^{********}(A^{**}, A^{**}, \pi_1^{****}(X^*, A^{**})) \subseteq A^*.$

For case 6, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

1. $\pi_2^{**r*}(D^{****}(A^{**}, A^{**}, A^{**}), X^*) \subseteq A^*$ 2. $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$ 3. $D^{*****}(\pi_1^{****}(X^*, A^{**}), A, A) \subseteq A^*,$ $A. D^{*******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$ $D^{********}(A^{**}, A^{**}, \pi_1^{****}(X^*, A^{**})) \subseteq A^*.$

For case 7, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

1. $\pi_2^{***}(X^*, D^{***}(A, A^{**}, A^{**})) \subseteq A^*,$ 2. $\pi_2^{**r*}(D^{***}(A, A, A^{**}), X^*) \subseteq A^*$ 3. $D^{*****}(\pi_1^{****}(X^*, A^{**}), A, A) \subseteq A^*,$ $A. D^{******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$ $D^{********}(A^{**}, A^{**}, \pi_1^{****}(X^*, A^{**})) \subseteq A^*.$

For case 8, fourth adjoint D^{***} of tri-derivation $D: A \times A \times A \longrightarrow X$ is a tri-derivation if and only if

- 1. $\pi_2^{***}(X^*, D^{***}(A, A^{**}, A^{**})) \subseteq A^*,$
- $2. \pi_2^{**r*}(D^{****}(A^{**}, A^{**}, A^{**}), X^*) \subseteq A^*,$
- 3. $D^{****r*}(\pi_1^{****}(X^*, A^{**}), A^{**}, A^{**}) \subseteq A^*,$
- $4. D^{*****}(\pi_1^{****}(X^*, A^{**}), A, A) \subseteq A^*,$
- $D^{*******}(A^{**}, \pi_1^{****}(X^*, A^{**}), A) \subseteq A^*,$
- 6. $D^{*******}(A^{**}, A^{**}, \pi_1^{****}(X^*, A^{**})) \subseteq A^*$.

Remark 2 For adjoint D^{r***r} of tri-derivation $D: A \times A \times A \longrightarrow X$ we have the same argument.

References

- 1. C.A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126: 286–302, (1967).
- 2. C.A. Akemann, P.G. Dodds and J.L.B. Gamlen, Weak compactness in the dual space of a *C∗−*algebra, J. Funct. Anal., 10(4): 446–450, (1972).
- 3. R . Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2: 839–848, (1951).
- 4. N. Arikan, Arens regularity and reflexivity, Quart. J. Math. Oxford, 32(4): 383–388, (1981).
- 5. N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc. Amer. Math. Soc., 84: 525–532, (1982).
- 6. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific. J. Math., 11(3): 847–870, (1961).
- 7. H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc., 64(2): 707–721, (2001).
- 8. A. Erfanian Attar, S. Barootkoob and H. R. Ebrahimi Vishki, On extension of biderivations to the bidual of Banach algebras, Filomat, 30(8): 2261–2267, (2016).
- 9. M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia. Math., 181(3): 237–254, (2007).
- 10. G.B. Folland, A Course in Abstract Harmonic Analysis, Crc Press, (1995).
- 11. K. Haghnejad Azar, Arens regularity of bilinear forms and unital Banach module space, Bull. Iranian Math. Soc., 40(2): 505–520, (2014).
- 12. A.A. Khosravi, H.R. Ebrahimi Vishki and A.M. Peralta, AronBerner extensions of triple maps with application to the bidual of Jordan Banach triple systems, Linear Algebra Appl., 580: 436–463, (2019).
- 13. S. Mohamadzadeh and H. R.E Vishki, Arens regularity of module actions and the second adjoint of a drivation, Bull Austral. Mat. Soc., 77(3): 465–476, (2008).
- 14. A. Ulger, Weakly compact bilinear forms and Arens regularity, Proc. Amer, Math. Soc., $101(4)$: 697–704, (1987).
- 15. A. Sheikhali, A. Sheikhali and N. Akhlaghi, Arens regularity of Banach module actions and the strongly irregular property, J. Math. Computer Sci., 13(1): 41–46, (2014).
- 16. N.J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford, 24(1): 59–62, (1973).