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Abstract In this Article, we give a simple criterion for the regularity of a
tri-linear mapping. We provide if f : X×Y ×Z −→W is a bounded tri-linear
mapping and h : W −→ S is a bounded linear mapping, then f is regular if
and only if hof is regular. We also shall give some necessary and sufficient
conditions such that the fourth adjoint D∗∗∗∗ of a tri-derivation D is again
tri-derivation.
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1 Introduction and preliminaries

Richard Arens showed in [3] that a bounded bilinear map m : X × Y −→ Z
on normed spaces, has two natural different extensions m∗∗∗, mr∗∗∗r from
X∗∗×Y ∗∗ into Z∗∗. When these extensions are equal,m is called Arens regular.
A Banach algebra A is said to be Arens regular, if its product π(a, b) = ab
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considered as a bilinear mapping π : A × A −→ A is Arens regular. The first
and second Arens products of A∗∗ by symbols � and ♢ respectively defined
by

a∗∗�b∗∗ = π∗∗∗(a∗∗, b∗∗) , a∗∗♢b∗∗ = πr∗∗∗r(a∗∗, b∗∗).

Some characterizations for the Arens regularity of bounded bilinear map m
and Banach algebra A are proved in [1], [2], [3], [4], [5], [9], [11], [14] and [15].
Suppose X,Y, Z,W and S are normed spaces and f : X × Y × Z −→ W is a
bounded tri-linear mapping. In this paper we first define regularity of f map
and showing that f is regular if and only if f∗∗∗r∗(X∗∗,W ∗, Z) ⊆ Y ∗ and
f∗∗∗∗∗(W ∗, X∗∗, Y ∗∗) ⊆ Z∗. Also we show that for a bounded tri-linear map
f : X×Y ×Z −→W and a bounded linear operator h :W −→ S, f is regular
if and only if hof is regular.

The natural extensions of f are as follows:

1. f∗ :W ∗×X×Y −→ Z∗, given by ⟨f∗(w∗, x, y), z⟩ = ⟨w∗, f(x, y, z)⟩ where
x ∈ X, y ∈ Y, z ∈ Z, w∗ ∈ W ∗ (f∗ is said the adjoint of f and is a
bounded tri-linear map).

2. f∗∗ = (f∗)∗ : Z∗∗ × W ∗ × X −→ Y ∗, given by ⟨f∗∗(z∗∗, w∗, x), y⟩ =
⟨z∗∗, f∗(w∗, x, y) where x ∈ X, y ∈ Y, z∗∗ ∈ Z∗∗, w∗ ∈W ∗.

3. f∗∗∗ = (f∗∗)∗ : Y ∗∗ ×Z∗∗ ×W ∗ −→ X∗, given by ⟨f∗∗∗(y∗∗, z∗∗, w∗), x⟩ =
⟨y∗∗, f∗∗(z∗∗, w∗, x)⟩ where x ∈ X, y∗∗ ∈ Y ∗∗, z∗∗ ∈ Z∗∗, w∗ ∈W ∗.

4. f∗∗∗∗ = (f∗∗∗)∗ : X∗∗ × Y ∗∗ × Z∗∗ −→W ∗∗, given by ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗)
, w∗⟩ = ⟨x∗∗, f∗∗∗(y∗∗, z∗∗, w∗)⟩ where x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗, z∗∗ ∈
Z∗∗, w∗ ∈W ∗.

Now let fr : Z×Y ×X −→W be the flip of f defined by fr(z, y, x) = f(x, y, z),
for every x ∈ X, y ∈ Y and z ∈ Z. Then fr is a bounded tri-linear map and it
may extends as above to fr∗∗∗∗ : Z∗∗ × Y ∗∗ ×X∗∗ −→W ∗∗. When f∗∗∗∗ and
fr∗∗∗∗r are equal, then f is said to be regular. For bounded tri-linear maps, we
have naturally six different Aron-Berner extensions to the bidual spaces based
on six different elements in S3 and compeletly regularity should be defined
accordingly to the equality of all these six Aron-Berner extensions. See [12].

Suppose A is a Banach algebra and π1 : A × X −→ X is a bounded bi-
linear map. The pair (π1, X) is said to be a left Banach A−module when
π1(π1(a, b), x) = π1(a, π1(b, x)), for each a, b ∈ A and x ∈ X. A right Banach
A−module may is defined similarly. Let π2 : X × A −→ X be a bounded
bilinear map. The pair (X,π2) is said to be a right Banach A−module if
π2(x, π2(a, b)) = π2(π2(x, a), b). A triple (π1, X, π2) is said to be a Banach
A−module if (X,π1) and (X,π2) are left and right Banach A−modules, re-
spectively, and π1(a, π2(x, b)) = π2(π1(a, x), b). Let (π1, X, π2) be a Banach
A−module. Then (πr∗r

2 , X∗, π∗
1) is the dual Banach A−module of (π1, X, π2).

A bounded linear mapping D1 : A −→ X∗ is said to be a derivation if for
each a, b ∈ A

D1(π(a, b)) = π∗
1(D1(a), b) + πr∗r

2 (a,D1(b)).
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A bounded bilinear map D2 : A×A −→ X(or X∗) is called a bi-derivation, if
for each a, b, c and d ∈ A

D2(π(a, b), c) = π1(a,D2(b, c)) + π2(D2(a, c), b),

D2(a, π(b, c)) = π1(b,D2(a, c)) + π2(D2(a, b), c).

LetD1 : A −→ A∗ be a derivation. Dales, Rodriguez and Velasco, in [7] showed
thatD∗∗

1 : (A∗∗,�) −→ A∗∗∗ is a derivation if and only if πr∗∗∗∗(D∗∗
1 (A∗∗), A∗∗)

⊆ A∗. In [13], S. Mohamadzadeh and H. Vishki extends this and showed
that second adjont D∗∗

1 : (A∗∗,�) −→ A∗∗∗ is a derivation if and only if
π∗∗∗∗
2 (D∗∗

1 (A∗∗), X∗∗) ⊆ A∗ and which D∗∗
1 : (A∗∗,♢) −→ A∗∗∗ is a derivation

if and only if πr∗∗∗∗
1 (D∗∗

1 (A∗∗), X∗∗) ⊆ A∗.
A. Erfanian Attar et al, provide condition such that the third adjoint D∗∗∗

2

of a bi-derivationD2 : A×A −→ X (orX∗) is again a bi-derivation, see [8]. For
a Banach A−module (π1, X, π2), the fourth adjoint D∗∗∗∗ of a tri-derivation
D : A × A × A −→ X∗ is trivially a tri-linear extension of D. A problem
which is of interest is under what conditions we need that D∗∗∗∗ is again a
tri-derivation. In section 4 we will extend above mentioned result. A bounded
trilinear mapping f : X×Y ×Z −→W is said to factor if it is surjective, that
is f(X × Y × Z) =W .

Throughout the article, we usually identify a normed space with its canon-
ical image in its second dual.

2 Regularity of bounded tri-linear maps

Theorem 1 Let f : X × Y × Z −→ W be a bounded tri-linear map. Then f
is regular if and only if

w∗−lim
α
w∗−lim

β
w∗−lim

γ
f(xα, yβ , zγ) = w∗−lim

γ
w∗−lim

β
w∗−lim

α
f(xα, yβ , zγ),

where {xα}, {yβ} and {zγ} are nets in X,Y and Z which converge to x∗∗ ∈
X∗∗, y∗∗ ∈ Y ∗∗ and z∗∗ ∈ Z∗∗ in the w∗−topologies, respectively.

Proof. For every w∗ ∈W ∗ we have

⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), w∗⟩ = ⟨x∗∗, f∗∗∗(y∗∗, z∗∗, w∗)⟩
= lim

α
⟨f∗∗∗(y∗∗, z∗∗, w∗), xα⟩ = lim

α
⟨y∗∗, f∗∗(z∗∗, w∗, xα)⟩

= lim
α

lim
β
⟨f∗∗(z∗∗, w∗, xα), yβ⟩ = lim

α
lim
β
⟨z∗∗, f∗(w∗, xα, yβ)⟩

= lim
α

lim
β

lim
γ
⟨f∗(w∗, xα, yβ), zγ⟩ = lim

α
lim
β

lim
γ
⟨f(xα, yβ , zγ), w∗⟩.

Therefore f∗∗∗∗(x∗∗, y∗∗, z∗∗) = w∗− lim
α
w∗− lim

β
w∗− lim

γ
f(xα, yβ , zγ). In the

other hands fr∗∗∗∗r(x∗∗, y∗∗, z∗∗) = w∗ − lim
γ
w∗ − lim

β
w∗ − lim

α
f(xα, yβ , zγ),

and proof follows.
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In the following theorem, we provide a criterion concerning to the regularity
of a bounded tri-linear map.

Theorem 2 For a bounded tri-linear map f : X×Y ×Z −→W the following
statements are equivalent:

1. f is regular.
2. f∗∗∗∗∗(W ∗∗∗, X∗∗, Y ∗∗) = fr∗∗∗∗∗∗∗r(W ∗∗∗, X∗∗, Y ∗∗).
3. f∗∗∗r∗(X∗∗,W ∗, Z) ⊆ Y ∗ and f∗∗∗∗∗(W ∗, X∗∗, Y ∗∗) ⊆ Z∗.

Proof. (1) ⇒ (2), if f is regular, then f∗∗∗∗ = fr∗∗∗∗r. For every x∗∗ ∈
X∗∗, y∗∗ ∈ Y ∗∗, z∗∗ ∈ Z∗∗ and w∗∗∗ ∈W ∗∗∗ we have

⟨f∗∗∗∗∗(w∗∗∗, x∗∗, y∗∗), z∗∗⟩ = ⟨w∗∗∗, f∗∗∗∗(x∗∗, y∗∗, z∗∗)⟩
= ⟨w∗∗∗, fr∗∗∗∗r(x∗∗, y∗∗, z∗∗)⟩ = ⟨fr∗∗∗∗∗∗∗r(w∗∗∗, x∗∗, y∗∗), z∗∗⟩.

as claimed.
(2) ⇒ (1), let f∗∗∗∗∗ = fr∗∗∗∗∗∗∗r, then for every w∗ ∈W ∗,

⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), w∗⟩ = ⟨fr∗∗∗∗∗∗∗r(w∗, x∗∗, y∗∗), z∗∗⟩
= ⟨f∗∗∗∗∗(w∗, x∗∗, y∗∗), z∗∗⟩ = ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), w∗⟩.

It follows that f is regular.
(1) ⇒ (3), assume that f is regular and x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗, z ∈ Z,w∗ ∈

W ∗. Then we have

⟨f∗∗∗r∗(x∗∗, w∗, z), y∗∗⟩ = ⟨f∗∗∗∗(x∗∗, y∗∗, z), w∗⟩
= ⟨fr∗∗∗∗r(x∗∗, y∗∗, z), w∗⟩ = ⟨fr∗∗(x∗∗, w∗, z), y∗∗⟩.

Therefore f∗∗∗r∗(x∗∗, w∗, z) = fr∗∗(x∗∗, w∗, z) ∈ Y ∗. So f∗∗∗r∗(X∗∗,W ∗, Z) ⊆
Y ∗. A similar argument shows that f∗∗∗∗∗(w∗, x∗∗, y∗∗) = fr∗∗∗r(w∗, x∗∗, y∗∗) ∈
Z∗. Thus f∗∗∗∗∗(W ∗, X∗∗, Y ∗∗) ⊆ Z∗, as claimed.

(3) ⇒ (1), let {xα}, {yβ} and {zγ} are nets in X,Y and Z which converge
to x∗∗, y∗∗ and z∗∗ in the w∗−topologies, respectively. For every w∗ ∈W ∗ we
have

⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), w∗⟩ = lim
γ

lim
β

lim
α
⟨f(xα, yβ , zγ), w∗⟩

= lim
γ

lim
β

lim
α
⟨f∗∗∗(yβ , zγ , w∗), xα⟩ = lim

γ
lim
β
⟨x∗∗, f∗∗∗(yβ , zγ , w∗)

= lim
γ

lim
β
⟨x∗∗, f∗∗∗r(w∗, zγ , yβ)⟩ = lim

γ
lim
β
⟨f∗∗∗r∗(x∗∗, w∗, zγ), yβ⟩

= lim
γ
⟨f∗∗∗r∗(x∗∗, w∗, zγ), y

∗∗⟩ = lim
γ
⟨x∗∗, f∗∗∗r(w∗, zγ , y

∗∗)⟩

= lim
γ
⟨x∗∗, f∗∗∗(y∗∗, zγ , w∗)⟩ = lim

γ
⟨f∗∗∗∗(x∗∗, y∗∗, zγ), w∗⟩

= lim
γ
⟨f∗∗∗∗∗(w∗, x∗∗, y∗∗), zγ⟩ = f∗∗∗∗∗(w∗, x∗∗, y∗∗), z∗∗⟩

= ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), w∗⟩.

It follows that f is regular and this completes the proof.
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Corollary 1 For a bounded tri-linear map f : X×Y ×Z −→W the following
statements are equivalent:

1. f is regular.
2. fr∗∗∗∗∗r = f∗∗∗∗∗∗∗.
3. fr∗∗∗r∗(Z∗∗,W ∗, X) ⊆ Y ∗ and f∗∗∗∗∗(W ∗, Z∗∗, Y ∗∗) ⊆ X∗.

Proof. The mapping f is regular if and only if fr is regular. Therefore by
Theorem 2, the desired result is obtained.

Corollary 2 For a bounded tri-linear map f : X × Y × Z −→ W , if from
X,Y or Z at least two reflexive then f is regular.

Proof. Without having to enter the whole argument, let Y and Z are reflexive.
Since Y is reflexive, Y ∗ = Y ∗∗∗. Therefore

f∗∗∗r∗(X∗∗,W ∗, Z∗∗) ⊆ Y ∗∗∗ = Y ∗ (2− 1)

In the other hands, since Z is the reflexive space, thus

f∗∗∗∗∗(W ∗∗∗, X∗∗, Y ∗∗) ⊆ Z∗∗∗ = Z∗ (2− 2)

Now Using (2-1), (2-2) and Theorem 2, the result holds.

Corollary 3 Let bounded tri-linear map f : X × Y × Z −→ W be regular.
Then

1. If f∗∗∗r∗(X∗∗,W ∗, Z) factors, then Y is reflexive space.
2. If f∗∗∗∗∗(W ∗, X∗∗, Y ∗∗) factors, then Z is reflexive space.
3. If f∗∗∗∗r∗(W ∗, Z, Y ) factors, then X is reflexive space.

Proof. (1) Let f be regular. It follows that f∗∗∗r∗(X∗∗,W ∗, Z) ⊆ Y ∗. In the
other hands, f∗∗∗r∗(X∗∗,W ∗, Z) is factor. So for each y∗∗∗ ∈ Y ∗∗∗ there exist
x∗∗ ∈ X∗∗, w∗ ∈W ∗ and z ∈ Z such that f∗∗∗r∗(x∗∗, w∗, z) = y∗∗∗. Therefore
Y ∗∗∗ ⊆ Y ∗.

(2) The proof similar to (1).

(3) Enough show that f∗∗∗∗r∗(W ∗, Z, Y ) ⊆ X∗ whenever f is regular. For
every x∗∗ ∈ X∗∗, y ∈ Y, z ∈ Z and w∗ ∈W ∗ we have

⟨f∗∗∗∗r∗(w∗, z, y), x∗∗⟩ = ⟨w∗, f∗∗∗∗(x∗∗, y, z)⟩
= ⟨fr∗∗∗∗r(x∗∗, y, z), w∗⟩ = ⟨fr∗(w∗, z, y), x∗∗⟩.

Therefore f∗∗∗∗r∗(w∗, z, y) = fr∗(w∗, z, y) ∈ X∗. The rest of proof has similar
argument such as (1).

Corollary 4 If IX , IY and IZ are weakly compact identity mapping, then all
of them and all of their adjoints are regular.
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Example 1 1. Let G be a compact group. Let 1 < p, q <∞ and 1
p+

1
q = 1+ 1

r .

Then by [10, Sections 2.4 and 2.5], we conclude that L1(G)⋆Lp(G) ⊂ Lp(G)
and Lp(G)⋆Lq(G) ⊂ Lr(G) where (g⋆h)(x) =

∫
G
g(y)h(y−1x)dy for x ∈ G.

Since the Banach spaces Lp(G) and Lq(G) are reflexive, thus by corollary
2 we conclude that the bounded tri-linear mapping

f : L1(G)× Lp(G)× Lq(G) −→ Lr(G)

defined by f(k, g, h) = (k ⋆g)⋆h, is regular for every k ∈ L1(G), g ∈ Lp(G)
and h ∈ Lq(G).

2. Let G be a locally compact group. We know from [16] that L1(G) is regular
if and only if it is reflexive or G is finite. It follows that for every finite
locally compact group G, by corollary 2, the bounded tri-linear mapping
f : L1(G)× L1(G)× L1(G) −→ L1(G) defined by f(k, g, h) = k ⋆ g ⋆ h, is
regular for every k, g and h ∈ L1(G).

3. C∗−algebras are standard examples of Banach algebras that are Arens
regular, see[6]. We know that a C∗−algebra is reflexive if and only if it
is of finite dimension. Since if A is a finite dimension C∗-algebra, then by
corollary 2, we conclude that the bounded tri-linear mapping f : A×A×
A −→ A is regular.

4. Let G be a locally compact group and let M(G) be measure algebra of G,
see [10, Section 2.5]. Let the convolution for µ1, µ2 ∈M(G) defined by∫

ψd(µ1 ∗ µ2) =

∫ ∫
ψ(xy)dµ1(x)dµ2(y), (ψ ∈ C0(G)).

We have∫
ψd(µ1 ∗ (µ2 ∗ µ3)) =

∫ ∫ ∫
ψ(xyz)dµ1(x)dµ2(y)dµ3(z)

=

∫
ψd((µ1 ∗ µ2) ∗ µ3)

for µ1, µ2 and µ3 ∈ M(G). Therefore convolution is associative. Now we
define the bounded tri-linear mapping

f :M(G)×M(G)×M(G) −→M(G)

by f(µ1, µ2, µ3) =
∫
ψd(µ1 ∗ µ2 ∗ µ3). If G is finite, then f is regular.

3 Some results for regularity

Dales, Rodriguez-Palacios and Velasco in [7, Theorem 4.1], for a bonded bilin-
ear map m : X × Y −→ Z have shown that, mr∗r∗∗∗ = m∗∗∗r∗r if and only if
both m and mr∗ are Arens regular. Now in the following we study it in general
case.

Remark 1 In the next theorem, fn is n−th adjoint of f for each n ∈ N .
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Theorem 3 If f and frn are reular, then f4rnr = frnr4.

Proof. Since f is regular, so f4r = fr4. Therefore f4rn = fr(n+4). In the other
hands, regularity of frn follows that fr(n+4) = frnr4r. Thus frnr4r = f4rn

and this completes the proof.

Theorem 4 Let f : X×Y ×Z −→W be a bounded tri-linear mapping. Then

1. f∗∗∗∗r∗∗r = fr∗∗r∗∗∗∗ if and only if both f and fr∗∗ are regular.
2. f∗∗∗∗r∗∗∗r = fr∗∗∗r∗∗∗∗ if and only if both f and fr∗∗∗ are regular.

Proof. We prove only (1), the other part has the same argument. If both f and
fr∗∗ are regular, then by applying Theorem 3, for n = 2, f∗∗∗∗r∗∗r = fr∗∗r∗∗∗∗.

Conversely, suppose that f∗∗∗∗r∗∗r = fr∗∗r∗∗∗∗. First we show that f is
regular. Let {zγ} is net in Z which converge to z∗∗ ∈ Z∗∗ in the w∗−topologies.
Then for every x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗ and w∗ ∈W ∗ we have

⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), w∗⟩ = ⟨f∗∗∗∗r(z∗∗, y∗∗, x∗∗), w∗⟩
= ⟨f∗∗∗∗r∗∗r(z∗∗, w∗, x∗∗), y∗∗⟩ = ⟨fr∗∗r∗∗∗∗(z∗∗, w∗, x∗∗), y∗∗⟩
= lim

γ
⟨y∗∗, fr∗∗r(zγ , w∗, x∗∗)⟩ = ⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), w∗⟩.

Therefore f is regular. Now we show that fr∗∗ is regular. Let {x∗∗α } be net in
X∗∗ which converge to x∗∗∗∗ ∈ X∗∗∗∗ in the w∗−topologies. Then for every
y∗∗ ∈ Y ∗∗, z∗∗ ∈ Z∗∗ and w∗∗∗ ∈W ∗∗∗ we have

⟨fr∗∗r∗∗∗∗r(x∗∗∗∗, w∗∗∗, z∗∗), y∗∗⟩ = ⟨fr∗∗r∗∗∗∗(z∗∗, w∗∗∗, x∗∗∗∗), y∗∗⟩
= ⟨f∗∗∗∗r∗∗r(z∗∗, w∗∗∗, x∗∗∗∗), y∗∗⟩ = lim

α
⟨w∗∗∗, f∗∗∗∗(x∗∗α , y

∗∗, z∗∗)⟩

= lim
α
⟨w∗∗∗, fr∗∗∗∗r(x∗∗α , y

∗∗, z∗∗)⟩ = lim
α
⟨w∗∗∗, fr∗∗∗∗(z∗∗, y∗∗, x∗∗α )⟩

= ⟨fr∗∗∗∗∗∗(x∗∗∗∗, w∗∗∗, z∗∗), y∗∗⟩.

It follows that fr∗∗ is regular and this completes the proof.

Arens has shown [3] that a bounded bilinear map m is regular if and only
if for each z∗ ∈ Z∗, the bilinear form z∗om is regular. In the next theorem we
give an important characterization of regularity bounded tri-linear mappings.

Lemma 1 Suppose X, Y, Z, W and S are normed spaces and f : X × Y ×
Z −→W and h :W −→ S are bounded tri-linear mapping and bounded linear
mapping, respectively. Then we have

1. h∗∗of∗∗∗∗ = (hof)∗∗∗∗.
2. h∗∗ofr∗∗∗∗r = (hof)r∗∗∗∗r.

Proof. Let {xα}, {yβ} and {zγ} be nets in X,Y and Z which converge to
x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗ and z∗∗ ∈ Z∗∗ in the w∗−topologies, respectively. For
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each s∗ ∈ S∗ we have

⟨h∗∗of∗∗∗∗(x∗∗, y∗∗, z∗∗), s∗⟩ = ⟨h∗∗(f∗∗∗∗(x∗∗, y∗∗, z∗∗)), s∗⟩
= ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), h∗(s∗)⟩ = lim

α
lim
β

lim
γ
⟨h∗(s∗), f(xα, yβ , zγ)⟩

= lim
α

lim
β

lim
γ
⟨s∗, h(f(xα, yβ , zγ))⟩ = lim

α
lim
β

lim
γ
⟨s∗, hof(xα, yβ , zγ)⟩

= ⟨(hof)∗∗∗∗(x∗∗, y∗∗, z∗∗), s∗⟩.

Hence h∗∗of∗∗∗∗(x∗∗, y∗∗, z∗∗) = (hof)∗∗∗∗(x∗∗, y∗∗, z∗∗). A similar argument
applies for (2).

Theorem 5 Let f : X ×Y ×Z −→W and h :W −→ S be bounded tri-linear
mapping and bounded linear mapping, respectively. Then f is regular if and
only if hof is regular.

Proof. Assume that f is regular. Then for every x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗, z∗∗ ∈
Z∗∗ and s∗ ∈ S∗ we have

⟨h∗∗(fr∗∗∗∗r(x∗∗, y∗∗, z∗∗)), s∗⟩ = ⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), h∗(s∗)⟩
= ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), h∗(s∗)⟩ = ⟨h∗∗(f∗∗∗∗(x∗∗, y∗∗, z∗∗)), s∗⟩.

Therefore h∗∗ofr∗∗∗∗r(x∗∗, y∗∗, z∗∗) = h∗∗of∗∗∗∗(x∗∗, y∗∗, z∗∗) and by apply-
ing Lemma 1, we implies that

(hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗) = (hof)∗∗∗∗(x∗∗, y∗∗, z∗∗).

It follows that hof is regular.
For the converse, suppose that hof is regular. By contradiction, let f be

not regular. Thus there exist x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗ and z∗∗ ∈ Z∗∗ such that
f∗∗∗∗(x∗∗, y∗∗, z∗∗) ̸= fr∗∗∗∗r(x∗∗, y∗∗, z∗∗). Therefore we have

(hof)∗∗∗∗(x∗∗, y∗∗, z∗∗) = w∗ − lim
α
w∗ − lim

β
w∗ − lim

γ
(hof)(xα, yβ , zγ)

= lim
α

lim
β

lim
γ
⟨f(xα, yβ , zγ), h⟩ = ⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), h⟩

̸= ⟨fr∗∗∗∗r(x∗∗, y∗∗, z∗∗), h⟩ = lim
γ

lim
β

lim
α
⟨f(xα, yβ , zγ), h⟩

= w∗ − lim
γ
w∗ − lim

β
w∗ − lim

α
(hof)(xα, yβ , zγ)

= (hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗).

It follows that (hof)∗∗∗∗(x∗∗, y∗∗, z∗∗) ̸= (hof)r∗∗∗∗r(x∗∗, y∗∗, z∗∗).

Another interesting case of regularity is in the following.

Theorem 6 Let X,Y, Z,W and S be Banach spaces, f : X × Y × Z −→ W
be a bounded tri-linear mapping and x ∈ X, y ∈ Y, z ∈ Z. Then

1. Let g1 : S × Y × Z −→ W be a bounded tri-linear mapping and let h1 :
X −→ S be a bounded linear mapping such that f(x, y, z) = g1(h1(x), y, z).
If h1 is weakly compact, then f∗∗∗∗r∗(W ∗∗∗, Z∗∗, Y ∗∗) ⊆ X∗.
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2. Let g2 : X × S × Z −→ W be a bounded tri-linear mapping and let h2 :
Y −→ S be a bounded linear mapping such that f(x, y, z) = g2(x, h2(y), z).
If h2 is weakly compact, then f∗∗∗r∗(X∗∗,W ∗, Z∗∗) ⊆ Y ∗.

3. Let g3 : X × Y × S −→ W be a bounded tri-linear mapping and let h3 :
Z −→ S be a bounded linear mapping such that f(x, y, z) = g3(x, y, h3(z)).
If h3 is weakly compact, then f∗∗∗∗∗(W ∗∗∗, X∗∗, Y ∗∗) ⊆ Z∗.

Proof. We prove only (1), the other parts have the same argument. For every
x ∈ X, y ∈ Y, z ∈ Z and w∗ ∈W ∗ we have

⟨f∗(w∗, x, y), z⟩ = ⟨w∗, f(x, y, z)⟩ = ⟨w∗, g1(h1(x), y, z)⟩ = ⟨g∗1(w∗, h1(x), y), z⟩.

Therefore f∗(w∗, x, y) = g∗1(w
∗, h1(x), y), and implies that for every z∗∗ ∈ Z∗∗,

⟨f∗∗(z∗∗, w∗, x), y⟩ = ⟨z∗∗, f∗(w∗, x, y)⟩
= ⟨z∗∗, g∗1(w∗, h1(x), y)⟩ = ⟨g∗∗1 (z∗∗, w∗, h1(x)), y⟩.

So f∗∗(z∗∗, w∗, x) = g∗∗1 (z∗∗, w∗, h1(x)) and implies that for every y∗∗ ∈ Y ∗∗,

⟨f∗∗∗(y∗∗, z∗∗, w∗), x⟩ = ⟨y∗∗, f∗∗(z∗∗, w∗, x)⟩ = ⟨y∗∗, g∗∗1 (z∗∗, w∗, h1(x))⟩
= ⟨g∗∗∗1 (y∗∗, z∗∗, w∗), h1(x)⟩ = ⟨h∗1(g∗∗∗1 (y∗∗, z∗∗, w∗)), x⟩.

Thus f∗∗∗(y∗∗, z∗∗, w∗) = h∗1(g
∗∗∗
1 (y∗∗, z∗∗, w∗)) and implies that for every

x∗∗ ∈ X∗∗,

⟨f∗∗∗∗(x∗∗, y∗∗, z∗∗), w∗⟩ = ⟨x∗∗, f∗∗∗(y∗∗, z∗∗, w∗)⟩
= ⟨x∗∗, h∗1(g∗∗∗1 (y∗∗, z∗∗, w∗))⟩ = ⟨h∗∗1 (x∗∗), (g∗∗∗1 (y∗∗, z∗∗, w∗)⟩
= ⟨g∗∗∗∗1 (h∗∗1 (x∗∗), y∗∗, z∗∗), w∗⟩.

Therefore for every w∗∗∗ ∈W ∗∗∗ we have

⟨f∗∗∗∗r∗(w∗∗∗, z∗∗, y∗∗), x∗∗⟩ = ⟨w∗∗∗, f∗∗∗∗r(z∗∗, y∗∗, x∗∗)⟩
= ⟨w∗∗∗, f∗∗∗∗(x∗∗, y∗∗, z∗∗)⟩ = ⟨w∗∗∗, g∗∗∗∗1 (h∗∗1 (x∗∗), y∗∗, z∗∗)⟩
= ⟨w∗∗∗, g∗∗∗∗r1 (z∗∗, y∗∗, h∗∗1 (x∗∗))⟩ = ⟨g∗∗∗∗r∗1 (w∗∗∗, z∗∗, y∗∗), h∗∗1 (x∗∗)⟩
= ⟨h∗∗∗1 (g∗∗∗∗r∗1 (w∗∗∗, z∗∗, y∗∗)), x∗∗⟩.

Therefore f∗∗∗∗r∗(w∗∗∗, z∗∗, y∗∗) = h∗∗∗1 (g∗∗∗∗r∗1 (w∗∗∗, z∗∗, y∗∗)). The weak com-
pactness of h1 implies that of h∗1, from which we have h∗∗∗1 (S∗∗∗) ⊆ X∗. Thus
h∗∗∗1 (g∗∗∗∗r∗1 (w∗∗∗, z∗∗, y∗∗)) ∈ X∗ and this completes the proof.

This theorem, combined with Theorem 2, yields the next result.

Corollary 5 With the assumptions Theorem 6, if h2 and h3 are weakly com-
pact, then f is regular.
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Proof. Both h2 and h3 are weakly compact, so by Theorem 6 we have

f∗∗∗r∗(X∗∗,W ∗, Z∗∗) ⊆ Y ∗ , f∗∗∗∗∗(W ∗∗∗, X∗∗, Y ∗∗) ⊆ Z∗.

In particular

f∗∗∗r∗(X∗∗,W ∗, Z) ⊆ Y ∗ , f∗∗∗∗∗(W ∗, X∗∗, Y ∗∗) ⊆ Z∗.

Now by Theorem 2, f is regular.

The converse of previous result is not true in general sense as following
corollary.

Corollary 6 With the assumptions Theorem 6, if f is regular and both g∗∗∗r∗2

and g∗∗∗∗∗3 are factors, then h2 and h3 are weakly compact.

Proof. Since f∗∗∗r∗(X∗∗,W ∗, Z∗∗) = h∗∗∗2 (g∗∗∗r∗2 (X∗∗,W ∗, Z∗∗)), so h∗∗∗2 (g∗∗∗r∗2

(X∗∗,W ∗, Z∗∗)) ⊆ Y ∗. In the other hands g∗∗∗r∗2 is factors, so implies that
h∗∗∗2 (S∗∗∗) ⊆ Y ∗. Therefore h∗2 is weakly compact and implies that h2 is weakly
compact. The other part has the same argument for h3.

4 The fourth adjoint of a tri-derivation

Definition 1 Let (π1, X, π2) be a Banach A−module. A bounded tri-linear
mapping D : A×A×A −→ X is said to be a tri-derivation when

1. D(π(a, d), b, c) = π2(D(a, b, c), d) + π1(a,D(d, b, c)),
2. D(a, π(b, d), c) = π2(D(a, b, c), d) + π1(b,D(a, d, c)),
3. D(a, b, π(c, d)) = π2(D(a, b, c), d) + π1(c,D(a, b, d)),

for each a, b, c, d ∈ A. If (π1, X, π2) is a Banach A−module, then (πr∗r
2 , X∗, π∗

1)
is the dual Banach A−module of (π1, X, π2). Therefore a bounded tri-linear
mapping D : A×A×A −→ X∗ is a tri-derivation when

1. D(π(a, d), b, c) = π∗
1(D(a, b, c), d) + πr∗r

2 (a,D(d, b, c)),
2. D(a, π(b, d), c) = π∗

1(D(a, b, c), d) + πr∗r
2 (b,D(a, d, c)),

3. D(a, b, π(c, d)) = π∗
1(D(a, b, c), d) + πr∗r

2 (c,D(a, b, d)).

It can also be written, a bounded tri-linear mapping D : A× A× A −→ A is
said to be a tri-derivation when

1. D(π(a, d), b, c) = π(D(a, b, c), d) + π(a,D(d, b, c)),
2. D(a, π(b, d), c) = π(D(a, b, c), d) + π(b,D(a, d, c)),
3. D(a, b, π(c, d)) = π(D(a, b, c), d) + π(c,D(a, b, d)).

Example 2 Let A be a Banach algebra, for any a, b ∈ A the symbol [a, b] =
ab− ba stands for multiplicative commutator of a and b. Let Mn×n(C) be the

Banach algebra of all n × n matrix and A = {
(
x y
0 0

)
∈ Mn×n(C)| x, y ∈ C}.

Then A is Banach algebra with the norm

∥ a ∥= (Σi,j |αij |2)
1
2 , (a = (αij) ∈ A).
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We define D : A×A×A −→ A to be the bounded tri-linear map given by

D(a, b, c) = [

(
0 1
0 0

)
, abc] , (a, b, c ∈ A).

Then for a =

(
x1 y1
0 0

)
, b =

(
x2 y2
0 0

)
, c =

(
x3 y3
0 0

)
and d =

(
x4 y4
0 0

)
∈ A we

have

D(π(a, d), b, c) = D(

(
x1x4 x1y4
0 0

)
,

(
x2 y2
0 0

)
,

(
x3 y3
0 0

)
)

= [

(
0 1
0 0

)
,

(
x1x2x3x4 x1x2x4y3

0 0

)
] =

(
0 −x1x2x3x4
0 0

)
=

(
0 −x1x2x3
0 0

)(
x4 y4
0 0

)
+

(
x1 y1
0 0

)(
0 −x2x3x4
0 0

)
= (

(
0 0
0 0

)
−

(
0 x1x2x3
0 0

)
)

(
x4 y4
0 0

)
+

(
x1 y1
0 0

)
(

(
0 0
0 0

)
−
(
0 x2x3x4
0 0

)
)

= (

(
0 1
0 0

)(
x1x2x3 x1x2y3

0 0

)
−
(
x1x2x3 x1x2y3

0 0

)(
0 1
0 0

)
)

(
x4 y4
0 0

)
+

(
x1 y1
0 0

)
(

(
0 1
0 0

)(
x2x3x4 x2x4y3

0 0

)
−
(
x2x3x4 x2x4y3

0 0

)(
0 1
0 0

)
)

= [

(
0 1
0 0

)
,

(
x1x2x3 x1x2y3

0 0

)
]

(
x4 y4
0 0

)
+

(
x1 y1
0 0

)
[

(
0 1
0 0

)
,

(
x2x3x4 x2x4y3

0 0

)
]

= [

(
0 1
0 0

)
,

(
x1 y1
0 0

)(
x2 y2
0 0

)(
x3 y3
0 0

)
]

(
x4 y4
0 0

)
+

(
x1 y1
0 0

)
[

(
0 1
0 0

)
,

(
x4 y4
0 0

)(
x2 y2
0 0

)(
x3 y3
0 0

)
]

= D(

(
x1 y1
0 0

)
,

(
x2 y2
0 0

)
,

(
x3 y3
0 0

)
)

(
x4 y4
0 0

)
+

(
x1 y1
0 0

)
D(

(
x4 y4
0 0

)
,

(
x2 y2
0 0

)
,

(
x3 y3
0 0

)
)

= π(D(a, b, c), d) + π(a,D(d, b, c)).

Similarly, we haveD(a, π(b, d), c) = π(D(a, b, c), d)+π(b,D(a, d, c)) andD(a, b,
π(c, d)) = π(D(a, b, c), d) + π(c,D(a, b, d)). Thus D is tri-derivation.

Now, we provide a necessary and sufficient condition such that the fourth
adjoint D∗∗∗∗ of a tri-derivation D : A×A×A −→ X is again a tri-derivation.
For the fourth adjoint D∗∗∗∗ of a tri-derivation D : A×A×A −→ X, we are
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faced with the case eight:

(case1) D∗∗∗∗ : (A∗∗,�)× (A∗∗,�)× (A∗∗,�) −→ X∗∗,

(case2) D∗∗∗∗ : (A∗∗,♢)× (A∗∗,�)× (A∗∗,�) −→ X∗∗,

(case3) D∗∗∗∗ : (A∗∗,�)× (A∗∗,♢)× (A∗∗,�) −→ X∗∗,

(case4) D∗∗∗∗ : (A∗∗,�)× (A∗∗,�)× (A∗∗,♢) −→ X∗∗,

(case5) D∗∗∗∗ : (A∗∗,♢)× (A∗∗,♢)× (A∗∗,�) −→ X∗∗,

(case6) D∗∗∗∗ : (A∗∗,♢)× (A∗∗,�)× (A∗∗,♢) −→ X∗∗,

(case7) D∗∗∗∗ : (A∗∗,�)× (A∗∗,♢)× (A∗∗,♢) −→ X∗∗,

(case8) D∗∗∗∗ : (A∗∗,♢)× (A∗∗,♢)× (A∗∗,♢) −→ X∗∗.

In the following, we prove the state of case 1. The remaining state are proved
in the same way.

Theorem 7 Let (π1, X, π2) be a Banach A−module and D : A×A×A −→ X
be a tri-derivation. Then D∗∗∗∗ : (A∗∗,�)× (A∗∗,�)× (A∗∗,�) −→ X∗∗ is a
tri-derivation if and only if

1. π∗∗r∗
2 (D∗∗∗∗(A,A,A∗∗), X∗) ⊆ A∗,

2. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

3. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

4. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

5. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

Proof. Let D : A × A × A −→ X be a tri-derivation and (1),(2),(3),(4),(5)
holds. If {aα}, {bβ}, {cγ} and {dτ} are bounded nets in A , converging in
w∗−topology to a∗∗, b∗∗, c∗∗ and d∗∗ ∈ A∗∗ respectively, in this case using (2),
we conclude that w∗ − lim

α
w∗ − lim

τ
w∗ − lim

β
w∗ − lim

γ
π2(D(aα, bβ , cγ), dτ ) =

π∗∗∗
2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗). Thus for every x∗ ∈ X∗ we have

⟨D∗∗∗∗(π∗∗∗(a∗∗, d∗∗), b∗∗, c∗∗), x∗⟩
= lim

α
lim
τ

lim
β

lim
γ
⟨x∗, D(π(aα, dτ ), bβ , cγ)⟩

= lim
α

lim
τ

lim
β

lim
γ
⟨x∗, π2(D(aα, bβ , cγ), dτ ) + π1(aα, D(dτ , bβ , cγ))⟩

= lim
α

lim
τ

lim
β

lim
γ
⟨x∗, π2(D(aα, bβ , cγ), dτ )⟩

+ lim
α

lim
τ

lim
β

lim
γ
⟨x∗, π1(aα, D(dτ , bβ , cγ))⟩

= ⟨x∗, π∗∗∗
2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗)⟩+ ⟨x∗, π∗∗∗

1 (a∗∗, D∗∗∗∗(d∗∗, b∗∗, c∗∗))⟩
= ⟨π∗∗∗

2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗) + π∗∗∗
1 (a∗∗, D∗∗∗∗(d∗∗, b∗∗, c∗∗)), x∗⟩.

Therefore

D∗∗∗∗(π∗∗∗(a∗∗, d∗∗), b∗∗, c∗∗)

= π∗∗∗
2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗) + π∗∗∗

1 (a∗∗, D∗∗∗∗(d∗∗, b∗∗, c∗∗)).
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Applying (1) and (3) respectively, we can deduce that w∗ − lim
α
w∗ − lim

β
w∗ −

lim
τ
w∗ − lim

γ
π2(D(aα, bβ , cγ), dτ ) = π∗∗∗

2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗) and w∗ −
lim
α
w∗− lim

β
w∗− lim

τ
w∗− lim

γ
π1(bβ , D(aα, dτ , cγ)) = π∗∗∗

1 (b∗∗, D∗∗∗∗(a∗∗, d∗∗,

c∗∗)). So in similar way, we can deduce that

D∗∗∗∗(a∗∗, π∗∗∗(b∗∗, d∗∗), c∗∗)

= π∗∗∗
2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗) + π∗∗∗

1 (b∗∗, D∗∗∗∗(a∗∗, d∗∗, c∗∗)).

Applying (4) and (5), we can write w∗−lim
α
w∗−lim

β
w∗−lim

γ
w∗−lim

τ
π1(cγ , D(aα

, bβ , dτ )) = π∗∗∗
1 (c∗∗, D∗∗∗∗(a∗∗, b∗∗, d∗∗)). Thus

D∗∗∗∗(a∗∗, b∗∗, π∗∗∗(c∗∗, d∗∗))

= π∗∗∗
2 (D∗∗∗∗(a∗∗, b∗∗, c∗∗), d∗∗) + π∗∗∗

1 (c∗∗, D∗∗∗∗(a∗∗, b∗∗, d∗∗)).

By comparing equations (4.1), (4.2) and (4.3) follows that D∗∗∗∗ : (A∗∗,�)×
(A∗∗,�)× (A∗∗,�) −→ X∗∗ is a tri-derivation.

For the converse, let D and D∗∗∗∗ : (A∗∗,�)× (A∗∗,�)× (A∗∗,�) −→ X∗∗

be tri-derivation. We have to show that (1), (2), (3), (4) and (5) hold. We shall
only prove (2) the others parts have similar argument. Fourth adjoint D∗∗∗∗

is tri-derivation, thus we have

D∗∗∗∗(π∗∗∗(a, d∗∗), b∗∗, c∗∗) = π∗∗∗
2 (D∗∗∗∗(a, b∗∗, c∗∗), d∗∗)

+ π∗∗∗
1 (a,D∗∗∗∗(d∗∗, b∗∗, c∗∗)).

In the other hands, the mapping D is tri-derivation, which follows that

D∗∗∗∗(π∗∗∗(a, d∗∗), b∗∗, c∗∗) = w∗ − lim
τ
w∗ − lim

β
w∗ − lim

γ
π2(D(a, bβ , cγ), dτ )

+ π∗∗∗
1 (a,D∗∗∗∗(d∗∗, b∗∗, c∗∗)).

Therefore follows that

π∗∗∗
2 (D∗∗∗∗(a, b∗∗, c∗∗), d∗∗)

= w∗ − lim
τ
w∗ − lim

β
w∗ − lim

γ
π2(D(a, bβ , cγ), dτ ).

So, for every d∗∗ ∈ A∗∗ we have

⟨π∗∗∗∗
2 (x∗, D∗∗∗∗(a, b∗∗, c∗∗)), d∗∗⟩ = ⟨x∗, π∗∗∗

2 (D∗∗∗∗(a, b∗∗, c∗∗), d∗∗)⟩
= lim

τ
lim
β

lim
γ
⟨x∗, π2(D(a, bβ , cγ), dτ )⟩ = lim

τ
lim
β

lim
γ
⟨x∗, πr

2(dτ , D(a, bβ , cγ))⟩

= lim
τ

lim
β

lim
γ
⟨πr∗

2 (x∗, dτ ), D(a, bβ , cγ)⟩ = lim
τ

lim
β

lim
γ
⟨D∗(πr∗

2 (x∗, dτ ), a, bβ), cγ⟩

= lim
τ

lim
β
⟨c∗∗, D∗(πr∗

2 (x∗, dτ ), a, bβ)⟩ = lim
τ

lim
β
⟨D∗∗(c∗∗, πr∗

2 (x∗, dτ ), a), bβ⟩

= lim
τ
⟨b∗∗, D∗∗(c∗∗, πr∗

2 (x∗, dτ ), a)⟩ = lim
τ
⟨D∗∗∗(b∗∗, c∗∗, πr∗

2 (x∗, dτ )), a⟩

= lim
τ
⟨D∗∗∗∗(a, b∗∗, c∗∗), πr∗

2 (x∗, dτ )⟩ = lim
τ
⟨D∗∗∗∗(a, b∗∗, c∗∗), πr∗r

2 (dτ , x
∗)⟩

= lim
τ
⟨πr∗r∗

2 (D∗∗∗∗(a, b∗∗, c∗∗), dτ ), x
∗⟩ = lim

τ
⟨πr∗r∗∗

2 (x∗, D∗∗∗∗(a, b∗∗, c∗∗)), dτ ⟩

= ⟨πr∗r∗∗
2 (x∗, D∗∗∗∗(a, b∗∗, c∗∗)), d∗∗⟩.
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As πr∗r∗∗
2 (x∗, D∗∗∗∗(a, b∗∗, c∗∗)) always lies in A∗, we have reached (2).

For case 2, fourth adjoint D∗∗∗∗ of tri-derivation D : A× A × A −→ X is
a tri-derivation if and only if

1. π∗∗r∗
2 (D∗∗∗∗(A∗∗, A∗∗, A∗∗), X∗) ⊆ A∗,

2. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

3. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

4. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 3, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

2. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

3. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 4, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗r∗
2 (D∗∗∗∗(A,A,A∗∗), X∗) ⊆ A∗,

2. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

3. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

4. D∗∗∗∗∗(π∗∗∗∗
1 (X∗, A∗∗), A,A) ⊆ A∗,

5. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

6. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 5, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗r∗
2 (D∗∗∗∗(A∗∗, A∗∗, A∗∗), X∗) ⊆ A∗,

2. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

3. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

4. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

5. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 6, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗r∗
2 (D∗∗∗∗(A∗∗, A∗∗, A∗∗), X∗) ⊆ A∗,

2. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

3. D∗∗∗∗∗(π∗∗∗∗
1 (X∗, A∗∗), A,A) ⊆ A∗,

4. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

5. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 7, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

2. π∗∗r∗
2 (D∗∗∗∗(A,A,A∗∗), X∗) ⊆ A∗,

3. D∗∗∗∗∗(π∗∗∗∗
1 (X∗, A∗∗), A,A) ⊆ A∗,

4. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,
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5. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

For case 8, fourth adjoint D∗∗∗∗ of tri-derivation D : A × A × A −→ X is a
tri-derivation if and only if

1. π∗∗∗∗
2 (X∗, D∗∗∗∗(A,A∗∗, A∗∗)) ⊆ A∗,

2. π∗∗r∗
2 (D∗∗∗∗(A∗∗, A∗∗, A∗∗), X∗) ⊆ A∗,

3. D∗∗∗∗r∗(π∗∗∗∗
1 (X∗, A∗∗), A∗∗, A∗∗) ⊆ A∗,

4. D∗∗∗∗∗(π∗∗∗∗
1 (X∗, A∗∗), A,A) ⊆ A∗,

5. D∗∗∗∗∗∗(A∗∗, π∗∗∗∗
1 (X∗, A∗∗), A) ⊆ A∗,

6. D∗∗∗∗∗∗∗(A∗∗, A∗∗, π∗∗∗∗
1 (X∗, A∗∗)) ⊆ A∗.

Remark 2 For adjoint Dr∗∗∗∗r of tri-derivation D : A×A×A −→ X we have
the same argument.
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