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Abstract Consider some vertices of a graph G are omitted, there are some
criteria for measuring the vulnerability of the graph; Tenacity is one of them.
In the definition of tenacity we use vertex cut S and some items, τ(G − S)
and ω(G − S), such that τ(G − S) is the number of vertices in the largest
component of G− S and ω(G− S) is the number of components of G− S.
In this paper we work on tenacity of organic compound CnH2n+2. The graph
of this molecule is a tree. We try on tenacity of it by the definition of the
tenacity.

Keywords Tenacity · Vertex cut · Organic compounds · Tree · CnH2n+2

molecule
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1 Introduction

Let G be a graph. Assume some vertices or some edges of G are removed. A
question arises up, how much the graph G dangerous is. There are some crite-
ria for measuring the vulnerability of G as connectivity, hardness, toughness,
tenacity, etc. In [3], [7], [8], these criteria are compared and the results suggest
that tenacity is a most suitable measure of stability or vulnerability in that
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for many graphs it is best able to distinguish between graphs that intuitively
should have different levels of vulnerability. Some researchers are studied on
tenacity of some graphs, for example, tenacity of complete graphs, tenacity
of three classes of Harrary graphs, tenacity of corona product of graphs, etc
[2,4,5,10–12]. In this paper we work on the tenacity of molecule CnH2n+2 by
the definition of tenacity. We explain some concepts of graphs and tenacity,
some vertex cut-sets of graph of molecule CnH2n+2, main results and some
examples in the sections, respectively.

2 Background

Definition 1 A graph G = (V,E) consists of a nonempty set V of vertices
and a set E(G) of edges, with each edge of G is a set of two vertices of V (not
necessarily distinct). We refer to |V | = n as the order of the graph G, and to
|E| = m as the size of the graph G. If m = 0, the graph G is called empty. If
ei = ej , these edges are called parallel. If e = {u, v}, then e is said to join u
and v; the vertices u and v are called the ends of e. Two vertices u and v are
incident to the edge e, also, u and v are adjacent. An edge with identical ends
is called a loop. The degree dG(v) of a vertex v in G is the number of edges of
G incident with v. A tree is a connected acyclic graph. If T is a tree and v is
a vertex by degree 1, the vertex v is called a leaf. For every tree T , m = n− 1.

CnH2n+2 molecule has n Carbon atoms and 2n + 2 Hydrogen atoms, so the
graph of CnH2n+2 has 3n+ 2 vertices and 3n+ 1 edges, and it is tree. Every
Carbon atom has degree 4 and every Hydrogen atom has degree 1.

Definition 2 A vertex v of G is a cut vertex if E can be partitioned into two
nonempty subsets E1 and E2 such that G[E1] and G[E2] have just the vertex
v in common. If G is loop less and nontrivial, then v is a cut vertex of G if
and only if ω(G− v > ω(G).
A vertex cut of G is a subset V ′ of V such that G − V ′ is disconnected. A
k-vertex cut is a vertex cut of k elements. A complete graph has no vertex cut;
in fact, the only graphs which do not have vertex cuts are those that contain
complete graphs as spanning sub-graphs.

See [1], for more information.

Definition 3 The tenacity of a graph G, T (G), is

T (G) = min{ |S|+ τ(G− S)

ω(G− S)
}, (1)

where the minimization is over all vertex cut-sets S, ω(G− S) is the number
of components of G− S and τ(G− S) is the number of vertices in the largest
component of G−S [2]. Edge-tenacity is defined similarly, except that S is an
edge cut of G and τ(G− S) is the number of edges in the largest component
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of G − S. A Connected graph G is called T -tenacious, if for any subset S of
vertices of G with ω(G − S) ≥ 1, we have |S| + τ(G − S) ≥ T.ω(G − S). If
G is not a complete graph, then there is a largest number T , such that G is
T -tenacious. Hence, the number T , is the tenacity of G. A connected graph G
is called T -tenacious if |S|+ τ(G−S) ≥ T.ω(G−S) holds for any subset S of
vertices of G with ω(G− S) > 1. If G is not complete, then there is a largest
T such that G is T -tenacious; this T is the tenacity of G. On the other hand,
a complete graph contains no vertex cut-set and so it is T -tenacious for every
T . Accordingly, we define T (Kp) = ∞ for every p (p ≥ 1).A set S ⊂ V (G) is

said to be a T -set of G if T (G) = |S|+τ(G−S)
ω(G−S) [2].

In this paper, the amount of |S|+τ(G−S)ω(G−S) is called the “ YIELD AMOUNT

OF FRACTION (YAF) ”, made by the set S, and will be represented by
symbol Y AF (S).

3 Vertex cut-sets of the Graph CnH2n+2

The aim of this paper is to investigate the tenacity of the graph of CnH2n+2.
The tenacity of a graph is dependent on the vertex cut. So, first, we must
obtain the vertex cut (for the graph of CnH2n+2). For carbon atom, we assign
the index down, the graph of CnH2n+2 appears in Figure 1.

Fig. 1 Graph of CnH2n+2

Proposition 1 Let T be a tree. v ∈ V (T ) is a cut vertex if and only if dT (v) >
1.[1]

Obviously, v ∈ V (T ) is a cut vertex if and only if v is a non-leaf. So in the
graph of CnH2n+2, v is a cut vertex if and only if it is a Carbon atom in the
graph of CnH2n+2. Therefore, each vertex cut-set must contain at least one
Carbon atom.

Lemma 1 Let S0 = {C1} and S contains carbon atom C1 only, then we have:

Y AF (S0) ≤ Y AF (S). (2)
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Proof. Since S0 = {C1}, therefore

|S0| = 1, ω0 = ω(G− S0) = 4, τ0 = τ(G− S0) = 3(n− 1) + 1 = 3n− 2.

Let S = S0 ∪ I ∪ J such that the set I contains i hydrogen atoms connected
to C1, (0 ≤ i ≤ 2) and the set J contains j hydrogen atoms unconnected to
C1, so

|S| = 1 + i+ j, ω = ω(G− S) = ω0 − i, τ = τ(G− S) = τ0 − j, (3)

therefore

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ0−j

ω0−j

= |S0|+i+τ0
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0).

The proof is similar for S = {Cn}.
Use τ and ω instead of τ(G−S) and ω(G−S), respectively, in the rest of this
paper.

Lemma 2 Let S0 = {Ck} (2 ≤ k ≤ n − 1) and S contains atom carbon Ck
only, then

Y AF (S0) < Y AF (S). (4)

Proof. S0 = {Ck}, so |S0| = 1 and ω0 = ω(G − S0) = 4. Consider different
cases for finding τ0 = τ(G− S0), as follows:

1. If k ≤ dn2 e, then the largest component of G−S0 contains n− k carbon
atoms and 2(n − k) + 1 hydrogen atoms. So there is 3(n − k) + 1 vertices in
the largest component of G− S0.

2. If k > dn2 e, then the largest component of G−S0 contains k− 1 carbon
atoms and 2(k − 1) + 1 = 2k − 1 hydrogen atoms. so the largest component
has 3(k − 1) + 1 = 3k − 2 vertices.
So

τ(G− S0) =

{
3(n− k) + 1 , k ≤ dn2 e,
3(k − 1) + 1 , k > dn2 e.

(5)

Accuracy, the function τ0 = τ(G− S0) is continuous on k = dn2 e.
The graph of CnH2n+2\Ck has four components, two hydrogen atoms which
are connected to Ck and two large components Ck−1H2(k−1)+1 and Cn−kH2(n−k)+1,
name these components as A and B. Without reducing the generality consider
ν(A) ≥ ν(B), so

τ0 = τ(G− S0) = ν(A),

also ν(A) + ν(B) + 3 = 3n+ 2.
Let S = S0 ∪ I ∪ J such that the set I has i hydrogen atoms connected to Ck,
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(0 ≤ i ≤ 2) and the set J has j hydrogen atoms unconnected to Ck. Also, let
r members of J be in A and let s members of J be in B, (r + s = j), so

|S| = |S0|+ i+ j, ω = ω(G− S) = ω0 − i.

The set A transforms to A′ after removing r hydrogen atoms from A and the
set B transforms to B′ after removing s hydrogen atoms from B, it means

ν(A′) = ν(A)− r, ν(B′)ν(B)− s.

Compare ν(A′) and ν(B′) for checking the tenacity of G− S

ν(A′)− ν(B′) = ν(A)− r − ν(B) + s
= 2ν(A)− 3n− r + s+ 1

ν(A)=τ0
= 2τ0 − 3n− r + s+ 1.

If 2τ0 − 3n− r + s+ 1 ≥ 0 then ν(A′) ≥ ν(B′) and so τ = ν(A′). Therefore,

τ = ν(A)− r = τ0 − r,

and

yaf(S) = |S|+τ
ω = |S0|+i+j+τ0−r

ω0−i

= |S0|+τ0+j+s
ω0−i

≥ |S0|+τ0
ω0

= yaf(S0).

If 2τ0 − 3n− r + s+ 1 < 0 then ν(A′) < ν(B′) and so τ = ν(B′). Therefore,

τ = ν(B)− s = (3n+ 2)− (ν(A) + 3)− s
= 3n− ν(A)− 1

ν(A)τ0
= 3n− τ0 − 1− s.

and

yaf(S) = |S|+τ
ω = |S0|+i+j+3n−τ0−1

ω0−i

= |S0|+3n+j−τ0−1−r
ω0

≥ |S0|+3n+j−τ0−1
ω0

≥ |S0|+τ0
ω0

= yaf(S0).

The proof is complete.

Lemma 3 Suppose S0 = {C1, Ck} and S contains two carbon atoms C1 and
Ck, then

Y AF (S0) ≤ Y AF (S). (6)
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Proof. Consider different cases
Case 1. Let S0 = {C1, C2}, so

|S0| = 2, ω0 = ω(G− S0) = 6, τ0 = τ(G− S0) = 3(n− 2) + 1 = 3n− 5,

Fig. 2 The components of G− S0

the largest component is in Figure 2.
Now suppose S = S0 ∪ I ∪ J , that the set I contains i hydrogen atoms which
are connected to C1 or C2 (0 ≤ i ≤ 5), and the set J contains j hydrogen
atoms which are unconnected to C1 and C2, so

|S| = |S0|+ i+ j, ω = ω0 − i, τ = τ0 − j

and

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ0−j

ω0−i

≥ |S0|+i+τ(G−S0)
ω(G−S0)

≥ |S0|+τ(G−S0)
ω(G−S0)

= Y AF (S0).

Case 2. Let S0 = {C1, Cn}.

|S0| = 2, ω0 = 7, τ0 = 3(n− 2).

Now suppose S = S0 ∪ I ∪ J that I contains i hydrogen atoms only which
are connected to C1 or Cn and J contains j hydrogen atoms only which are
unconnected to C1 and Cn, so

|S| = |S0|+ i+ j, ω = ω0 − i, τ = τ0 − j

and

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ0−j

ω0−i

= |S0|+i+τ0
ω0−i
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Fig. 3 The components of G− S0

Fig. 4 The components of G− S0

≥ |S0|+τ0
ω0

= Y AF (S0)

Case 3. Let S0 = {C1, Ck} that 3 ≤ k ≤ n− 1.

Name the large components of G− S0 by A and B as before, so

ν(A) = 3(k − 2), ν(B) = 3(n− k) + 1, ν(B)− ν(A) = 3n− 6k + 7,

So if k ≤ n
2 + 7

6 , then ν(B) ≥ ν(A) and τ0 = ν(B), and if k > n
2 + 7

6 , then
ν(A) > ν(B) and τ0 = ν(A). Therefore

|S| = 2, ω0 = 7, τ0 =

{
3(n− k) + 1 , k ≤ n

2 + 7
6 ,

3(k − 2) , k > n
2 + 7

6 .

Suppose S = S0 ∪ I ∪ J that the set I contains i hydrogen atoms which are
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connected to C1 or Ck, and the set J contains j hydrogen atoms which are
unconnected to C1 and Ck, so

|S| = |S0|+ i+ j, ω = ω0 − i.

Without reducing the generality, suppose ν(A) > ν(B), therefore τ0 = ν(A).
Let r members of J be in A and s members of J be in B, (r + s = i), so A
transforms to A′ and B transforms to B′ after removing S from CnH2n+2.
Also,

ν(A′) = ν(A)− r, ν(B′) = ν(B)− s,

and

ν(A′)− ν(B′) = ν(A)− (3n− ν(A)− 5)− r + s
= 2ν(A)− 3n+ 5− r + s

τ0=ν(A)
= 2τ0 − 3n+ 5− r + s.

So if 2τ0 − 3n+ 5− r + s ≥ 0, then

τ = ν(A′) = ν(A)− r = τ0 − r,

and

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ0−r

ω0−i

= |S0|+τ0+(i+j−r)
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0)

And if 2τ0 − 3n+ 5− r + s < 0, then

τ = ν(B′) = ν(B)− s = 3n− ν(A)− 5− 3
ν(A)=τ0

= 3n− τ0 − 5− s,

also

ν(A′)− ν(B′) < 0 ⇒ 2τ0 − 3n+ 5 + s− r < 0
⇒ −2τ0 + 3n− 5− s+ r > 0
⇒ −2τ0 + 3n− 5− s > −r
⇒ −2τ0 + 3n− 5 + j − s > j − r > 0
⇒ i+ (j − s) + 3n− 2τ0 − 5 > 0,

therefore

Y AF (S) = |S|+τ
ω = |S0|+i+j+3n−τ0−5−s

ω0−i

≥ |S0|+τ0+(i+(j−s)+3n−2τ0−5)
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0).

The proof is complete.
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Lemma 4 Let S0 = {Ck, Ck+1} that k 6= 1, k 6= n − 1, and S contains two
carbon atoms Ck and Ck+1, then

Y AF (S0) ≤ Y AF (S). (7)

Proof. Since S0 = {Ck, Ck+1}, then |S0| = 2 and ω0 = 6.

Fig. 5 The components of G− S0

The graph G − S0 has four isolated components and two large components,
name the large components by A and B, so

ν(A) = 3(k − 1) + 1, ν(B) = 3(n− (k + 1)) + 1.

Therefore, if n− 2k ≥ 0 then ν(B) ≥ ν(A) and

τ0 = τ(G− S) = ν(B) = 3(n− (k + 1)) + 1

and if n− 2k ≤ 0, then ν(A) ≥ ν(B) and

τ0 = τ(G− S0) = ν(A) = 3(k − 1) + 1.

Without reducing the generality consider ν(A) ≥ ν(B).
Suppose S = S0 ∪ I ∪ J that the set I contains i hydrogen atoms which are
connected to Ck or Ck+1, and the set J contains j hydrogen atoms which are
unconnected to Ck and Ck+1, so

|S| = |S0|+ i+ j, ω = ω0 − i.

Let r members of J be in A and s members of J be in B (r + s = j), so the
set A transforms to A′ and the set B transforms to B′ after omitting the set
J , thus

ν(B′) = ν(B)− s, ν(B′) = ν(B)− s.
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Therefor if ν(A′) ≥ ν(B′) then

τ = ν(A′) = ν(A)− r ν(A)=τ0
= τ0 − r,

and
Y AF (S) = |S|+τ

ω = |S0|+i+j+τ0−r
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0),

and if ν(A′) < ν(B′) then

τ = ν(B′) = ν(B)− s = 3n− 4− ν(A)− s ν(A)=τ0
= 3n− τ0 − 4− s,

also i+ j − s+ 3n− 4 > 0, so

Y AF (S) = |S|+τ
ω = |S0|+i+j+3n−4−τ0−s

ω0−i

= |S0|+τ0+(i+j−s+3n−4)
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0).

Lemma 5 Let S0 = {C1, C2, · · · , Ck} that k < n, and S contains k carbon
atoms C1, C2, · · · , Ck, then

Y AF (S0) ≤ Y AF (S). (8)

Fig. 6 The components of G− S0

Proof. Obviously, G− S0 has 2k + 2 components, so

|S0| = k, ω0 = 2k + 2, τ0 = 3(n− k) + 1.
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Consider S = S0∪I∪J where I contains i hydrogen atoms which are connected
to C1 or C2 or · · · or Ck (0 ≤ i ≤ 2k), and J contains j hydrogen atoms which
are unconnected to C1 and C2 and · · · and Ck, then

|S| = |S0|+ i+ j, ω = ω0 − i, τ = τ0 − j

and

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ0−j

ω0−i

= |S0|+τ0+i
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0).

Lemma 6 Let S0 = {Ck, Ck+1, · · · , Ck′} (k > 1, k′ < n), and S contains
carbon atoms Ck, Ck+1, · · · , Ck′ , then

Y AF (S0) ≤ Y AF (S) (9)

Fig. 7 components of G− S0

Proof. Obviously, G−S0 has 2k′− 2k+ 4 components, see Figure 7. We have

|S0| = k′ − k + 1, ω(G− S0) = 2k′ − 2k + 4

and

ν(A)− ν(B) = (3(k − 1) + 1)− (3(n− k′) + 1) = 3(k + k′ − n− 1).

So, ν(A)− ν(B) ≥ 0 if and only if n+ 1 ≤ k + k′; therefore

τ(G− S0) =

{
3(k − 1) + 1 , k + k′ ≥ n+ 1,
3(n− k′) + 1 , k + k′ < n+ 1.
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If S = S0 ∪ I ∪ J that I contains i hydrogen atoms H which are connected
to Ck or Ck+1 or · · · or Ck′ , and J contains j hydrogen atoms H ′ which are
unconnected to Ck and Ck+1 and · · · and Ck′ , then

|S| = k′ − k + 1 + i+ j = |S0|+ i+ j, ω(G− S) = ω(G− S0)− i.

Without reducing the generality suppose ν(A) ≥ ν(B). Let r members of J be
in A and s members of J be in B, (r + s = j), therefore the set A transforms
to A′ and the set B transforms to B′ after removing the set J . So,

ν(A′) = ν(A)− r, ν(B′) = ν(B)− s.

On the other hand

ν(A) + ν(B) + 3|S0| = ν = 3n+ 2,

so

ν(B) = ν − 3|S0| − ν(A) = ν − 3|S0| − τ0

and

ν(A′)− ν(B′) = 2τ0 + 3|S0| − ν − r + s.

If ν(A′) ≥ ν(B′), then

τ(G− S) = τ(G− S0)− r = ν(A′),

thus

Y AF (S) = |S|+τ(G−S)
ω(G−S) = |S0|+i+j+τ(G−S0)−r

ω(G−S0)−i

= |S0|+τ(G−S0)+i+s
ω(G−S0)−i

≥ |S0|+τ(G−S0)
ω(G−S0)

= Y AF (S0),

and if ν(A′) < ν(B′), then

τ(G− S) = ν(B′) = ν(B)− s = ν − 3|S0| − τ0 − s

and because
ν(A′)− ν(B′) < 0 ⇔ 2τ0 + 3|S0| − ν − r + s < 0

⇔ τ0 < ν − 3|S)|+ r − s− τ0
< ν − 3|S0|+ r − τ0
< ν − 3|S0|+ r − τ0 − i,

we have

Y AF (S) = |S|+τ(G−S)
ω(G−S) = |S0|+τ0+(i+j+ν−3|S0|−2τ0−s)

ω(G−S0)−i

= |S0|+ν−3|S0|+r−τ0+i
ω(G−S0)−i

≥ |S0|+τ(G−S0)
ω(G−S0)

= Y AF (S0).
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Lemma 7 let n be odd, S0 = {C1, C3, · · · , C2t+1, · · · , Cn}, and S contains
carbon atoms C1, C3, · · · , Cn, then

Y AF (S0) ≤ Y AF (S). (10)

Proof. S0 = {C1, C3, · · · , C2t+1, · · · , Cn} so

|S0| =
n+ 1

2
, ω0 = 2(

n+ 1

2
) + 2 +

n− 1

2
=

3n− 5

2
, τ0 = 3.

Suppose S = S0 ∪ I ∪ I, where I contains i hydrogen atoms only which are
connected to C1 or C3 or · · · or C2t+1 or · · · or Cn, and J contains j hydrogen
atoms only which are unconnected to C1 and C3 and · · · and C2t+1 and · · ·
and Cn, so

|S| = n+ 1

2
+ i+ j = |S0|+ i+ j, ω = ω0 − i,

also

τ(G− S) =

1 , j = n− 1,
2 , j = n− 2,
2 or 3 , j < n− 2,

thus

j + τ =

 j + 1 = n− 1 + 1 = n , j = n− 1,
j + 2 = n− 2 + 2 = n , j = n− 2,
j + 2 or j + 3 , j < n− 2.

Therefore j + τ ≥ 3, and

Y AF (S) = |S|+τ
ω = |S0|+i+j+τ

ω0−i

≥ |S0|+i+3
ω0−i

= |S0|+i+τ0
ω0−i

≥ |S0|+τ0
ω0

= Y AF (S0).

The proof is complete.

Lemma 8 Let n be odd, S0 = {C2, C4, · · · , C2t, · · · , Cn−1}, and S contains
carbon atoms C2, C4, · · · , C2t, · · · , Cn−1, then we have

Y AF (S0) ≤ Y AF (S). (11)

Proof. We can see

|S0| =
n− 1

2
, τ0 = 4, ω0 = 2(

n− 1

2
) +

n+ 1

2
=

3n− 1

2
.

Suppose S = S0∪I∪J , taht I contains i hydrogen atoms which are connected
to C2 or C4 or · · · or C2t or · · · or Cn−1, and J contains j hydrogen atoms
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only which are unconnected to C2 and C4 and · · · and C2t and · · · and Cn−1,
then

|S| = |S0|+ i+ j, ω(G− S) = ω(G− S0)− i.
Obviously, j + τ ≥ 4 = τ0, and therefore

Y AF (S) = |S|+τ(G−S)
ω(G−S) = |S0|+i+j+τ(G−S)

ω(G−S0)−i

≥ |S0|+i+4
ω(G−S0)−i

= |S0|+τ(G−S0)+i
ω(G−S0)−i

≥ |S0|+τ(G−S0)
ω(G−S0)

= Y AF (S0).

Lemma 9 Let n be even, S0 = {C1, C3, · · · , C2t+1, · · · , Cn−1} and S contains
carbon atoms C1, C3, · · · , C2t+1, · · · , Cn−1, then

Y AF (S0) ≤ Y AF (S). (12)

Fig. 8 components of G− S0

Proof. The graph of G− S0 is shown in Figure 8, so

|S0| =
n

2
, ω0 =

3

2n+ 1
, τ0 = 4.

Suppose S = S0 ∪ I ∪ J , that I contains i hydrogen atoms only which are
connected to C1 or C3 or · · · or C2t+1 or · · · or Cn−1, and J contains j
hydrogen atoms only which are unconnected to C1 and C3 and · · · and C2t+1

and · · · and Cn−1. Therefore

|S| = |S0|+ i+ j, ω = ω0 − i,

obviously, j + τ ≥ 4 = τ0, so
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Y AF (S) = |S|+τ(G−S)
ω(G−S) = |S0|+i+j+τ(G−S)

ω(G−S0)−i

≥ |S0|+i+4
ω0−i

= |S0|+τ0+i
ω

≥ |S0|+τ0
ω0

= Y AF (S0).

Lemma 10 Let S0 = {C1, C2, · · · , Cn} then for every cut set S that contains
all Carbon atoms, we have

Y AF (S0) ≤ Y AF (S). (13)

Proof. S0 = {C1, C2, · · · , Cn}, so

|S0| = n, ω0 = 2n+ 2, τ0 = 1.

Let S = S0 ∪ I that I contains i hydrogen atoms then

|S| = |+ i, ω = ω0 − i, τ = τ0,

therefore
Y AF (S) = |S|+τ

ω = |S0|+i+τ0
ω0−i ≥ |S0|+τ0

ω0
= Y AF (S0),

and the proof is complete.

4 Tenacity of CnH2n+2

The tenacity of a graph G is

T (G) = min
|S|+ τ(G− S)

ω(G− S)
,

that minimization is over all vertex cut-sets S, τ(G − S) is the number of
vertices in the largest component of G − S and ω(G − S) is the number of
components of G−S. Every vertex cut of CnH2n+2 must have a Carbon atom
at least, the number of it’s vertex cut-sets is 2n − 1 and it is a big number, so
checking all vertex cut-sets is a hard work, therefore we use the vertex cut-sets
and lemmas of the previous section. We compare these cut sets by the cut set
S = {C1, C2, · · · , Cn}.

Theorem 1 Suppose S0 = {Ck} and S = {C1, C2, · · · , Cn}, then

Y AF (S) ≤ Y AF (S0). (14)
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Proof. Since S0 = {Ck}, therefore ω(G− S0) = 4 and

τ(G− S0) =

{
3(n− k) + 1 , k ≤ dn2 e,
3(k − 1) + 1 , k > dn2 e,

and since S = {C1, C2, · · · , Cn}, therefore

ω(G− S) = 2n+ 2, τ(G− S) = 1.

We consider two cases
1. If k ≤ dn2 e, then

Y AF (S0) = |S0|+τ(G−S0)
ω(G−S0)

= 1+3(n−k)+1
4 = 3(n−k)+2

4 .

We know that 3(n− k) ≥ 0, therefore 3(n− k) + 2 ≥ 2, thus 3n−3k+2
4 ≥ 1

2 . So
Y AF (S0) ≥ 1

2 , and since Y AF (S) = 1
2 , we have Y AF (S0) ≥ Y AF (S).

2. If k > dn2 e, then

Y AF (S0) = |S0|+τ(G−S0)
ω(G−S0)

= 1+3(k−1)+1
4 = 3k−1

4 .

We know 3k ≥ 3 thus 3k−1 ≥ 2, so3k−1
4 ≥ 1

2 . From above relations, we obtain
that Y AF (S0) ≥ Y AF (S).

Theorem 2 Suppose S0 = {Ci, Cj} and S = {C1, C2, · · · , Cn}, then

Y AF (S0) ≥ Y AF (S). (15)

Proof. For proof, we consider different cases of the following

1. Suppose S0 = {C1, Ck} (k 6= 2) (or S0 = {C1, Cn}), then

ω(G− S0) = 7, τ(G− S0) =

{
3(n− k) + 1 , 6k ≤ 3n+ 7,
3(k − 2) , 6k > 3n+ 7,

If 6k ≤ 3n+7, then 6n−6k > 1; therefore 2+3(n−k)+1
7 > 1

2 , which implies that

Y AF (S0) ≥ Y AF (S). And if 6k > 3n + 7, then 2+3(k−2)
7 > 1

2 , which implies
that Y AF (S) < Y AF (S0).

2. Suppose S0 = {Ck, Ck+1} (or S0 = {C1, C2}), then

ω(G− S0) = 6, τ(G− S0) =

{
3(n− (k + 1)) + 1 , 2k ≤ n,
3(k − 1) + 1 , 2k > n.

If 2k ≤ n, then

k ≤ n
2 ⇒ k + 1 ≤ n

2 + 1 < n
⇒ n− k ≥ 1
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⇔ n−k
2 ≥ 1

2

⇔ n−(k+1)+1
2 ≥ 1

2

⇔ 3n−3(k+1)+3
6 ≥ 1

2

⇔ 2+3n−3(k+1)+1
6 ≥ 1

2

⇔ |S0|+τ(G−S0)
ω(G−S0)

≥ |S|+τ(G−S)ω(G−S) ⇔ Y AF (S0) ≥ Y AF (S).

And if 2k > n, then

k > n
2 ⇒ k > 1

⇒ k
2 ≥

1
2

⇔ 3(k−1)+3
6 ≥ 1

2

⇔ 2+3(k−1)+1
6 ≥ 1

2

⇔ |S0|+τ(G−S0)
ω(G−S0)

≥ |S|+τ(G−S)ω(G−S) ⇔ Y AF (S0) ≥ Y AF (S).

Thus for all cases we get that Y AF (S0) ≥ Y AF (S).

Theorem 3 Suppose S0 = {Ck, Ck+1, · · · , Ck′} (that k 6= 1, k′ 6= n) and
S = {C1, C2, · · · , Cn}, then

Y AF (S0) ≥ Y AF (S). (16)

Proof. we have

|S0| = k′ − k + 1, ω(G− S0) = 2(k′ − k + 1) + 2,

τ(G− S0) =

{
3(k − 1) + 1 , k + k′ ≥ n+ 1,
3(n− k′) + 1 , k + k′ < n+ 1.

If k + k′ ≥ n+ 1, then

k ≥ 1 , k′ ≥ k + 2 ⇒ k′ − k + 2 > 0

⇒ 3(k−1)
k′−k+2 > 0

⇒ k′−k+2+3(k−1)
k′−k+2 > 1

⇒ k′−k+1+3(k−1)+1
2(k′−k+1)+2 > 1

2 .

And if k + k′ < n+ 1, then

3(n− k′)
k′ − k + 2

> 0 ( because(k′ ≤ n− 1⇒ n− k′ > 0), k′ − k + 2 > 0)

⇔ k′−k+1+3(n−k′)+1
k′−k+2 > 1

⇔ k′−k+1+3(n−k′)+1
2(k′−k+1)+2 > 1

2 .

Thus we get that Y AF (S0) > Y AF (S).
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Lemma 11 Suppose n is odd, S1 = {C1, C3, · · · , C2t+1, · · · , Cn}, and S2 =
{C2, C4, · · · , C2t, · · · , Cn−1}, then

Y AF (S1) ≥ Y AF (S2). (17)

Proof. We have

|S1| =
n+ 1

2
, ω(G− S1) =

3n− 5

2
, τ(G− S1) = 3

|S2| =
n− 1

2
, ω(G− S2) =

3n− 1

2
, τ(G− S2) = 4.

Therefore
3n− 1 ≥ 3n− 5 ⇔ n+7

3n−5 ≥
n+7
3n−1

⇔
n+1
2 +3
3n−5

2

≥
n−1
2 +4
3n−1

2

⇔ |S1|+τ(G−S1)
ω(G−S1)

≥ |S2|+τ(G−S2)
ω(G−S2)

⇔ Y AF (S1) ≥ Y AF (S2).

The above results will be useful in the rest of the paper. We find upper
bound of tenacity of CnH2n+2 by using them in the following theorems.

5 Main results

In this section, we find upper bound for the cases n odd and n even.

Theorem 4 If n is odd, then

T (CnH2n+2) ≤
{

1
2 , n ≤ 15
n+7
3n−1 , n > 15

. (18)

Proof. We consider two cases as follows
1. If n ≤ 15, then

2n+ 14 ≥ 3n− 1 ⇔ n+7
3n−1 ≥

1
2

⇔
n−1
2 +4
3n−1

2

≥ 1
2 ⇔ Y AF (S2) ≥ Y AF (S) = 1

2 ,

therefore

T (CnH2n+2) ≤ 1

2
.

2. If n > 15, then

T (CnH2n+2) ≤ Y AF (S2) =
n+ 7

3n− 1
.
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Theorem 5 If n is even, then

T (CnH2n+2) ≤
{

1
2 , n ≤ 15
n+8
3n+1 , n > 15

. (19)

Proof. Let S={C1, C3, · · · , Cn−1}. We consider two cases as follows

1. If n ≤ 15, then

n ≤ 15 ⇔ 2n+ 16 ≥ 3n+ 1
⇔ n+8

3n+1 ≥
1
2

⇔
n
2 +4
3n+1

2

≥ 1
2 ⇔ Y AF (S3) ≥ Y AF (S) = 1

2 ,

therefore

T (CnH2n+2) ≤ 1

2
.

2. If n > 15, then

T (CnH2n+2) ≤ Y AF (S3) =
n+ 8n

3n+ 1
.

6 Examples

For all the cases that n ≥ 3, we obtained an upper bound for the tenacity. In
the end, for n = 1 and n = 2, we will calculate the tenacity for methane and
ethane.

Fig. 9 Graph of methane
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Example 1 Let n = 1, obtain tenacity of methane.
Solved. Graph of methane is in Figure 9. Also the vertex cutsets are as follows
S0 = {C}, S1 = S0 ∪H1, where H1 contains only one H and S2 = S0 ∪H2,
where H2 contains only two H, then for any i = 1, 2, we have |Si| = |S0| + i,
ω(G− Si) = ω(G− S0)− i, τ(G− Si) = τ(G− S0); therefore

T (G) = min{ |Si|+τ(G−Si)
ω(G−Si)

|i = 0, 1, 2}

= min{ |S0|+i+τ(G−S0)
ω(G−S0)−i |i = 0, 1, 2}

= min{ 1+i+1
4−i |i = 0, 1, 2}

= min{ 2+i4−i |i = 0, 1, 2}

= min{ 12 ,
3
3 ,

4
2}

= min{ 12 , 1, 2} = 1
2 .

The set S = {C} is the 1
2 -tenasious.

Example 2 Let n = 2, obtain tenacity of ethanol.
Solved. The cut sets of above graph are
Si = {C1, C2} ∪ A, where A contains only i hydrogen atoms, 0 ≤ i ≤ 4 and
Ski,j = {Ck} ∪B ∪C, where B contains only i hydrogen atoms which are con-
nected to Ck and C contains only j hydrogen atoms which are unconnected
to Ck, 0 ≤ k ≤ 1, 0 ≤ i ≤ 2, 0 ≤ j ≤ 3. So, we have

|Si| = 2 + i, (0 ≤ i ≤ 4)
|Ski,j | = 1 + i+ j, (0 ≤ k ≤ 1, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3)

|Sk0,0| = 1, ω(G− Sk0,0) = 4, τ(G− Sk0,0) = 4

ω(G− Ski,j) = ω(G− Sk0,0)− i = 4− i, τ(G− Ski,j) = τ(G− Sk0,0)− j = 4− j
|S0| = 2, ω(G− S0) = 6, τ(G− S0) = 1
ω(G− Si) = ω(G− S0)− i = 6− i, τ(G− Si) = τ(G− S0) = 1.

Now we consider two cases as follows

1. When S = Ski,j , so

min{ |S
k
i,j |+τ(G−S

k
i,j)

ω(G−Sk
i,j)

|0 ≤ i ≤ 2, 0 ≤ j ≤ 3}

= min{ 1+i+j+4−j
4−i |0 ≤ i ≤ 2, 0 ≤ j ≤ 3}

= min{ 5+i4−i |0 ≤ i ≤ 2}
= min{ 54 , 2,

7
2 , 8} = 5

4 .

2. When S = Si, so

min{ |Si|+τ(G−Si)
ω(G−Si)

|0 ≤ i ≤ 4}
= min{ 2+i+1

6−i |0 ≤ i ≤ 4}
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= min{ 3+i6−i |0 ≤ i ≤ 4}
= min{ 12 ,

4
5 ,

5
4 , 2,

7
2} = 1

2 .

Thus

T (C2H6) = min{1

2
,

5

4
} =

1

2
.

Fig. 10 Graph of ethan

The set {C1, C2} is the 1
2 -tenasious.

7 conclusions and one open problem

In this paper we study vertex cut-sets and the tenacity of the graph of CnH2n+2.
Our results show that the study of tenacity and vertex cut-sets are important.
By using two examples 1 and 2, we see that the tenacity is exactly 1

2 which
obtained on {C1} for methane and on {C1, C2} for ethanol. Also, in the last
two theorems, we found the smallest upper bound on the {C1, C2, · · · , Cn}.
Therefore, an estimate it could be that the smallest upper bound of tenacity
will obtained on vertex cut which has most carbon atom (for n ≥ 15). These
observations provide evidence for the fact that the study of the following con-
jecture ought to be challenging.

Conjecture: May be the tenacity of the graph of CnH2n+2 is

T (CnH2n+2) =

{
min{ 12 ,

n+8
3n+1} , n is even,

min{ 12 ,
n+7
3n−1} , n is odd.

(20)

Obviously that if 20 is reached, then

1

3
< T (CnH2n+2) ≤ 1

2
.
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